Skip to main content
Erschienen in: Journal of Ovarian Research 1/2023

Open Access 01.12.2023 | Review

Potential factors result in diminished ovarian reserve: a comprehensive review

verfasst von: Qinying Zhu, Yi Li, Jianhong Ma, Hao Ma, Xiaolei Liang

Erschienen in: Journal of Ovarian Research | Ausgabe 1/2023

Abstract

The ovarian reserve is defined as the quantity of oocytes stored in the ovary or the number of oocytes that can be recruited. Ovarian reserve can be affected by many factors, including hormones, metabolites, initial ovarian reserve, environmental problems, diseases, and medications, among others. With the trend of postponing of pregnancy in modern society, diminished ovarian reserve (DOR) has become one of the most common challenges in current clinical reproductive medicine. Attributed to its unclear mechanism and complex clinical features, it is difficult for physicians to administer targeted treatment. This review focuses on the factors associated with ovarian reserve and discusses the potential influences and pathogenic factors that may explain the possible mechanisms of DOR, which can be improved or built upon by subsequent researchers to verify, replicate, and establish further study findings, as well as for scientists to find new treatments.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
DOR
Diminished ovarian reserve
NOR
Normal ovarian reserve
GCs
Granulosa cells
AFC
Antral follicle count
AMH
Antimüllerian hormone
FSH
Follicle-stimulating hormone
LH
Luteinizing hormone
E2
Estrogen
P
Progesterone
AMHR
Antimüllerian hormone receptor
AR
Androgen receptor
FSHR
Follicle-stimulating hormone receptor
LHR
Luteinizing hormone receptor
ER
Estrogen receptor
PR
Progesterone receptor
FF
Follicular fluid
GLUT
Glucose transporter
COC
Cumulus-oocyte complexes
PPP
Pentose phosphate pathway
HBP
Hexosamine biosynthetic pathway
ROS
Reactive oxygen species
PRPP
Phosphoribosyl pyrophosphate
SOD
Superoxide dismutase
cAMP
Cyclic adenosine monophosphate
MMP
Mitochondrial membrane potential
mtDNA
Mitochondrial DNA
HDL
High-density lipoprotein
SLE
Systemic lupus erythematosus
RA
Rheumatoid arthritis
RF
Rheumatoid factor
anti-CCP
Anti-cyclic citrullinated peptide
CRP
C-reactive protein
BD
Bechet’s disease
PFASs
Polyfluoroalkyl substances
PFOA
Perfluorooctanoic acid
ART
Assisted reproduction technique

Introduction

Ovarian reserve is the quantity of primordial follicles and follicles that can be recruited into the pre-antral and antral stages and are competent for ovulation [1]. Women have inherent and finite number of ovarian follicles that are gradually descend during their reproductive years until poor reproductive outcome occurs [2]. The growth of ovarian follicles composes the basis of female reproduction, and the proliferation of granulosa cells (GCs) is a foundational process required to ensure normal follicular development [3]. Clinicians consider several ovarian reserve tests, including biochemical tests, such as follicle-stimulating hormone (FSH), luteinizing hormone (LH), estradiol (E2), inhibin B, and antimüllerian hormone (AMH), and ultrasound imaging of the ovaries like antral follicle count (AFC) [4, 5]. As a complex clinical sign, ovarian reserve can be influenced by many factors such as age, environment, primordial follicular pool, diseases and drugs, and some unknown elements [1, 6]. Compared with the normal group at a similar age, the number of available follicles or oocytes decreased to a very poor count in women with DOR [5]. With the progress of modern society and the postponement of pregnancy, DOR has become an intractable problem for women eager to become pregnant and also for the societal environment of the next generation [7]. Thus far, the etiology and pathogenesis of DOR are still vague; therefore, this review details about the variable factors that could affect ovarian reserve and hopes to improve our understanding of DOR by reorganizing its effects, putting forward some potential reasons for DOR, and hoping to have some impact on future clinical treatment.

Hormonal influence on ovarian reserve

AMH

As one of the most commonly used clinical markers to estimate ovarian reserve, AMH level is a reliable index that reflects the pool of follicles in the gonadotropin-independent phase and ovarian follicle count [5, 8, 9]. Accumulated AMH plays a key role in facilitating follicular growth from the pre-antral to the antral phase [10]. In antral follicles, AMH secretion gradually decreases from a peak to undetectable levels at 8–10 mm follicle diameter [11]. Furthermore, AMH levels appeared to reflect the number of growing and primordial follicles [12]. Thus, AMH plays an important role in the recruitment of primordial follicles, and the absence of the AMH gene results in more primordial follicles in young mice and fewer in older mice [13], suggesting that AMH deficiency depletes the resting pool, causing successively low AFC in the early years and finally inducing DOR. The local effects of AMH on folliculogenesis may also be stage-dependent. Additionally, the gene of AMH expression in GCs is positively associated with AMH levels and the expression of the FSH receptor (FSHR), androgen receptor (AR) and AMH receptor (AMHR), and negatively associated with the levels of estradiol (E2) and progesterone (P) in the corresponding follicular fluid, suggesting a reflective function of AMH concentration in synchronous follicular growth [14]. The same study also indicated that AMH levels in the circulation reflect the constitution of follicles ranging from 5 to 8 mm in diameter.

FSH and LH

The quantity of small antral follicles at the initiation of each follicle development cycle is a manifestation of the ovarian reserve. Sufficient FSH production is required for the growth of smaller follicles, which is related to follicle recruitment [15, 16]. The presence of FSH is crucial after the pre-antral follicle stage, although the correct level of FSH at the pre-antral stage is associated with greater oocyte quality [17]. Sustained and sufficient stimulation of FSH is key to the action of aromatase enzymes and estradiol-dependent follicular development; therefore, it is initially at the stage of large antral follicles at the onset of ovulation [18]. In vitro experiments have shown an association between FSH and steroid production, substance exchange, and metabolism, which ultimately induces follicle maturation [19].
Adequate LH secretion is necessary for the further maturation of follicles, especially preovulatory follicles [18, 20]. Research has shown that appropriate stimulation of LH is required for follicular growth by regulating the action of steroids on ovarian cells; however, excess LH could lead to the inhibition of the differentiation and proliferation of GCs [18]. Furthermore, the initial number of antral follicles chosen for ovulation is highly dependent on the distribution density and regulatory activity of the FSHR and LHR on the membrane of GCs [16, 21]. Moreover, adequate FSHR and LHR are required for further follicle maturation by activating the conversion of androstenedione to estrogen [15]. The quality of oocytes can be compromised by a low density of FSH and insufficient expression of FSHR and LHR [22].

Inhibin B

Inhibin B is secreted by growing follicles, accumulates in the follicular compartment, and is released into circulation. Its primary function is to selectively inhibit the synthesis and secretion of FSH and activate LH. As it is a GC-specific hormone, its intrafollicular concentration is related to the size of the follicle, and its serum level could reflect follicle synthesis. Inhibin B is more effective in predicting women with AFC ranging from 5 to 7 mm [23]. Inhibin B summits during the follicle growth reaching a diameter of 8–10 mm [11], and the episodic inhibin B secretion pattern shows a peak during the follicular phase and ovulation [24]. Andersen hypothesized that inhibin B participates in the selection of dominant follicles during the natural human menstrual cycle [25]. Inhibin B is secreted in response to follicle-stimulating by FSH and promotes androgen production. Androgens then accumulate in adjacent GCs and upregulate the expression of FSHR and LHR, ultimately leading to increased sensitivity to gonadotropins in the follicle and further follicular growth.

Estrogen, progesterone and androgens

There is E2-dependent, calcium-mediated cytoplasmic maturation in human oocytes [26]. A study found that follicular fluid (FF) obtained from dominant follicles had a higher estrogen/androgen ratio than atretic subordinate follicles, indicating that well-developed follicles require abundant estrogen [16]. Estrogen receptor (ER) plays an important role in follicle development beyond the antral stage by regulating the transcriptional levels of genes involved in the communication between GCs and oocyte, oocyte maturation and gonadotropin-induced follicle development [20, 27].
Additionally, progesterone secretion gradually increases during antral follicle development [11], surges in the preovulatory period, and peaks in the dominant follicles [28]. Abnormally high levels of both P and E2 can negatively regulate follicle development from the primordial to the primary stage and impair mitosis of GCs, suggesting the arrest of primordial follicle growth [29, 30]. Thus, the over secretion of P and E2 at the early stage of follicular development affects the ovarian reserve.
Androgens exert complex effects on follicular development. The expression of AR in GCs is enriched in the pre-antral and early antral stages of follicles and is progressively absent in late preovulatory follicles [31, 32]. The absence of AR results in the apoptosis of GCs and subsequently compromises the ovarian reserve [33, 34].

Spatiotemporal pattern of hormone-mediated folliculogenesis

From the perspective of synchronized follicular development, a well-orchestrated spatiotemporal pattern of hormone-mediated folliculogenesis is crucial for ovarian reserve. One of the basic functions of AMH in folliculogenesis is the transition of follicles from the FSH-independent to the FSH-dependent stage, that is, the period from pre-antral to antral follicle stages [10]. FSH-stimulated pre-antral follicle development can be inhibited by AMH, and a lack of FSH induces attenuation of primordial follicle recruitment, suggesting that AMH can regulate the sensitivity of early follicles to FSH [35], and over secretion of AMH can lead to a dramatic drop in the number of follicles after the primary stage [36]. The tight association between AMH and AMHR expression in GCs suggests that cells and receptors are involved in the synchronous mechanisms that may influence follicular development. This is further supported by the significant association between AMHR and FSHR [14]. During dominant follicular selection, the secretion of E2 and P increases rapidly, and the concentration of inhibin B reaches its peak [11]. In contrast, the AMH level drops to its lowest point, indicating the cooperation of these hormones [11]. A high concentration of AMH during the early period of follicular growth also suppresses the secretion of E2, which is related to preovulatory follicle selection, by eliminating its function by acting on the aromatase of FSH [10]. Moreover, an appropriate androgen concentration is beneficial for FSH-dependent pre-antral follicular development by augmenting the expression of FSH at the mRNA level [37]. Therefore, as shown in Fig. 1, an appropriate concentration, opportune action, and synergistic response mechanism of intrafollicular hormones are essential for regulating the development of follicles in relation to the phenotypic ovarian reserve.

Important metabolic part about ovarian reserve

Glucose metabolism

Glucose metabolism is necessary to generate sufficient material for follicle expansion, and an increased glucose requirement is necessary for the proliferation and differentiation of CCs and oocyte development. Because of the hydrophobicity of glucose, GCs absorbed glucose through glucose transporters (GLUTs) [38]. The main pathways for glucose metabolism in cumulus-oocyte complexes (COC) include glycolysis, the pentose phosphate pathway (PPP), the hexosamine biosynthetic pathway (HBP) and the polyol pathway [39]. Glycolysis in human GCs is enhanced from primordial to primary follicle [40]. In the absence of phosphofructokinase, energy production in the oocyte relies on pyruvate provided by GCs, and the oocyte synchronously regulates the high expression of phosphofructokinase in GCs [41]. Prior to follicular maturity, the production of pyruvate and lactate in GCs increases due to high energy consumption [42]. Pyruvate deprivation leads to early follicular dysgenesis [43]. Lactate may play a signaling molecular role in the follicular-luteal transition [44], and a lack of lactate causes follicular dysplasia [45]. There are two main functions of PPP in the COC. The first is the production of NADPH for the operation of the antioxidant system, including the combination of reactive oxygen species (ROS) to reduce cellular oxidation levels [42, 46]. The second function is the generation of phosphoribosyl pyrophosphate (PRPP) to synthesize nucleotides and nucleic acids. In addition, PPP is involved in the meiotic induction mechanism of oocytes [47], and inhibition of PPP can reduce the ratio of MII oocytes, demonstrating that PPP is a key regulator of the nuclear and cytoplasmic maturation of oocytes [48]. Additional glucose enters the HBP to provide a substrate for hyaluronic acid production during extracellular matrix expansion [49, 50]. Finally, a small tiny fraction of the absorbed glucose is used by the GCs to produce sorbitol and fructose via the polyol pathway [51]. Sorbitol, a byproduct of the polyol pathway, can increase superoxide dismutase (SOD) levels, which enhances ROS levels and results in follicular dysmaturity and ovarian aging [52, 53]. However, the presence of sorbitol or fructose in GCs and oocytes has not yet been established.

Lipids and cholesterol

Lipids, which are mainly metabolized in CCs around the oocyte, are potential resources for energy production in ovarian cells [54, 55]. Fatty acid β-oxidation, which is induced by the LH surge, plays an initial role in the metabolism of COCs, and the inhibition of fatty acid β-oxidation results in decreased oocyte quality [56]. The concentration of some fatty acids (i.e. pentadecanoic acid, heptadecanoic acid, cis-11-octadecenoic acid, cis-11-eicosenoic acid, cis,cis-11,14-eicosadienoic acid, and behenic acid, ect) were lower in DOR group with statistical significance, and the decreased transcription of HADHA (hydroxyacyl-coenzyme A dehydrogenase), ACSL (fatty acids β-oxidation related genes) were also decreased in DOR patients [57]. Therefore, further studies on the relationship between fatty acids and ovarian reserve are required.
The adiponectin signaling pathway is involved in ovarian activities, such as the regulation of steroid production in GCs and oocyte growth [58]. One possible mechanism of action of adiponectin is the activation of the hypothalamic-pituitary axis, and the absence of adiponectin interferes with the production of FSH and LH and subsequently influences ovulation [59]. Moreover, AdipoRon, an adiponectin-like synthetic, inhibits folliculogenesis and GCs proliferation by regulating aromatase expression, steroid production, and estrogen secretion by increasing the activity of phosphodiesterase, which causes cyclic adenosine monophosphate (cAMP) production [60].
Alterations in steroid hormones are related to oocyte development, and cholesterol participates in steroidogenesis. Studies have shown that intracellular cholesterol concentration is likely to reflect the developmental competence of the oocyte [61, 62]. Furthermore, cholesterol can be converted to progesterone and estradiol, which can further regulate the function of GCs [63, 64], and the synergistic effect of progesterone and estradiol delays oocytes development at an early stage [65]. Genes involved in steroid biosynthesis are different between the DOR and NOR groups [66], and subsequent research demonstrated that cholesterol-related metabolites, including coprostanone, 11 A-acetoxyprogesterone, 17α-hydroxyprogesterone, and estradiol, are decreased in the GCs of the DOR group [67]. Moreover, the transcriptional levels of SCAP, a key gene involved in cholesterol regulation, and CYP19A1, a key gene related to steroidogenesis, were downregulated in the DOR group. Cholesterol synthesis and transport-related genes such as IDI1, FDFT1, CYP51A1, and STARD1, also decreased significantly.

Mitochondria

Mitochondrial biogenesis is one of the key intracellular pathways involved in programming the ovarian reserve, and the mitochondrial state of GCs directly influences the ovarian reserve [68]. Enhanced ROS levels, reduced mitochondrial membrane potential (MMP, an index of mitochondrial function), and decreased mitochondrial DNA (mtDNA) copy number were observed in women with DOR [69]. Because mitochondria are active, their by-products, such as ROS, can intervene to natural cell function by damaging DNA and/or proteins in cells. Thus, increased ROS levels are associated with adverse follicular growth. In humans, mutated mtDNA is strongly associated with ageing phenotypes and reduced lifespan [70]. Introducing functional mtDNA or increasing the amount of mtDNA produced by resveratrol leads to the restoration of ovarian health [71, 72]. A study focusing on mitochondrial biogenesis via cells in the follicle found that mtDNA copy number is downregulated in both GCs and oocytes of DOR patients, and the expression level of PPARGC-1 A (a transcriptional co-activator regulating mitochondrial biogenesis and activity), POLG (encoding the enzyme synthesizing mtDNA), OPA1 (involved in mitochondrial dynamics) and TFAM (a transcription factor related to mtDNA transcription and replication) is decreased significantly in GCs of human with DOR [73]. Therefore, it is obvious that the dysfunction of mitochondrial biogenesis has a detrimental effect on the ovarian reserve and ultimately induces infertility.

Possible mechanism of incongruous metabolism in DOR

These orchestrated metabolic pathways play an initial role in maintaining the ovarian reserve (Fig. 2A). According to previous studies and the mechanism of metabolism in ovarian function, we hypothesized that the bidirectional communication of glucose, lipids, and cholesterol in the COC may illustrate a possible mechanism of DOR (Fig. 2B): First, during glucose metabolism, the expression of GLUTs in the cytomembrane of GCs may decrease, which may induce a lack of glucose in the GCs. Thus, glycolysis, the PPP, and the HBP were suppressed. This suppression results in deficiencies of pyruvate, NADPH, and hyaluronic acid. However, the polyol pathway is likely to activate by some potential factors which can enhance sorbitol levels. Second, fatty acids have been found in patients with DOR, and a lack of fatty acids reduces the function of β-oxidation, and reduces the cholesterol synthesis in oocyte. Decreased cholesterol synthesis in COC lead to insufficient of steroid hormones, and decreased estrogen cannot stimulate LH surge-induced β-oxidation. Third, mitochondrial dysfunction is an important cause of DOR, as it is the pivot of glucose and lipids metabolism. Furthermore, pyruvate and fatty acids transported to the oocytes are converted to acetyl-CoA, which participates in the TCA cycle to generate sufficient ATP for follicular development. However, this process is abnormal in the DOR. Overall, these dysfunctions are related to a lack of energy, insufficient substances, and rising ROS, and ultimately induce abnormal follicle growth, which is a feature of DOR.

Maternal influences on primordial follicular pool of the fetus

The embryonic period plays a key role in the establishment of ovarian function. The ovaries of female human newborn babies contain approximately 1–2 million of non-growing follicles, which is a fixed and established number. The count of NFGs or even reserved oocytes later decreases due to follicular atresia and apoptosis with aging, and finally, the decline reaches its culmination in menopause [7476]. Therefore, the proportion of ovarian reserve achieved before birth determines the later ovarian reserve and limits the reproductive lifespan of a female [77]. This section focusing on the maternal factors that can affect primordial follicular pool of their offspring.
Because the intrauterine environment is closely related to fetal growth and development, an unhealthy intrauterine environment can have a detrimental effect on a newborn’s ovarian reserve. For example, some studies have found that maternal testosterone treatment [78], high gestational weight gain and smoking during pregnancy [79, 80], as well as exposure to aristolochic acid I [81] and D-galactose exposure [82], which are associated with an abnormal intrauterine environment, may interfere with the primordial folliculogenesis of the fetal ovary.
Dietary habits before or during pregnancy can affect the reproductive function of offspring. Studies in animal models have suggested that maternal undernutrition results in a smaller ovary in the fetus and an increased testosterone concentration [83, 84]. In addition, protein restriction in mothers has been shown to impair germ cell and blood vessel development in the fetal ovaries of sheep and the number of primordial follicles in mice [85, 86]. The second study also found that primordial follicles were significantly depleted by 37% at PN21 and 51% at 24-week mice with statistical significance. It has been suggested that the effects of inadequate protein intake may persist for two generations or more, based on evidence that low-protein grandmother diets lead to DOR and a rapid decline in ovarian telomere length [87]. However, if the offspring are exposed to a maternal obesogenic (high-fat or high-sugar) diet, their ovarian reserve will likely be depleted as they grow up [88]. Moreover, maternal caffeine intake during pregnancy is negatively associated with the ovarian reserve in offspring [89].
The ovarian reserve of the offspring is also likely to be affected by the socio-economic environment in which the mothers live [90]. Lower ovarian reserve in child with maternal socio-economic disadvantages may be caused by exposure to unhealthy behaviors, polluted air and poor living conditions in socio-economically disadvantaged areas, resulting in an unsuitable intrauterine growth environment. Evidence from a US farm demonstrated that prenatal exposure to the farm environment (reflecting an uninhabitable living environment) is associated with lower anti-Müllerian hormone concentrations in adulthood, supporting the link between maternal living conditions and the ovarian reserve of their children [91]. Furthermore, exposure to high environmental temperatures impairs the establishment of ovarian reserves in offspring [92]. Chronic inflammation of mother induces intrauterine growth restriction in the fetuses and reduction in the follicles in primordial follicular pool through premature cell apoptosis [93].
All in all, these maternal influences on primordial follicular pool of fetus have been summarized in Fig. 3. Since the promising applications and investigations of artificial intelligence in reproductive medicine [94], scientists can contribute a digital model, which depends on the combination these risk factors and clinical symptoms, to predict how much can maternal factors affects their offspring’s ovarian reserve.

Internal and external factors affecting ovarian reserve

Follicle fluid

The follicle is a unique microenvironment, and as the immediate contact environment of the follicle, follicular fluid plays an essential role in providing the necessary nutrients and material for follicle maturation and oocyte growth. Previous studies have revealed the presence of various proteins associated with reproductive disorders [95, 96]. Refinement of plasma proteins, which make up a significant proportion of the protein in the follicular fluid, showed that the remaining fractions were mainly classified as inflammation-related proteins, complement factors, and proteins involved in lipid metabolism [96, 97]. Fatty acids are important components of the follicular fluid. For example, higher linolenic acid, lower palmitic acid, the concentration of saturated fatty acids, including arachidic acid, erucic acid, tricosanoic acid, and lignoceric acid, and an unbalanced ratio of n-6: n-3 polyunsaturated fatty acids may negatively affect oocyte quality [98, 99]. Follicular T4 and P4 levels are related to several fatty acids, including arachidonic acid, pentadecanoic acid and heptadecanoic acid [98]. In addition, higher lysophosphatidylcholine levels in follicular fluid are negatively associated with follicle growth [100]. The role of amino acids in the follicular fluid cannot be underestimated. L-alanine, glycine and L-glutamate are positively correlated with oocyte quality, and their deficiency is related to later abnormal blastocyst development [98]. However, in vitro, the high turnover of amino acids, especially valine and isoleucine, in oocytes reflect decreased developmental potential [101]. Moreover, decreasing lactate and choline/phosphocholine concentrations and increasing glucose levels and high-density lipoprotein (HDL) levels in follicular fluid are related to the dysfunction of oocyte development [102]. The concentration of hormones such as AMH and progesterone in the follicular fluid affects oocyte quality [103]. Most importantly, these studies will allow investigation of the relationship between follicular fluid content and ovarian reserve (Fig. 4A).

Vaginal microflora

The vaginal microbiota is relative to women of reproductive age, and its variation is significantly correlated with the decline in ovarian reserve [104]. Using AMH, inhibin B, FSH, and LH as ovarian reserve biomarkers, Actinobacteria, Atopobium and Gardnerella were found to be negatively associated with AMH and inhibin B and positively associated with FSH and LH. However, Bifidobacterium exhibited the opposite effect. Its levels were positively associated with AMH levels and negatively associated with FSH and LH levels. This finding agrees with the need to focus on the effects of dysbacteriosis of in vaginal environment on oocyte reserves (Fig. 4B).

Autoimmune diseases

Autoimmune diseases are also associated with reduced fertility. The number of AFC, AMH level and determination of ovarian volume were significantly decreased in systemic lupus erythematosus (SLE) patients [105, 106], and the AMH level is related to the duration of the disease and The Systemic Lupus International Collaborating Clinics damage index [107], which is a criterion for the diagnosis and severity of SLE. Another study indicated that disease activity did not seem to affect the ovarian reserve and adrenal gland hormones in adult female SLE patients; the median ovarian volume was significantly lower in SLE patients with current prednisone use [108]. Childhood SLE patients treated with cyclophosphamide had higher median FSH levels and lower median AMH and AFC levels in adulthood than those not treated with cyclophosphamide [109]. Moreover, exposure to and accumulation of cyclophosphamide affect ovarian function and lead to DOR in women with SLE [110] (Fig. 4C). However, as described in an article on disease severity and ovarian reserve tests, it is difficult to determine whether the disease itself or its treatment caused the outcome [111].
A recent systematic review and meta-analysis involving 679 patients with rheumatoid arthritis (RA) and 1,460 controls showed that patients with RA have lower AMH levels [112]. A previous study demonstrated that the AMH level was lower in the RA group, but there was no significance of AMH levels in the activity rheumatoid arthritis, rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP), erosions, C-reactive protein (CRP) level or therapeutic schedule [113]. Another study reported a similar result, but found a negative correlation between the levels of AMH and IL-10 [114]. Therefore, we suggest that the decrease in AMH levels in RA patients may not be caused by RF but may be related to a more common inflammatory factor caused by RA, and IL-10 is one of the possibilities (Fig. 4C).
Women with Bechet’s disease (BD) have lower serum AMH levels and higher FSH levels [115], indicating that infertility in these patients may be due to decreased ovarian reserve; however, another study focusing on similar research found no difference [116] (Fig. 4C). As a specific biomarker of spondylarthritis, the expression of HLA-B27 is negatively associated with AMH levels, suggesting an adverse impact on the ovarian reserve in the patients [117] (Fig. 4C). A study involving 42 women with polyangiitis who were receiving oral cyclophosphamide therapy found that these women had significantly lower AMH levels, higher FSH levels, and the possibility of early amenorrhea, which conforms to the DOR standard, indicating that exposure to cyclophosphamide is likely to result in decline in the ovarian reserve [118] (Fig. 4C). Additionally, a tendency for the ovarian reserve to decline has been observed in Takayasu arteritis [119], primary antiphospholipid syndrome [120], arthritis [121], and dermatomyositis [122] (Fig. 4C).
In conclusion, it is still controversial whether infertility due to autoimmune diseases is associated with reduced ovarian reserve function; however, the correlation between autoimmune diseases and DOR cannot be ruled out.

Environmental exposure

Life events can affect organ function at the ovarian reserve level [123, 124] (Fig. 4D). Because environmental pollution and unhealthy lifestyles are becoming global problems, it is advisable to pay more attention to the effects of environmental pollution, changes in ambient temperature, and poor habits on the reproductive capacity of women.
Persistent organic pollutants caused by pervasive contaminants in drinking water, food, everyday packaging materials, and other contact substances can also reduce ovarian reserve. Exposure to perfluoroalkyl and polyfluoroalkyl substances (PFASs) causes the depletion of follicular cells, promoting menopause and infertility [125]. The influence of PFASs is dose-dependent and leads to decreased serum levels of estradiol and progesterone and apoptosis of oocyte [126, 127]. The toxicity of 3-monochloro-1,2-propanediol (3-MCPD) profoundly affects female ovarian function, including a lower ovary/body ratio, regulation of follicular development, and AFC, higher ovarian fibrosis, GCs apoptosis, and increased expression of inflammatory factors [128]. Moreover, corticosterone and cortisol in FF of women expose to phthalates (PAEs), a plasticizer which can release into environment, are decreased significantly [129].
Individuals may unconsciously be exposed to toxic substances. For instance, a high concentration of arsenic has been found in women with DOR, and arsenic inhibits the expression of steroidogenic factor-1 by upregulating the DNA methylation level of its promoter region resulting in decreased expression of relative proteins, including STAR, CYP11A1 and CYP19A1, which are important genes related to lipid metabolism during follicle growth [130]. Chronic exposure to propyl paraben [131], 3-phenoxybenzoic acid [132], or bisphenol A [133] was strongly associated with abnormal laboratory test results, indicating potential toxicity to the ovarian reserve. Fenvalerate, an insecticide widely used in modern agriculture, inhibits follicle expansion by interfering with steroidogenesis by downregulating STAR and P450 side chain cleavage enzyme expression [134]. A recent study has also found that perfluorooctanoic acid (PFOA) is enriched in the FF of patients with DOR and that the metabolic composition of FF is affected by PFOA [135].
Increasing attention is being paid to the effects of the living environment on ovarian reserve. There is an inverse relationship between outdoor air pollution (PM2.5, PM10 and SO2) and the reduction in AFC or AMH [136139]. Previous studies have illustrated that the development of ovarian follicles and oocyte competence are counteracted by hyperthermia or heat stress [140, 141]. In humans, with an average increase in the ambient temperature of around 1 °C, AFC decreases by 1.6%, indicating that heat is a negative factor in ovarian reserve [142]. As environmental stress, heat stress induces the apoptosis of ovarian cells through several processes, such as enhancing the expression level of BCL2L1(regulator of apoptosis during mammalian ovarian maturation) [141] and miR-33 (factor suppressing VEGF signaling) [143], regulating heat stress proteins (HSP70 and HAPA13) levels [144], and activating the FasL/Fas and TNF-a systems [145]. Heat stress also alters glucose, cholesterol and non-esterified fatty acid levels in FF [146], greatly reducing gonadotropin receptor expression in GCs [147].

Psychological factors

Studies focusing on occupational factors have shown that women working hard and long hours, especially those who have to handle heavy objects and work non-daily shifts, have lower ovarian reserve [148]. Evidence shows that this negative effect may promote a decline in AFC in women [149]. Furthermore, women with a history of depression have significantly higher FSH levels, and psychological stress is negatively related to AMH levels in females with statistical significance [150]. On the other hand, DOR women with higher self-esteem may have less fertility distress and a better effect on reproductive outcome [151]. Therefore, we hypothesized that the working model, as one of the most common daily influences, may be closely related to the mental state of professional women, and poor psychological conditions, such as fatigue, anxiety, despondency or tension, are a vulnerability factor in DOR, or optimism is a protective factor in maintaining the ovarian reserve. Part E of Fig. 4 have shown above results.

Contraception

With the development of pharmaceutical science and female awareness, contraception usage to avoid pregnancy is becoming more common among women aged 15–50 [152]. It is reported that almost 90% of sexually active women who do not want to become pregnant use contraception [153], demonstrating that contraception is an influential element of DOR. An investigation involving 887 women using or not using oral contraception found a significant decrease in AMH levels and a reduced AFC of approximately 5-7 mm and 8-10 mm in diameter, after adjusting for age, BMI, smoking and maternal age at menopause [154]. A study with a large number of recruits suggested a similar result: women who use hormonal contraceptives or combined oral contraceptive pills have a lower mean AMH level than women who do not use contraceptives [155]. Moreover, hormonal contraception can impair AFC, ovarian volume, and ovarian vascular indices and reduce serum FSH, LH, and E2 levels [156, 157] (Fig. 4F).

Possible intervention in the future

Assisted reproduction technique (ART) is a final method for infertilities, whereas, studies have found that these treatments may lead to adverse outcomes for their babies, who are more likely to have neuro-psycho-motor malfunction, high risk of small for gestational age babies, low birthweight, preterm birth (PTB), and congenital heart diseases [158160]. Previous studies have summarized that cell or gene therapies can resuscitate ovarian function which is affected by internal and external factors [161, 162]. Thus, it is beneficial to find some new methods to intervene in patients themselves rather than blindly rely on ART, and this part put forward possible pointcuts.

Conclusion

This review provides clear and convicting evidence that the mechanism of the DOR is so intricate and ambiguous that it must be rearranged and recognized. These results would be conducive to a better understanding of the mechanisms and influence of follicular development and ovarian reserves. Collectively, subsequent studies may look at aspects of mechanistic studies on how sex hormones and metabolism affect female ovarian reserve, disease, risk factors, and maternal levels of certain hormones during pregnancy; advanced studies on the elimination of risk factors in living conditions; and social studies on how to pay more attention to women’s mental health.

Acknowledgements

Not applicable.

Declarations

Competing interests

The authors declare no competing interests.
Not applicable.
Not applicable.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Richardson MC, Guo M, Fauser BC, Macklon NS. Environmental and developmental origins of ovarian reserve. Hum Reprod Update. 2014;20:353–69.PubMed Richardson MC, Guo M, Fauser BC, Macklon NS. Environmental and developmental origins of ovarian reserve. Hum Reprod Update. 2014;20:353–69.PubMed
2.
Zurück zum Zitat Mark-Kappeler CJ, Hoyer PB, Devine PJ. Xenobiotic effects on ovarian preantral follicles. Biol Reprod. 2011;85:871–83.PubMedPubMedCentral Mark-Kappeler CJ, Hoyer PB, Devine PJ. Xenobiotic effects on ovarian preantral follicles. Biol Reprod. 2011;85:871–83.PubMedPubMedCentral
3.
Zurück zum Zitat Fan Y, Chang Y, Wei L, Chen J, Li J, Goldsmith S, Silber S, Liang X. Apoptosis of mural granulosa cells is increased in women with diminished ovarian reserve. J Assist Reprod Genet. 2019;36:1225–35.PubMedPubMedCentral Fan Y, Chang Y, Wei L, Chen J, Li J, Goldsmith S, Silber S, Liang X. Apoptosis of mural granulosa cells is increased in women with diminished ovarian reserve. J Assist Reprod Genet. 2019;36:1225–35.PubMedPubMedCentral
4.
Zurück zum Zitat Testing. Interpreting measures of ovarian reserve: a committee opinion. Fertil Steril. 2020;114:1151–7. Testing. Interpreting measures of ovarian reserve: a committee opinion. Fertil Steril. 2020;114:1151–7.
5.
Zurück zum Zitat Tal R, Seifer DB. Ovarian reserve testing: a user’s guide. Am J Obstet Gynecol. 2017;217:129–40.PubMed Tal R, Seifer DB. Ovarian reserve testing: a user’s guide. Am J Obstet Gynecol. 2017;217:129–40.PubMed
6.
Zurück zum Zitat Tal R, Seifer DB. Potential mechanisms for racial and ethnic differences in antimüllerian hormone and ovarian reserve. Int J Endocrinol. 2013;2013:818912.PubMedPubMedCentral Tal R, Seifer DB. Potential mechanisms for racial and ethnic differences in antimüllerian hormone and ovarian reserve. Int J Endocrinol. 2013;2013:818912.PubMedPubMedCentral
7.
Zurück zum Zitat Attali E, Yogev Y. The impact of advanced maternal age on pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 2021;70:2–9.PubMed Attali E, Yogev Y. The impact of advanced maternal age on pregnancy outcome. Best Pract Res Clin Obstet Gynaecol. 2021;70:2–9.PubMed
8.
Zurück zum Zitat Alviggi C, Esteves SC, Conforti A. Ovarian reserve tests: are they only a quantitative measure? Fertil Steril. 2020;113:761–2.PubMed Alviggi C, Esteves SC, Conforti A. Ovarian reserve tests: are they only a quantitative measure? Fertil Steril. 2020;113:761–2.PubMed
9.
Zurück zum Zitat Assens M, Dyre L, Henriksen LS, Brocks V, Sundberg K, Jensen LN, Pedersen AT, Main KM. Menstrual pattern, Reproductive hormones, and transabdominal 3D Ultrasound in 317 adolescent girls. J Clin Endocrinol Metab 2020, 105. Assens M, Dyre L, Henriksen LS, Brocks V, Sundberg K, Jensen LN, Pedersen AT, Main KM. Menstrual pattern, Reproductive hormones, and transabdominal 3D Ultrasound in 317 adolescent girls. J Clin Endocrinol Metab 2020, 105.
10.
Zurück zum Zitat Xu J, Bishop CV, Lawson MS, Park BS, Xu F. Anti-Müllerian hormone promotes pre-antral follicle growth, but inhibits antral follicle maturation and dominant follicle selection in primates. Hum Reprod. 2016;31:1522–30.PubMedPubMedCentral Xu J, Bishop CV, Lawson MS, Park BS, Xu F. Anti-Müllerian hormone promotes pre-antral follicle growth, but inhibits antral follicle maturation and dominant follicle selection in primates. Hum Reprod. 2016;31:1522–30.PubMedPubMedCentral
11.
Zurück zum Zitat Andersen CY, Schmidt KT, Kristensen SG, Rosendahl M, Byskov AG, Ernst E. Concentrations of AMH and inhibin-B in relation to follicular diameter in normal human small antral follicles. Hum Reprod. 2010;25:1282–7.PubMed Andersen CY, Schmidt KT, Kristensen SG, Rosendahl M, Byskov AG, Ernst E. Concentrations of AMH and inhibin-B in relation to follicular diameter in normal human small antral follicles. Hum Reprod. 2010;25:1282–7.PubMed
12.
Zurück zum Zitat Kevenaar ME, Meerasahib MF, Kramer P, van de Lang-Born BM, de Jong FH, Groome NP, Themmen AP, Visser JA. Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice. Endocrinology. 2006;147:3228–34.PubMed Kevenaar ME, Meerasahib MF, Kramer P, van de Lang-Born BM, de Jong FH, Groome NP, Themmen AP, Visser JA. Serum anti-mullerian hormone levels reflect the size of the primordial follicle pool in mice. Endocrinology. 2006;147:3228–34.PubMed
13.
Zurück zum Zitat Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology. 1999;140:5789–96.PubMed Durlinger AL, Kramer P, Karels B, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP. Control of primordial follicle recruitment by anti-Müllerian hormone in the mouse ovary. Endocrinology. 1999;140:5789–96.PubMed
14.
Zurück zum Zitat Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, Raine-Fenning N, Campbell BK, Yding Andersen C. Which follicles make the most anti-mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod. 2013;19:519–27.PubMed Jeppesen JV, Anderson RA, Kelsey TW, Christiansen SL, Kristensen SG, Jayaprakasan K, Raine-Fenning N, Campbell BK, Yding Andersen C. Which follicles make the most anti-mullerian hormone in humans? Evidence for an abrupt decline in AMH production at the time of follicle selection. Mol Hum Reprod. 2013;19:519–27.PubMed
15.
Zurück zum Zitat Loumaye E, Engrand P, Shoham Z, Hillier SG, Baird DT. Clinical evidence for an LH ceiling? Hum Reprod. 2003;18:2719–20.PubMed Loumaye E, Engrand P, Shoham Z, Hillier SG, Baird DT. Clinical evidence for an LH ceiling? Hum Reprod. 2003;18:2719–20.PubMed
16.
Zurück zum Zitat Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18:73–91.PubMed Baerwald AR, Adams GP, Pierson RA. Ovarian antral folliculogenesis during the human menstrual cycle: a review. Hum Reprod Update. 2012;18:73–91.PubMed
17.
Zurück zum Zitat Adriaens I, Cortvrindt R, Smitz J. Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum Reprod. 2004;19:398–408.PubMed Adriaens I, Cortvrindt R, Smitz J. Differential FSH exposure in preantral follicle culture has marked effects on folliculogenesis and oocyte developmental competence. Hum Reprod. 2004;19:398–408.PubMed
18.
Zurück zum Zitat Palermo R. Differential actions of FSH and LH during folliculogenesis. Reprod Biomed Online. 2007;15:326–37.PubMed Palermo R. Differential actions of FSH and LH during folliculogenesis. Reprod Biomed Online. 2007;15:326–37.PubMed
19.
Zurück zum Zitat Kreeger PK, Fernandes NN, Woodruff TK, Shea LD. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod. 2005;73:942–50.PubMed Kreeger PK, Fernandes NN, Woodruff TK, Shea LD. Regulation of mouse follicle development by follicle-stimulating hormone in a three-dimensional in vitro culture system is dependent on follicle stage and dose. Biol Reprod. 2005;73:942–50.PubMed
20.
Zurück zum Zitat Chakravarthi VP, Ratri A, Masumi S, Borosha S, Ghosh S, Christenson LK, Roby KF, Wolfe MW, Rumi MAK. Granulosa cell genes that regulate ovarian follicle development beyond the antral stage: the role of estrogen receptor β. Mol Cell Endocrinol. 2021;528:111212.PubMedPubMedCentral Chakravarthi VP, Ratri A, Masumi S, Borosha S, Ghosh S, Christenson LK, Roby KF, Wolfe MW, Rumi MAK. Granulosa cell genes that regulate ovarian follicle development beyond the antral stage: the role of estrogen receptor β. Mol Cell Endocrinol. 2021;528:111212.PubMedPubMedCentral
21.
Zurück zum Zitat Baird DT. A model for follicular selection and ovulation: lessons from superovulation. J Steroid Biochem. 1987;27:15–23.PubMed Baird DT. A model for follicular selection and ovulation: lessons from superovulation. J Steroid Biochem. 1987;27:15–23.PubMed
22.
Zurück zum Zitat Regan SL, Knight PG, Yovich JL, Stanger JD, Leung Y, Arfuso F, Dharmarajan A, Almahbobi G. Infertility and ovarian follicle reserve depletion are associated with dysregulation of the FSH and LH receptor density in human antral follicles. Mol Cell Endocrinol. 2017;446:40–51.PubMed Regan SL, Knight PG, Yovich JL, Stanger JD, Leung Y, Arfuso F, Dharmarajan A, Almahbobi G. Infertility and ovarian follicle reserve depletion are associated with dysregulation of the FSH and LH receptor density in human antral follicles. Mol Cell Endocrinol. 2017;446:40–51.PubMed
23.
Zurück zum Zitat Wen J, Huang K, Du X, Zhang H, Ding T, Zhang C, Ma W, Zhong Y, Qu W, Liu Y, et al. Can Inhibin B reflect Ovarian Reserve of Healthy Reproductive Age women effectively? Front Endocrinol (Lausanne). 2021;12:626534.PubMed Wen J, Huang K, Du X, Zhang H, Ding T, Zhang C, Ma W, Zhong Y, Qu W, Liu Y, et al. Can Inhibin B reflect Ovarian Reserve of Healthy Reproductive Age women effectively? Front Endocrinol (Lausanne). 2021;12:626534.PubMed
24.
Zurück zum Zitat Wunder DM, Bersinger NA, Yared M, Kretschmer R, Birkhäuser MH. Statistically significant changes of antimüllerian hormone and inhibin levels during the physiologic menstrual cycle in reproductive age women. Fertil Steril. 2008;89:927–33.PubMed Wunder DM, Bersinger NA, Yared M, Kretschmer R, Birkhäuser MH. Statistically significant changes of antimüllerian hormone and inhibin levels during the physiologic menstrual cycle in reproductive age women. Fertil Steril. 2008;89:927–33.PubMed
25.
Zurück zum Zitat Yding Andersen C. Inhibin-B secretion and FSH isoform distribution may play an integral part of follicular selection in the natural menstrual cycle. Mol Hum Reprod. 2017;23:16–24.PubMed Yding Andersen C. Inhibin-B secretion and FSH isoform distribution may play an integral part of follicular selection in the natural menstrual cycle. Mol Hum Reprod. 2017;23:16–24.PubMed
26.
Zurück zum Zitat Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–16.PubMed Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103:303–16.PubMed
27.
Zurück zum Zitat Khristi V, Chakravarthi VP, Singh P, Ghosh S, Pramanik A, Ratri A, Borosha S, Roby KF, Wolfe MW, Rumi MAK. ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation. Mol Cell Endocrinol. 2018;474:214–26.PubMed Khristi V, Chakravarthi VP, Singh P, Ghosh S, Pramanik A, Ratri A, Borosha S, Roby KF, Wolfe MW, Rumi MAK. ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation. Mol Cell Endocrinol. 2018;474:214–26.PubMed
28.
Zurück zum Zitat van Dessel HJ, Schipper I, Pache TD, van Geldorp H, de Jong FH, Fauser BC. Normal human follicle development: an evaluation of correlations with oestradiol, androstenedione and progesterone levels in individual follicles. Clin Endocrinol (Oxf). 1996;44:191–8.PubMed van Dessel HJ, Schipper I, Pache TD, van Geldorp H, de Jong FH, Fauser BC. Normal human follicle development: an evaluation of correlations with oestradiol, androstenedione and progesterone levels in individual follicles. Clin Endocrinol (Oxf). 1996;44:191–8.PubMed
29.
Zurück zum Zitat Kezele P, Skinner MK. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology. 2003;144:3329–37.PubMed Kezele P, Skinner MK. Regulation of ovarian primordial follicle assembly and development by estrogen and progesterone: endocrine model of follicle assembly. Endocrinology. 2003;144:3329–37.PubMed
30.
Zurück zum Zitat Yuan XH, Yang CR, Wang XN, Zhang LL, Gao XR, Shi ZY. Progesterone maintains the status of granulosa cells and slows follicle development partly through PGRMC1. J Cell Physiol. 2018;234:709–20.PubMed Yuan XH, Yang CR, Wang XN, Zhang LL, Gao XR, Shi ZY. Progesterone maintains the status of granulosa cells and slows follicle development partly through PGRMC1. J Cell Physiol. 2018;234:709–20.PubMed
31.
Zurück zum Zitat Lenie S, Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol Reprod. 2009;80:685–95.PubMed Lenie S, Smitz J. Functional AR signaling is evident in an in vitro mouse follicle culture bioassay that encompasses most stages of folliculogenesis. Biol Reprod. 2009;80:685–95.PubMed
32.
Zurück zum Zitat Catteau-Jonard S, Jamin SP, Leclerc A, Gonzalès J, Dewailly D, di Clemente N. Anti-mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:4456–61.PubMed Catteau-Jonard S, Jamin SP, Leclerc A, Gonzalès J, Dewailly D, di Clemente N. Anti-mullerian hormone, its receptor, FSH receptor, and androgen receptor genes are overexpressed by granulosa cells from stimulated follicles in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93:4456–61.PubMed
33.
Zurück zum Zitat Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, Zhou X, Chao HT, Tsai MY, Chang C. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci U S A. 2004;101:11209–14.PubMedPubMedCentral Hu YC, Wang PH, Yeh S, Wang RS, Xie C, Xu Q, Zhou X, Chao HT, Tsai MY, Chang C. Subfertility and defective folliculogenesis in female mice lacking androgen receptor. Proc Natl Acad Sci U S A. 2004;101:11209–14.PubMedPubMedCentral
34.
Zurück zum Zitat Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, Sakari M, Takada I, Nakamura T, Metzger D, et al. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci U S A. 2006;103:224–9.PubMed Shiina H, Matsumoto T, Sato T, Igarashi K, Miyamoto J, Takemasa S, Sakari M, Takada I, Nakamura T, Metzger D, et al. Premature ovarian failure in androgen receptor-deficient mice. Proc Natl Acad Sci U S A. 2006;103:224–9.PubMed
35.
Zurück zum Zitat Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, Rose UM, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142:4891–9.PubMed Durlinger AL, Gruijters MJ, Kramer P, Karels B, Kumar TR, Matzuk MM, Rose UM, de Jong FH, Uilenbroek JT, Grootegoed JA, Themmen AP. Anti-Müllerian hormone attenuates the effects of FSH on follicle development in the mouse ovary. Endocrinology. 2001;142:4891–9.PubMed
36.
Zurück zum Zitat Pankhurst MW, Kelley RL, Sanders RL, Woodcock SR, Oorschot DE, Batchelor NJ. Anti-Müllerian hormone overexpression restricts preantral ovarian follicle survival. J Endocrinol. 2018;237:153–63.PubMed Pankhurst MW, Kelley RL, Sanders RL, Woodcock SR, Oorschot DE, Batchelor NJ. Anti-Müllerian hormone overexpression restricts preantral ovarian follicle survival. J Endocrinol. 2018;237:153–63.PubMed
37.
Zurück zum Zitat Fujibe Y, Baba T, Nagao S, Adachi S, Ikeda K, Morishita M, Kuno Y, Suzuki M, Mizuuchi M, Honnma H, et al. Androgen potentiates the expression of FSH receptor and supports preantral follicle development in mice. J Ovarian Res. 2019;12:31.PubMedPubMedCentral Fujibe Y, Baba T, Nagao S, Adachi S, Ikeda K, Morishita M, Kuno Y, Suzuki M, Mizuuchi M, Honnma H, et al. Androgen potentiates the expression of FSH receptor and supports preantral follicle development in mice. J Ovarian Res. 2019;12:31.PubMedPubMedCentral
38.
Zurück zum Zitat Warzych E, Lipinska P. Energy metabolism of follicular environment during oocyte growth and maturation. J Reprod Dev. 2020;66:1–7.PubMed Warzych E, Lipinska P. Energy metabolism of follicular environment during oocyte growth and maturation. J Reprod Dev. 2020;66:1–7.PubMed
39.
Zurück zum Zitat Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update. 2021;27:27–47.PubMed Richani D, Dunning KR, Thompson JG, Gilchrist RB. Metabolic co-dependence of the oocyte and cumulus cells: essential role in determining oocyte developmental competence. Hum Reprod Update. 2021;27:27–47.PubMed
40.
Zurück zum Zitat Zhang X, Zhang W, Wang Z, Zheng N, Yuan F, Li B, Li X, Deng L, Lin M, Chen X, Zhang M. Enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling. Cell Death Dis. 2022;13:87.PubMedPubMedCentral Zhang X, Zhang W, Wang Z, Zheng N, Yuan F, Li B, Li X, Deng L, Lin M, Chen X, Zhang M. Enhanced glycolysis in granulosa cells promotes the activation of primordial follicles through mTOR signaling. Cell Death Dis. 2022;13:87.PubMedPubMedCentral
41.
Zurück zum Zitat Cetica P, Pintos L, Dalvit G, Beconi M. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction. 2002;124:675–81.PubMed Cetica P, Pintos L, Dalvit G, Beconi M. Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction. 2002;124:675–81.PubMed
42.
Zurück zum Zitat Herta AC, von Mengden L, Akin N, Billooye K, Coucke W, van Leersum J, Cava-Cami B, Saucedo-Cuevas L, Klamt F, Smitz J, Anckaert E. Characterization of carbohydrate metabolism in in vivo- and in vitro-grown and matured mouse antral follicles†. Biol Reprod. 2022;107:998–1013.PubMed Herta AC, von Mengden L, Akin N, Billooye K, Coucke W, van Leersum J, Cava-Cami B, Saucedo-Cuevas L, Klamt F, Smitz J, Anckaert E. Characterization of carbohydrate metabolism in in vivo- and in vitro-grown and matured mouse antral follicles†. Biol Reprod. 2022;107:998–1013.PubMed
43.
Zurück zum Zitat Tanaka K, Hayashi Y, Takehara A, Ito-Matsuoka Y, Tachibana M, Yaegashi N, Matsui Y. Abnormal early folliculogenesis due to impeded pyruvate metabolism in mouse oocytes†. Biol Reprod. 2021;105:64–75.PubMed Tanaka K, Hayashi Y, Takehara A, Ito-Matsuoka Y, Tachibana M, Yaegashi N, Matsui Y. Abnormal early folliculogenesis due to impeded pyruvate metabolism in mouse oocytes†. Biol Reprod. 2021;105:64–75.PubMed
44.
Zurück zum Zitat Baufeld A, Vanselow J. Lactate-induced effects on bovine granulosa cells are mediated via PKA signaling. Cell Tissue Res. 2022;388:471–7.PubMedPubMedCentral Baufeld A, Vanselow J. Lactate-induced effects on bovine granulosa cells are mediated via PKA signaling. Cell Tissue Res. 2022;388:471–7.PubMedPubMedCentral
45.
Zurück zum Zitat Cao J, Huo P, Cui K, Wei H, Cao J, Wang J, Liu Q, Lei X, Zhang S. Follicular fluid-derived exosomal miR-143-3p/miR-155-5p regulate follicular dysplasia by modulating glycolysis in granulosa cells in polycystic ovary syndrome. Cell Commun Signal. 2022;20:61.PubMedPubMedCentral Cao J, Huo P, Cui K, Wei H, Cao J, Wang J, Liu Q, Lei X, Zhang S. Follicular fluid-derived exosomal miR-143-3p/miR-155-5p regulate follicular dysplasia by modulating glycolysis in granulosa cells in polycystic ovary syndrome. Cell Commun Signal. 2022;20:61.PubMedPubMedCentral
46.
Zurück zum Zitat Hoque SAM, Umehara T, Kawai T, Shimada M. Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries. Free Radic Biol Med. 2021;163:344–55.PubMed Hoque SAM, Umehara T, Kawai T, Shimada M. Adverse effect of superoxide-induced mitochondrial damage in granulosa cells on follicular development in mouse ovaries. Free Radic Biol Med. 2021;163:344–55.PubMed
47.
Zurück zum Zitat Downs SM, Humpherson PG, Leese HJ. Meiotic induction in cumulus cell-enclosed mouse oocytes: involvement of the pentose phosphate pathway. Biol Reprod. 1998;58:1084–94.PubMed Downs SM, Humpherson PG, Leese HJ. Meiotic induction in cumulus cell-enclosed mouse oocytes: involvement of the pentose phosphate pathway. Biol Reprod. 1998;58:1084–94.PubMed
48.
Zurück zum Zitat Herrick JR, Brad AM, Krisher RL. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reproduction. 2006;131:289–98.PubMed Herrick JR, Brad AM, Krisher RL. Chemical manipulation of glucose metabolism in porcine oocytes: effects on nuclear and cytoplasmic maturation in vitro. Reproduction. 2006;131:289–98.PubMed
49.
Zurück zum Zitat Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139:685–95.PubMed Sutton-McDowall ML, Gilchrist RB, Thompson JG. The pivotal role of glucose metabolism in determining oocyte developmental competence. Reproduction. 2010;139:685–95.PubMed
50.
Zurück zum Zitat Frank LA, Sutton-McDowall ML, Brown HM, Russell DL, Gilchrist RB, Thompson JG. Hyperglycaemic conditions perturb mouse oocyte in vitro developmental competence via beta-O-linked glycosylation of heat shock protein 90. Hum Reprod. 2014;29:1292–303.PubMed Frank LA, Sutton-McDowall ML, Brown HM, Russell DL, Gilchrist RB, Thompson JG. Hyperglycaemic conditions perturb mouse oocyte in vitro developmental competence via beta-O-linked glycosylation of heat shock protein 90. Hum Reprod. 2014;29:1292–303.PubMed
51.
Zurück zum Zitat Brownlee M. Biochemistry and molecular cell biology of diabetic Complications. Nature. 2001;414:813–20.PubMed Brownlee M. Biochemistry and molecular cell biology of diabetic Complications. Nature. 2001;414:813–20.PubMed
52.
Zurück zum Zitat Wang YC, Ma YD, Liu H, Cui ZH, Zhao D, Zhang XQ, Zhang LX, Guo WJ, Long Y, Tu SS, et al. Hyperandrogen-induced polyol pathway flux increase affects ovarian function in polycystic ovary syndrome via excessive oxidative stress. Life Sci. 2023;313:121224.PubMed Wang YC, Ma YD, Liu H, Cui ZH, Zhao D, Zhang XQ, Zhang LX, Guo WJ, Long Y, Tu SS, et al. Hyperandrogen-induced polyol pathway flux increase affects ovarian function in polycystic ovary syndrome via excessive oxidative stress. Life Sci. 2023;313:121224.PubMed
53.
Zurück zum Zitat Zhang Y, Yan Z, Liu H, Li L, Yuan C, Qin L, Cai L, Liu J, Hu Y, Cui Y. Sorbitol accumulation decreases oocyte quality in aged mice by altering the intracellular redox balance. Aging. 2021;13:25291–303.PubMedPubMedCentral Zhang Y, Yan Z, Liu H, Li L, Yuan C, Qin L, Cai L, Liu J, Hu Y, Cui Y. Sorbitol accumulation decreases oocyte quality in aged mice by altering the intracellular redox balance. Aging. 2021;13:25291–303.PubMedPubMedCentral
54.
Zurück zum Zitat Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R, Uzbekova S. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. Am J Physiol Endocrinol Metab. 2013;304:E599–613.PubMed Auclair S, Uzbekov R, Elis S, Sanchez L, Kireev I, Lardic L, Dalbies-Tran R, Uzbekova S. Absence of cumulus cells during in vitro maturation affects lipid metabolism in bovine oocytes. Am J Physiol Endocrinol Metab. 2013;304:E599–613.PubMed
55.
Zurück zum Zitat de Andrade Melo-Sterza F, Poehland R. Lipid metabolism in bovine oocytes and early embryos under in vivo, in Vitro, and stress conditions. Int J Mol Sci 2021, 22. de Andrade Melo-Sterza F, Poehland R. Lipid metabolism in bovine oocytes and early embryos under in vivo, in Vitro, and stress conditions. Int J Mol Sci 2021, 22.
56.
Zurück zum Zitat Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148:R15–27.PubMed Dunning KR, Russell DL, Robker RL. Lipids and oocyte developmental competence: the role of fatty acids and β-oxidation. Reproduction. 2014;148:R15–27.PubMed
57.
Zurück zum Zitat Zhao Z, Fan Q, Zhu Q, He R, Li Y, Liu C, Wang J, Liang X. Decreased fatty acids induced granulosa cell apoptosis in patients with diminished ovarian reserve. J Assist Reprod Genet. 2022;39:1105–14.PubMedPubMedCentral Zhao Z, Fan Q, Zhu Q, He R, Li Y, Liu C, Wang J, Liang X. Decreased fatty acids induced granulosa cell apoptosis in patients with diminished ovarian reserve. J Assist Reprod Genet. 2022;39:1105–14.PubMedPubMedCentral
58.
Zurück zum Zitat Barbe A, Bongrani A, Mellouk N, Estienne A, Kurowska P, Grandhaye J, Elfassy Y, Levy R, Rak A, Froment P, Dupont J. Mechanisms of Adiponectin Action in Fertility: an overview from Gametogenesis to Gestation in humans and animal models in normal and pathological conditions. Int J Mol Sci 2019, 20. Barbe A, Bongrani A, Mellouk N, Estienne A, Kurowska P, Grandhaye J, Elfassy Y, Levy R, Rak A, Froment P, Dupont J. Mechanisms of Adiponectin Action in Fertility: an overview from Gametogenesis to Gestation in humans and animal models in normal and pathological conditions. Int J Mol Sci 2019, 20.
59.
Zurück zum Zitat Cheng L, Shi H, Jin Y, Li X, Pan J, Lai Y, Lin Y, Jin Y, Roy G, Zhao A, Li F. Adiponectin Deficiency leads to female subfertility and ovarian dysfunctions in mice. Endocrinology. 2016;157:4875–87.PubMed Cheng L, Shi H, Jin Y, Li X, Pan J, Lai Y, Lin Y, Jin Y, Roy G, Zhao A, Li F. Adiponectin Deficiency leads to female subfertility and ovarian dysfunctions in mice. Endocrinology. 2016;157:4875–87.PubMed
60.
Zurück zum Zitat Grandhaye J, Hmadeh S, Plotton I, Levasseur F, Estienne A, LeGuevel R, Levern Y, Ramé C, Jeanpierre E, Guerif F, et al. The adiponectin agonist, AdipoRon, inhibits steroidogenesis and cell proliferation in human luteinized granulosa cells. Mol Cell Endocrinol. 2021;520:111080.PubMed Grandhaye J, Hmadeh S, Plotton I, Levasseur F, Estienne A, LeGuevel R, Levern Y, Ramé C, Jeanpierre E, Guerif F, et al. The adiponectin agonist, AdipoRon, inhibits steroidogenesis and cell proliferation in human luteinized granulosa cells. Mol Cell Endocrinol. 2021;520:111080.PubMed
61.
Zurück zum Zitat Watanabe H, Hirai S, Tateno H, Fukui Y. Variation of cholesterol contents in porcine cumulus-oocyte complexes is a key factor in regulation of fertilizing capacity. Theriogenology. 2013;79:680–6.PubMed Watanabe H, Hirai S, Tateno H, Fukui Y. Variation of cholesterol contents in porcine cumulus-oocyte complexes is a key factor in regulation of fertilizing capacity. Theriogenology. 2013;79:680–6.PubMed
62.
Zurück zum Zitat Comiskey M, Warner CM. Spatio-temporal localization of membrane lipid rafts in mouse oocytes and cleaving preimplantation embryos. Dev Biol. 2007;303:727–39.PubMed Comiskey M, Warner CM. Spatio-temporal localization of membrane lipid rafts in mouse oocytes and cleaving preimplantation embryos. Dev Biol. 2007;303:727–39.PubMed
63.
Zurück zum Zitat Ke FC, Chuang LC, Lee MT, Chen YJ, Lin SW, Wang PS, Stocco DM, Hwang JJ. The modulatory role of transforming growth factor beta1 and androstenedione on follicle-stimulating hormone-induced gelatinase secretion and steroidogenesis in rat granulosa cells. Biol Reprod. 2004;70:1292–8.PubMed Ke FC, Chuang LC, Lee MT, Chen YJ, Lin SW, Wang PS, Stocco DM, Hwang JJ. The modulatory role of transforming growth factor beta1 and androstenedione on follicle-stimulating hormone-induced gelatinase secretion and steroidogenesis in rat granulosa cells. Biol Reprod. 2004;70:1292–8.PubMed
64.
Zurück zum Zitat Sahmi M, Nicola ES, Silva JM, Price CA. Expression of 17beta- and 3beta-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non-luteinizing bovine granulosa cells in vitro. Mol Cell Endocrinol. 2004;223:43–54.PubMed Sahmi M, Nicola ES, Silva JM, Price CA. Expression of 17beta- and 3beta-hydroxysteroid dehydrogenases and steroidogenic acute regulatory protein in non-luteinizing bovine granulosa cells in vitro. Mol Cell Endocrinol. 2004;223:43–54.PubMed
65.
Zurück zum Zitat Burks DM, McCoy MR, Dutta S, Mark-Kappeler CJ, Hoyer PB, Pepling ME. Molecular analysis of the effects of steroid hormones on mouse meiotic prophase I progression. Reprod Biol Endocrinol. 2019;17:105.PubMedPubMedCentral Burks DM, McCoy MR, Dutta S, Mark-Kappeler CJ, Hoyer PB, Pepling ME. Molecular analysis of the effects of steroid hormones on mouse meiotic prophase I progression. Reprod Biol Endocrinol. 2019;17:105.PubMedPubMedCentral
66.
Zurück zum Zitat He R, Zhao Z, Yang Y, Liang X. Using bioinformatics and metabolomics to identify altered granulosa cells in patients with diminished ovarian reserve. PeerJ. 2020;8:e9812.PubMedPubMedCentral He R, Zhao Z, Yang Y, Liang X. Using bioinformatics and metabolomics to identify altered granulosa cells in patients with diminished ovarian reserve. PeerJ. 2020;8:e9812.PubMedPubMedCentral
67.
Zurück zum Zitat Yang X, Zhao Z, Fan Q, Li H, Zhao L, Liu C, Liang X. Cholesterol metabolism is decreased in patients with diminished ovarian reserve. Reprod Biomed Online. 2022;44:185–92.PubMed Yang X, Zhao Z, Fan Q, Li H, Zhao L, Liu C, Liang X. Cholesterol metabolism is decreased in patients with diminished ovarian reserve. Reprod Biomed Online. 2022;44:185–92.PubMed
68.
Zurück zum Zitat Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16:715–25.PubMed Huang Z, Wells D. The human oocyte and cumulus cells relationship: new insights from the cumulus cell transcriptome. Mol Hum Reprod. 2010;16:715–25.PubMed
69.
Zurück zum Zitat Jiang Z, Shi C, Han H, Wang Y, Liang R, Chen X, Shen H. Mitochondria-related changes and metabolic dysfunction in low prognosis patients under the POSEIDON classification. Hum Reprod. 2021;36:2904–15.PubMed Jiang Z, Shi C, Han H, Wang Y, Liang R, Chen X, Shen H. Mitochondria-related changes and metabolic dysfunction in low prognosis patients under the POSEIDON classification. Hum Reprod. 2021;36:2904–15.PubMed
70.
Zurück zum Zitat Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlöf S, Oldfors A, Wibom R, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.PubMed Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly YM, Gidlöf S, Oldfors A, Wibom R, et al. Premature ageing in mice expressing defective mitochondrial DNA polymerase. Nature. 2004;429:417–23.PubMed
71.
Zurück zum Zitat Ross JM, Stewart JB, Hagström E, Brené S, Mourier A, Coppotelli G, Freyer C, Lagouge M, Hoffer BJ, Olson L, Larsson NG. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature. 2013;501:412–5.PubMedPubMedCentral Ross JM, Stewart JB, Hagström E, Brené S, Mourier A, Coppotelli G, Freyer C, Lagouge M, Hoffer BJ, Olson L, Larsson NG. Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature. 2013;501:412–5.PubMedPubMedCentral
72.
Zurück zum Zitat Ragonese F, Monarca L, De Luca A, Mancinelli L, Mariani M, Corbucci C, Gerli S, Iannitti RG, Leonardi L, Fioretti B. Resveratrol depolarizes the membrane potential in human granulosa cells and promotes mitochondrial biogenesis. Fertil Steril. 2021;115:1063–73.PubMed Ragonese F, Monarca L, De Luca A, Mancinelli L, Mariani M, Corbucci C, Gerli S, Iannitti RG, Leonardi L, Fioretti B. Resveratrol depolarizes the membrane potential in human granulosa cells and promotes mitochondrial biogenesis. Fertil Steril. 2021;115:1063–73.PubMed
73.
Zurück zum Zitat Boucret L, Chao de la Barca JM, Morinière C, Desquiret V, Ferré-L’Hôtellier V, Descamps P, Marcaillou C, Reynier P, Procaccio V, May-Panloup P. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum Reprod. 2015;30:1653–64.PubMed Boucret L, Chao de la Barca JM, Morinière C, Desquiret V, Ferré-L’Hôtellier V, Descamps P, Marcaillou C, Reynier P, Procaccio V, May-Panloup P. Relationship between diminished ovarian reserve and mitochondrial biogenesis in cumulus cells. Hum Reprod. 2015;30:1653–64.PubMed
74.
75.
Zurück zum Zitat Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update. 2005;11:461–71.PubMed Skinner MK. Regulation of primordial follicle assembly and development. Hum Reprod Update. 2005;11:461–71.PubMed
76.
Zurück zum Zitat Vaskivuo TE, Anttonen M, Herva R, Billig H, Dorland M, te Velde ER, Stenbäck F, Heikinheimo M, Tapanainen JS. Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins, and transcription factor GATA-4. J Clin Endocrinol Metab. 2001;86:3421–9.PubMed Vaskivuo TE, Anttonen M, Herva R, Billig H, Dorland M, te Velde ER, Stenbäck F, Heikinheimo M, Tapanainen JS. Survival of human ovarian follicles from fetal to adult life: apoptosis, apoptosis-related proteins, and transcription factor GATA-4. J Clin Endocrinol Metab. 2001;86:3421–9.PubMed
77.
Zurück zum Zitat Mazaud S, Guigon CJ, Lozach A, Coudouel N, Forest MG, Coffigny H, Magre S. Establishment of the reproductive function and transient fertility of female rats lacking primordial follicle stock after fetal gamma-irradiation. Endocrinology. 2002;143:4775–87.PubMed Mazaud S, Guigon CJ, Lozach A, Coudouel N, Forest MG, Coffigny H, Magre S. Establishment of the reproductive function and transient fertility of female rats lacking primordial follicle stock after fetal gamma-irradiation. Endocrinology. 2002;143:4775–87.PubMed
78.
Zurück zum Zitat Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology. 2005;146:3185–93.PubMed Steckler T, Wang J, Bartol FF, Roy SK, Padmanabhan V. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology. 2005;146:3185–93.PubMed
79.
Zurück zum Zitat Fraser A, McNally W, Sattar N, Anderson EL, Lashen H, Fleming R, Lawlor DA, Nelson SM. Prenatal exposures and anti-mullerian hormone in female adolescents: the Avon Longitudinal Study of parents and children. Am J Epidemiol. 2013;178:1414–23.PubMedPubMedCentral Fraser A, McNally W, Sattar N, Anderson EL, Lashen H, Fleming R, Lawlor DA, Nelson SM. Prenatal exposures and anti-mullerian hormone in female adolescents: the Avon Longitudinal Study of parents and children. Am J Epidemiol. 2013;178:1414–23.PubMedPubMedCentral
80.
Zurück zum Zitat Strohsnitter WC, Hatch EE, Hyer M, Troisi R, Kaufman RH, Robboy SJ, Palmer JR, Titus-Ernstoff L, Anderson D, Hoover RN, Noller KL. The association between in utero cigarette smoke exposure and age at menopause. Am J Epidemiol. 2008;167:727–33.PubMed Strohsnitter WC, Hatch EE, Hyer M, Troisi R, Kaufman RH, Robboy SJ, Palmer JR, Titus-Ernstoff L, Anderson D, Hoover RN, Noller KL. The association between in utero cigarette smoke exposure and age at menopause. Am J Epidemiol. 2008;167:727–33.PubMed
81.
Zurück zum Zitat Qiqi L, Junlin H, Xuemei C, Yi H, Fangfang L, Yanqing G, Yan Z, Lamptey J, Zhuxiu C, Fangfei L, et al. Fetal exposure of aristolochic acid I undermines ovarian reserve by disturbing primordial folliculogenesis. Ecotoxicol Environ Saf. 2022;236:113480.PubMed Qiqi L, Junlin H, Xuemei C, Yi H, Fangfang L, Yanqing G, Yan Z, Lamptey J, Zhuxiu C, Fangfei L, et al. Fetal exposure of aristolochic acid I undermines ovarian reserve by disturbing primordial folliculogenesis. Ecotoxicol Environ Saf. 2022;236:113480.PubMed
82.
Zurück zum Zitat Rostami Dovom M, Noroozzadeh M, Mosaffa N, Piryaei A, Zadeh-Vakili A, Aabdollahifar MA, Rahmati M, Farhadi-Azar M, Ramezani Tehrani F. Maternal exposure to D-galactose reduces Ovarian Reserve in female rat offspring later in Life. Int J Endocrinol Metab. 2022;20:e123206.PubMedPubMedCentral Rostami Dovom M, Noroozzadeh M, Mosaffa N, Piryaei A, Zadeh-Vakili A, Aabdollahifar MA, Rahmati M, Farhadi-Azar M, Ramezani Tehrani F. Maternal exposure to D-galactose reduces Ovarian Reserve in female rat offspring later in Life. Int J Endocrinol Metab. 2022;20:e123206.PubMedPubMedCentral
83.
Zurück zum Zitat Rae MT, Palassio S, Kyle CE, Brooks AN, Lea RG, Miller DW, Rhind SM. Effect of maternal undernutrition during pregnancy on early ovarian development and subsequent follicular development in sheep fetuses. Reproduction. 2001;122:915–22.PubMed Rae MT, Palassio S, Kyle CE, Brooks AN, Lea RG, Miller DW, Rhind SM. Effect of maternal undernutrition during pregnancy on early ovarian development and subsequent follicular development in sheep fetuses. Reproduction. 2001;122:915–22.PubMed
84.
Zurück zum Zitat Mossa F, Carter F, Walsh SW, Kenny DA, Smith GW, Ireland JL, Hildebrandt TB, Lonergan P, Ireland JJ, Evans AC. Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol Reprod. 2013;88:92.PubMed Mossa F, Carter F, Walsh SW, Kenny DA, Smith GW, Ireland JL, Hildebrandt TB, Lonergan P, Ireland JJ, Evans AC. Maternal undernutrition in cows impairs ovarian and cardiovascular systems in their offspring. Biol Reprod. 2013;88:92.PubMed
85.
Zurück zum Zitat Nwachukwu CU, Woad KJ, Barnes N, Gardner DS, Robinson RS. Maternal protein restriction affects fetal ovary development in sheep. Reprod Fertil. 2021;2:161–71.PubMedPubMedCentral Nwachukwu CU, Woad KJ, Barnes N, Gardner DS, Robinson RS. Maternal protein restriction affects fetal ovary development in sheep. Reprod Fertil. 2021;2:161–71.PubMedPubMedCentral
86.
Zurück zum Zitat Winship AL, Gazzard SE, Cullen-McEwen LA, Bertram JF, Hutt KJ. Maternal low-protein diet programmes low ovarian reserve in offspring. Reproduction. 2018;156:299–311.PubMed Winship AL, Gazzard SE, Cullen-McEwen LA, Bertram JF, Hutt KJ. Maternal low-protein diet programmes low ovarian reserve in offspring. Reproduction. 2018;156:299–311.PubMed
87.
Zurück zum Zitat Aiken CE, Tarry-Adkins JL, Ozanne SE. Transgenerational Developmental Programming of Ovarian Reserve. Sci Rep. 2015;5:16175.PubMedPubMedCentral Aiken CE, Tarry-Adkins JL, Ozanne SE. Transgenerational Developmental Programming of Ovarian Reserve. Sci Rep. 2015;5:16175.PubMedPubMedCentral
88.
Zurück zum Zitat Aiken CE, Tarry-Adkins JL, Penfold NC, Dearden L, Ozanne SE. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. Faseb j. 2016;30:1548–56.PubMed Aiken CE, Tarry-Adkins JL, Penfold NC, Dearden L, Ozanne SE. Decreased ovarian reserve, dysregulation of mitochondrial biogenesis, and increased lipid peroxidation in female mouse offspring exposed to an obesogenic maternal diet. Faseb j. 2016;30:1548–56.PubMed
89.
Zurück zum Zitat Eubanks AA, Nobles CJ, Hill MJ, DeCherney AH, Kim K, Sjaarda LA, Perkins NJ, Ye A, Zolton JR, Silver RM, et al. Recalled maternal lifestyle behaviors associated with anti-müllerian hormone of adult female offspring. Reprod Toxicol. 2020;98:75–81.PubMedPubMedCentral Eubanks AA, Nobles CJ, Hill MJ, DeCherney AH, Kim K, Sjaarda LA, Perkins NJ, Ye A, Zolton JR, Silver RM, et al. Recalled maternal lifestyle behaviors associated with anti-müllerian hormone of adult female offspring. Reprod Toxicol. 2020;98:75–81.PubMedPubMedCentral
90.
Zurück zum Zitat Bleil ME, English P, Valle J, Woods NF, Crowder KD, Gregorich SE, Cedars MI. Is in utero exposure to maternal socioeconomic disadvantage related to offspring ovarian reserve in adulthood? Womens Midlife Health. 2018;4:5.PubMedPubMedCentral Bleil ME, English P, Valle J, Woods NF, Crowder KD, Gregorich SE, Cedars MI. Is in utero exposure to maternal socioeconomic disadvantage related to offspring ovarian reserve in adulthood? Womens Midlife Health. 2018;4:5.PubMedPubMedCentral
91.
Zurück zum Zitat Upson K, Weinberg CR, Nichols HB, Dinse GE, D’Aloisio AA, Sandler DP, Baird DD. Early-life farm exposure and Ovarian Reserve in a US Cohort of women. Epidemiology. 2021;32:672–80.PubMedPubMedCentral Upson K, Weinberg CR, Nichols HB, Dinse GE, D’Aloisio AA, Sandler DP, Baird DD. Early-life farm exposure and Ovarian Reserve in a US Cohort of women. Epidemiology. 2021;32:672–80.PubMedPubMedCentral
92.
Zurück zum Zitat Succu S, Sale S, Ghirello G, Ireland JJ, Evans ACO, Atzori AS, Mossa F. Exposure of dairy cows to high environmental temperatures and their lactation status impairs establishment of the ovarian reserve in their offspring. J Dairy Sci. 2020;103:11957–69.PubMed Succu S, Sale S, Ghirello G, Ireland JJ, Evans ACO, Atzori AS, Mossa F. Exposure of dairy cows to high environmental temperatures and their lactation status impairs establishment of the ovarian reserve in their offspring. J Dairy Sci. 2020;103:11957–69.PubMed
93.
Zurück zum Zitat Shalom-Paz E, Weill S, Ginzberg Y, Khatib N, Anabusi S, Klorin G, Sabo E, Beloosesky R. IUGR induced by maternal chronic inflammation: long-term effect on offspring’s ovaries in rat model-a preliminary report. J Endocrinol Invest. 2017;40:1125–31.PubMed Shalom-Paz E, Weill S, Ginzberg Y, Khatib N, Anabusi S, Klorin G, Sabo E, Beloosesky R. IUGR induced by maternal chronic inflammation: long-term effect on offspring’s ovaries in rat model-a preliminary report. J Endocrinol Invest. 2017;40:1125–31.PubMed
94.
Zurück zum Zitat Medenica S, Zivanovic D, Batkoska L, Marinelli S, Basile G, Perino A, Cucinella G, Gullo G, Zaami S. The future is coming: Artificial Intelligence in the treatment of Infertility could improve assisted Reproduction outcomes-the Value of Regulatory Frameworks. Diagnostics (Basel) 2022, 12. Medenica S, Zivanovic D, Batkoska L, Marinelli S, Basile G, Perino A, Cucinella G, Gullo G, Zaami S. The future is coming: Artificial Intelligence in the treatment of Infertility could improve assisted Reproduction outcomes-the Value of Regulatory Frameworks. Diagnostics (Basel) 2022, 12.
95.
Zurück zum Zitat Schweigert FJ, Gericke B, Wolfram W, Kaisers U, Dudenhausen JW. Peptide and protein profiles in serum and follicular fluid of women undergoing IVF. Hum Reprod. 2006;21:2960–8.PubMed Schweigert FJ, Gericke B, Wolfram W, Kaisers U, Dudenhausen JW. Peptide and protein profiles in serum and follicular fluid of women undergoing IVF. Hum Reprod. 2006;21:2960–8.PubMed
96.
Zurück zum Zitat Hanrieder J, Nyakas A, Naessén T, Bergquist J. Proteomic analysis of human follicular fluid using an alternative bottom-up approach. J Proteome Res. 2008;7:443–9.PubMed Hanrieder J, Nyakas A, Naessén T, Bergquist J. Proteomic analysis of human follicular fluid using an alternative bottom-up approach. J Proteome Res. 2008;7:443–9.PubMed
97.
Zurück zum Zitat Zakerkish F, Brännström M, Carlsohn E, Sihlbom C, van der Post S, Thoroddsen A. Proteomic analysis of follicular fluid during human ovulation. Acta Obstet Gynecol Scand. 2020;99:917–24.PubMed Zakerkish F, Brännström M, Carlsohn E, Sihlbom C, van der Post S, Thoroddsen A. Proteomic analysis of follicular fluid during human ovulation. Acta Obstet Gynecol Scand. 2020;99:917–24.PubMed
98.
Zurück zum Zitat Matoba S, Bender K, Fahey AG, Mamo S, Brennan L, Lonergan P, Fair T. Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod Fertil Dev. 2014;26:337–45.PubMed Matoba S, Bender K, Fahey AG, Mamo S, Brennan L, Lonergan P, Fair T. Predictive value of bovine follicular components as markers of oocyte developmental potential. Reprod Fertil Dev. 2014;26:337–45.PubMed
99.
Zurück zum Zitat O’Gorman A, Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, Brennan L. Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. Reproduction. 2013;146:389–95.PubMed O’Gorman A, Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, Brennan L. Metabolic profiling of human follicular fluid identifies potential biomarkers of oocyte developmental competence. Reproduction. 2013;146:389–95.PubMed
100.
Zurück zum Zitat Yang J, Li Y, Li S, Zhang Y, Feng R, Huang R, Chen M, Qian Y. Metabolic signatures in human follicular fluid identify lysophosphatidylcholine as a predictor of follicular development. Commun Biol. 2022;5:763.PubMedPubMedCentral Yang J, Li Y, Li S, Zhang Y, Feng R, Huang R, Chen M, Qian Y. Metabolic signatures in human follicular fluid identify lysophosphatidylcholine as a predictor of follicular development. Commun Biol. 2022;5:763.PubMedPubMedCentral
101.
Zurück zum Zitat Hemmings KE, Maruthini D, Vyjayanthi S, Hogg JE, Balen AH, Campbell BK, Leese HJ, Picton HM. Amino acid turnover by human oocytes is influenced by gamete developmental competence, patient characteristics and gonadotrophin treatment. Hum Reprod. 2013;28:1031–44.PubMedPubMedCentral Hemmings KE, Maruthini D, Vyjayanthi S, Hogg JE, Balen AH, Campbell BK, Leese HJ, Picton HM. Amino acid turnover by human oocytes is influenced by gamete developmental competence, patient characteristics and gonadotrophin treatment. Hum Reprod. 2013;28:1031–44.PubMedPubMedCentral
102.
Zurück zum Zitat Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, Brennan L. An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertil Steril. 2012;97:1078–1084e1071.PubMed Wallace M, Cottell E, Gibney MJ, McAuliffe FM, Wingfield M, Brennan L. An investigation into the relationship between the metabolic profile of follicular fluid, oocyte developmental potential, and implantation outcome. Fertil Steril. 2012;97:1078–1084e1071.PubMed
103.
Zurück zum Zitat O’Brien Y, Wingfield M, O’Shea LC. Anti-Müllerian hormone and progesterone levels in human follicular fluid are predictors of embryonic development. Reprod Biol Endocrinol. 2019;17:47.PubMedPubMedCentral O’Brien Y, Wingfield M, O’Shea LC. Anti-Müllerian hormone and progesterone levels in human follicular fluid are predictors of embryonic development. Reprod Biol Endocrinol. 2019;17:47.PubMedPubMedCentral
104.
Zurück zum Zitat Wen J, Feng Y, Yan W, Yuan S, Zhang J, Luo A, Wang S. Vaginal microbiota changes in patients with premature ovarian insufficiency and its correlation with ovarian function. Front Endocrinol (Lausanne). 2022;13:824282.PubMed Wen J, Feng Y, Yan W, Yuan S, Zhang J, Luo A, Wang S. Vaginal microbiota changes in patients with premature ovarian insufficiency and its correlation with ovarian function. Front Endocrinol (Lausanne). 2022;13:824282.PubMed
105.
Zurück zum Zitat Morales-Martínez FA, Salas-Castro C, García-Garza MR, Valdés-Martínez O, García-Luna SM, Garza-Elizondo M, Vidal-Gutiérrez O. Saldívar-Rodríguez D, Sordia-Hernández LH: evaluation of the Ovarian Reserve in Women with systemic Lupus Erythematosus. J Family Reprod Health. 2021;15:38–44.PubMedPubMedCentral Morales-Martínez FA, Salas-Castro C, García-Garza MR, Valdés-Martínez O, García-Luna SM, Garza-Elizondo M, Vidal-Gutiérrez O. Saldívar-Rodríguez D, Sordia-Hernández LH: evaluation of the Ovarian Reserve in Women with systemic Lupus Erythematosus. J Family Reprod Health. 2021;15:38–44.PubMedPubMedCentral
106.
Zurück zum Zitat Ulug P, Oner G, Kasap B, Akbas EM, Ozcicek F. Evaluation of ovarian reserve tests in women with systemic Lupus Erythematosus. Am J Reprod Immunol. 2014;72:85–8.PubMed Ulug P, Oner G, Kasap B, Akbas EM, Ozcicek F. Evaluation of ovarian reserve tests in women with systemic Lupus Erythematosus. Am J Reprod Immunol. 2014;72:85–8.PubMed
107.
Zurück zum Zitat Martins NFE, Seixas MI, Pereira JP, Costa MM, Fonseca JE. Anti-müllerian hormone and ovarian reserve in systemic Lupus Erythematosus. Clin Rheumatol. 2017;36:2853–4.PubMed Martins NFE, Seixas MI, Pereira JP, Costa MM, Fonseca JE. Anti-müllerian hormone and ovarian reserve in systemic Lupus Erythematosus. Clin Rheumatol. 2017;36:2853–4.PubMed
108.
Zurück zum Zitat Lourenço DMR, Araújo DB, Aikawa NE, Yamakami LYS, Borba EF, Maciel GAR, Soares-Junior JM, Baracat EC, Pereira RMR, Bonfa E, Silva CA. Adrenal steroidogenesis and ovarian reserve in adult childhood-onset systemic lupus erytematosus patients. Clin Rheumatol. 2021;40:3651–8.PubMed Lourenço DMR, Araújo DB, Aikawa NE, Yamakami LYS, Borba EF, Maciel GAR, Soares-Junior JM, Baracat EC, Pereira RMR, Bonfa E, Silva CA. Adrenal steroidogenesis and ovarian reserve in adult childhood-onset systemic lupus erytematosus patients. Clin Rheumatol. 2021;40:3651–8.PubMed
109.
Zurück zum Zitat de Araujo DB, Yamakami LY, Aikawa NE, Bonfá E, Viana VS, Pasoto SG, Pereira RM, Serafin PC, Borba EF, Silva CA. Ovarian reserve in adult patients with childhood-onset lupus: a possible deleterious effect of methotrexate? Scand J Rheumatol. 2014;43:503–11.PubMed de Araujo DB, Yamakami LY, Aikawa NE, Bonfá E, Viana VS, Pasoto SG, Pereira RM, Serafin PC, Borba EF, Silva CA. Ovarian reserve in adult patients with childhood-onset lupus: a possible deleterious effect of methotrexate? Scand J Rheumatol. 2014;43:503–11.PubMed
110.
Zurück zum Zitat Giambalvo S, Garaffoni C, Silvagni E, Furini F, Rizzo R, Govoni M, Bortoluzzi A. Factors associated with fertility abnormalities in women with systemic Lupus Erythematosus: a systematic review and meta-analysis. Autoimmun Rev. 2022;21:103038.PubMed Giambalvo S, Garaffoni C, Silvagni E, Furini F, Rizzo R, Govoni M, Bortoluzzi A. Factors associated with fertility abnormalities in women with systemic Lupus Erythematosus: a systematic review and meta-analysis. Autoimmun Rev. 2022;21:103038.PubMed
111.
Zurück zum Zitat Di Mario C, Petricca L, Gigante MR, Barini A, Barini A, Varriano V, Paglionico A, Cattani P, Ferraccioli G, Tolusso B, Gremese E. Anti-Müllerian hormone serum levels in systemic Lupus Erythematosus patients: influence of the Disease severity and therapy on the ovarian reserve. Endocrine. 2019;63:369–75.PubMed Di Mario C, Petricca L, Gigante MR, Barini A, Barini A, Varriano V, Paglionico A, Cattani P, Ferraccioli G, Tolusso B, Gremese E. Anti-Müllerian hormone serum levels in systemic Lupus Erythematosus patients: influence of the Disease severity and therapy on the ovarian reserve. Endocrine. 2019;63:369–75.PubMed
112.
Zurück zum Zitat Zhang XH, Zhang YA, Chen X, Qiao PY, Zhang LY. Assessment of the Ovarian Reserve by serum Anti-Müllerian hormone in rheumatoid arthritis patients: a systematic review and Meta-analysis. Int Arch Allergy Immunol. 2022;183:462–9.PubMed Zhang XH, Zhang YA, Chen X, Qiao PY, Zhang LY. Assessment of the Ovarian Reserve by serum Anti-Müllerian hormone in rheumatoid arthritis patients: a systematic review and Meta-analysis. Int Arch Allergy Immunol. 2022;183:462–9.PubMed
113.
Zurück zum Zitat Brouwer J, Laven JS, Hazes JM, Schipper I, Dolhain RJ. Levels of serum anti-Müllerian hormone, a marker for ovarian reserve, in women with rheumatoid arthritis. Arthritis Care Res (Hoboken). 2013;65:1534–8.PubMed Brouwer J, Laven JS, Hazes JM, Schipper I, Dolhain RJ. Levels of serum anti-Müllerian hormone, a marker for ovarian reserve, in women with rheumatoid arthritis. Arthritis Care Res (Hoboken). 2013;65:1534–8.PubMed
114.
Zurück zum Zitat Lopez-Corbeto M, Martínez-Mateu S, Pluma A, Ferrer R, López-Lasanta M, De Agustín JJ, Barceló M, Julià A, Marsal S. The ovarian reserve as measured by the anti-Müllerian hormone is not diminished in patients with rheumatoid arthritis compared to the healthy population. Clin Exp Rheumatol. 2021;39:337–43.PubMed Lopez-Corbeto M, Martínez-Mateu S, Pluma A, Ferrer R, López-Lasanta M, De Agustín JJ, Barceló M, Julià A, Marsal S. The ovarian reserve as measured by the anti-Müllerian hormone is not diminished in patients with rheumatoid arthritis compared to the healthy population. Clin Exp Rheumatol. 2021;39:337–43.PubMed
115.
Zurück zum Zitat Mont’Alverne AR, Yamakami LY, Gonçalves CR, Baracat EC, Bonfá E, Silva CA. Diminished ovarian reserve in Behçet’s Disease patients. Clin Rheumatol. 2015;34:179–83.PubMed Mont’Alverne AR, Yamakami LY, Gonçalves CR, Baracat EC, Bonfá E, Silva CA. Diminished ovarian reserve in Behçet’s Disease patients. Clin Rheumatol. 2015;34:179–83.PubMed
116.
Zurück zum Zitat şahİn A, Karakuş S, Durmaz Y, Yildiz Ç, Aydin H, Cengİz AK. Ovarian reserve is preserved in Behçet’s Disease. Int J Rheum Dis. 2017;20:2070–6.PubMed şahİn A, Karakuş S, Durmaz Y, Yildiz Ç, Aydin H, Cengİz AK. Ovarian reserve is preserved in Behçet’s Disease. Int J Rheum Dis. 2017;20:2070–6.PubMed
117.
Zurück zum Zitat Henes M, Froeschlin J, Taran FA, Brucker S, Rall KK, Xenitidis T, Igney-Oertel A, Lawrenz B, Henes JC. Ovarian reserve alterations in premenopausal women with chronic inflammatory rheumatic Diseases: impact of rheumatoid arthritis, Behçet’s Disease and spondyloarthritis on anti-Müllerian hormone levels. Rheumatology (Oxford). 2015;54:1709–12.PubMed Henes M, Froeschlin J, Taran FA, Brucker S, Rall KK, Xenitidis T, Igney-Oertel A, Lawrenz B, Henes JC. Ovarian reserve alterations in premenopausal women with chronic inflammatory rheumatic Diseases: impact of rheumatoid arthritis, Behçet’s Disease and spondyloarthritis on anti-Müllerian hormone levels. Rheumatology (Oxford). 2015;54:1709–12.PubMed
118.
Zurück zum Zitat Clowse ME, Copland SC, Hsieh TC, Chow SC, Hoffman GS, Merkel PA, Spiera RF, Davis JC Jr., McCune WJ, Ytterberg SR, et al. Ovarian reserve diminished by oral cyclophosphamide therapy for granulomatosis with polyangiitis (Wegener’s). Arthritis Care Res (Hoboken). 2011;63:1777–81.PubMed Clowse ME, Copland SC, Hsieh TC, Chow SC, Hoffman GS, Merkel PA, Spiera RF, Davis JC Jr., McCune WJ, Ytterberg SR, et al. Ovarian reserve diminished by oral cyclophosphamide therapy for granulomatosis with polyangiitis (Wegener’s). Arthritis Care Res (Hoboken). 2011;63:1777–81.PubMed
119.
Zurück zum Zitat Mont’Alverne AR, Pereira RM, Yamakami LY, Viana VS, Baracat EC, Bonfá E, Silva CA. Reduced ovarian reserve in patients with Takayasu arteritis. J Rheumatol. 2014;41:2055–9.PubMed Mont’Alverne AR, Pereira RM, Yamakami LY, Viana VS, Baracat EC, Bonfá E, Silva CA. Reduced ovarian reserve in patients with Takayasu arteritis. J Rheumatol. 2014;41:2055–9.PubMed
120.
Zurück zum Zitat Yamakami LY, Serafini PC, de Araujo DB, Bonfá E, Leon EP, Baracat EC, Silva CA. Ovarian reserve in women with primary antiphospholipid syndrome. Lupus. 2014;23:862–7.PubMed Yamakami LY, Serafini PC, de Araujo DB, Bonfá E, Leon EP, Baracat EC, Silva CA. Ovarian reserve in women with primary antiphospholipid syndrome. Lupus. 2014;23:862–7.PubMed
121.
Zurück zum Zitat Alexander VM, Ashley-Martin J, Riley JK, Cooper AR, Ratts VS, Jungheim ES. Association between arthritis treatments and ovarian reserve: a prospective study. Reprod Biomed Online. 2021;42:1203–10.PubMedPubMedCentral Alexander VM, Ashley-Martin J, Riley JK, Cooper AR, Ratts VS, Jungheim ES. Association between arthritis treatments and ovarian reserve: a prospective study. Reprod Biomed Online. 2021;42:1203–10.PubMedPubMedCentral
122.
Zurück zum Zitat de Souza FH, Shinjo SK, Yamakami LY, Viana VS, Baracat EC, Bonfá E, Silva CA. Reduction of ovarian reserve in adult patients with dermatomyositis. Clin Exp Rheumatol. 2015;33:44–9.PubMed de Souza FH, Shinjo SK, Yamakami LY, Viana VS, Baracat EC, Bonfá E, Silva CA. Reduction of ovarian reserve in adult patients with dermatomyositis. Clin Exp Rheumatol. 2015;33:44–9.PubMed
123.
Zurück zum Zitat Yarde F, Broekmans FJ, van der Pal-de Bruin KM, Schönbeck Y, te Velde ER, Stein AD, Lumey LH. Prenatal famine, birthweight, reproductive performance and age at menopause: the Dutch hunger winter families study. Hum Reprod. 2013;28:3328–36.PubMedPubMedCentral Yarde F, Broekmans FJ, van der Pal-de Bruin KM, Schönbeck Y, te Velde ER, Stein AD, Lumey LH. Prenatal famine, birthweight, reproductive performance and age at menopause: the Dutch hunger winter families study. Hum Reprod. 2013;28:3328–36.PubMedPubMedCentral
124.
Zurück zum Zitat Björvang RD, Hassan J, Stefopoulou M, Gemzell-Danielsson K, Pedrelli M, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH, Acharya G, Damdimopoulou P. Persistent organic pollutants and the size of ovarian reserve in reproductive-aged women. Environ Int. 2021;155:106589.PubMed Björvang RD, Hassan J, Stefopoulou M, Gemzell-Danielsson K, Pedrelli M, Kiviranta H, Rantakokko P, Ruokojärvi P, Lindh CH, Acharya G, Damdimopoulou P. Persistent organic pollutants and the size of ovarian reserve in reproductive-aged women. Environ Int. 2021;155:106589.PubMed
125.
Zurück zum Zitat Vabre P, Gatimel N, Moreau J, Gayrard V, Picard-Hagen N, Parinaud J, Leandri RD. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environ Health. 2017;16:37.PubMedPubMedCentral Vabre P, Gatimel N, Moreau J, Gayrard V, Picard-Hagen N, Parinaud J, Leandri RD. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environ Health. 2017;16:37.PubMedPubMedCentral
126.
Zurück zum Zitat Ding N, Harlow SD, Randolph JF Jr., Loch-Caruso R, Park SK. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum Reprod Update. 2020;26:724–52.PubMedPubMedCentral Ding N, Harlow SD, Randolph JF Jr., Loch-Caruso R, Park SK. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum Reprod Update. 2020;26:724–52.PubMedPubMedCentral
127.
Zurück zum Zitat Du G, Huang H, Hu J, Qin Y, Wu D, Song L, Xia Y, Wang X. Endocrine-related effects of perfluorooctanoic acid (PFOA) in zebrafish, H295R steroidogenesis and receptor reporter gene assays. Chemosphere. 2013;91:1099–106.PubMed Du G, Huang H, Hu J, Qin Y, Wu D, Song L, Xia Y, Wang X. Endocrine-related effects of perfluorooctanoic acid (PFOA) in zebrafish, H295R steroidogenesis and receptor reporter gene assays. Chemosphere. 2013;91:1099–106.PubMed
128.
Zurück zum Zitat He QK, Li YP, Xu ZR, Wei WB, Qiao FX, Sun MX, Liu YC, Chen YZ, Wang HL, Qi ZQ, Liu Y. 3-MCPD exposure enhances ovarian fibrosis and reduces oocyte quality in mice. Environ Pollut. 2022;316:120662.PubMed He QK, Li YP, Xu ZR, Wei WB, Qiao FX, Sun MX, Liu YC, Chen YZ, Wang HL, Qi ZQ, Liu Y. 3-MCPD exposure enhances ovarian fibrosis and reduces oocyte quality in mice. Environ Pollut. 2022;316:120662.PubMed
129.
Zurück zum Zitat Li Y, Xiao N, Liu M, Liu Y, He A, Wang L, Luo H, Yao Y, Sun H. Dysregulation of steroid metabolome in follicular fluid links phthalate exposure to diminished ovarian reserve of childbearing-age women. Environ Pollut. 2023;330:121730.PubMed Li Y, Xiao N, Liu M, Liu Y, He A, Wang L, Luo H, Yao Y, Sun H. Dysregulation of steroid metabolome in follicular fluid links phthalate exposure to diminished ovarian reserve of childbearing-age women. Environ Pollut. 2023;330:121730.PubMed
130.
Zurück zum Zitat Chen Y, Sun Y, Zhao A, Cai X, Yu A, Xu Q, Wang P, Yao J, Wang Q, Wang W. Arsenic exposure diminishes ovarian follicular reserve and induces abnormal steroidogenesis by DNA methylation. Ecotoxicol Environ Saf. 2022;241:113816.PubMed Chen Y, Sun Y, Zhao A, Cai X, Yu A, Xu Q, Wang P, Yao J, Wang Q, Wang W. Arsenic exposure diminishes ovarian follicular reserve and induces abnormal steroidogenesis by DNA methylation. Ecotoxicol Environ Saf. 2022;241:113816.PubMed
131.
Zurück zum Zitat Jurewicz J, Radwan M, Wielgomas B, Karwacka A, Klimowska A, Kałużny P, Radwan P, Hanke W. Parameters of ovarian reserve in relation to urinary concentrations of parabens. Environ Health. 2020;19:26.PubMedPubMedCentral Jurewicz J, Radwan M, Wielgomas B, Karwacka A, Klimowska A, Kałużny P, Radwan P, Hanke W. Parameters of ovarian reserve in relation to urinary concentrations of parabens. Environ Health. 2020;19:26.PubMedPubMedCentral
132.
Zurück zum Zitat Jurewicz J, Radwan P, Wielgomas B, Radwan M, Karwacka A, Kałużny P, Piskunowicz M, Dziewirska E, Hanke W. Exposure to pyrethroid pesticides and ovarian reserve. Environ Int. 2020;144:106028.PubMed Jurewicz J, Radwan P, Wielgomas B, Radwan M, Karwacka A, Kałużny P, Piskunowicz M, Dziewirska E, Hanke W. Exposure to pyrethroid pesticides and ovarian reserve. Environ Int. 2020;144:106028.PubMed
133.
Zurück zum Zitat Czubacka E, Wielgomas B, Klimowska A, Radwan M, Radwan P, Karwacka A, Kałużny P, Jurewicz J. Urinary bisphenol A concentrations and Parameters of Ovarian Reserve among women from a fertility clinic. Int J Environ Res Public Health 2021, 18. Czubacka E, Wielgomas B, Klimowska A, Radwan M, Radwan P, Karwacka A, Kałużny P, Jurewicz J. Urinary bisphenol A concentrations and Parameters of Ovarian Reserve among women from a fertility clinic. Int J Environ Res Public Health 2021, 18.
134.
Zurück zum Zitat Fei J, Qu JH, Ding XL, Xue K, Lu CC, Chen JF, Song L, Xia YK, Wang SL, Wang XR. Fenvalerate inhibits the growth of primary cultured rat preantral ovarian follicles. Toxicology. 2010;267:1–6.PubMed Fei J, Qu JH, Ding XL, Xue K, Lu CC, Chen JF, Song L, Xia YK, Wang SL, Wang XR. Fenvalerate inhibits the growth of primary cultured rat preantral ovarian follicles. Toxicology. 2010;267:1–6.PubMed
135.
Zurück zum Zitat Shen H, Gao M, Li Q, Sun H, Jiang Y, Liu L, Wu J, Yu X, Jia T, Xin Y, et al. Effect of PFOA exposure on diminished ovarian reserve and its metabolism. Reprod Biol Endocrinol. 2023;21:16.PubMedPubMedCentral Shen H, Gao M, Li Q, Sun H, Jiang Y, Liu L, Wu J, Yu X, Jia T, Xin Y, et al. Effect of PFOA exposure on diminished ovarian reserve and its metabolism. Reprod Biol Endocrinol. 2023;21:16.PubMedPubMedCentral
136.
Zurück zum Zitat Gaskins AJ, Mínguez-Alarcón L, Fong KC, Abdelmessih S, Coull BA, Chavarro JE, Schwartz J, Kloog I, Souter I, Hauser R, Laden F. Exposure to fine particulate matter and Ovarian Reserve among women from a fertility clinic. Epidemiology. 2019;30:486–91.PubMedPubMedCentral Gaskins AJ, Mínguez-Alarcón L, Fong KC, Abdelmessih S, Coull BA, Chavarro JE, Schwartz J, Kloog I, Souter I, Hauser R, Laden F. Exposure to fine particulate matter and Ovarian Reserve among women from a fertility clinic. Epidemiology. 2019;30:486–91.PubMedPubMedCentral
137.
Zurück zum Zitat Kim H, Choe SA, Kim OJ, Kim SY, Kim S, Im C, Kim YS, Yoon TK. Outdoor air pollution and diminished ovarian reserve among infertile Korean women. Environ Health Prev Med. 2021;26:20.PubMedPubMedCentral Kim H, Choe SA, Kim OJ, Kim SY, Kim S, Im C, Kim YS, Yoon TK. Outdoor air pollution and diminished ovarian reserve among infertile Korean women. Environ Health Prev Med. 2021;26:20.PubMedPubMedCentral
138.
Zurück zum Zitat Hood RB, James P, Fong KC, Mínguez-Alarcón L, Coull BA, Schwartz J, Kloog I, Laden F, Gaskins AJ. The influence of fine particulate matter on the association between residential greenness and ovarian reserve. Environ Res. 2021;197:111162.PubMedPubMedCentral Hood RB, James P, Fong KC, Mínguez-Alarcón L, Coull BA, Schwartz J, Kloog I, Laden F, Gaskins AJ. The influence of fine particulate matter on the association between residential greenness and ovarian reserve. Environ Res. 2021;197:111162.PubMedPubMedCentral
139.
Zurück zum Zitat Feng X, Luo J, Wang X, Xie W, Jiao J, Wu X, Fan L, Qin G. Association of exposure to ambient air pollution with ovarian reserve among women in Shanxi province of north China. Environ Pollut. 2021;278:116868.PubMed Feng X, Luo J, Wang X, Xie W, Jiao J, Wu X, Fan L, Qin G. Association of exposure to ambient air pollution with ovarian reserve among women in Shanxi province of north China. Environ Pollut. 2021;278:116868.PubMed
140.
Zurück zum Zitat de Sá ST-JJR, de Viana WF, Camargo JH, Ramos LS, Folhadella AA, Polisseni IM, de Freitas J. Effect of maternal heat-stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology. 2008;69:155–66.PubMed de Sá ST-JJR, de Viana WF, Camargo JH, Ramos LS, Folhadella AA, Polisseni IM, de Freitas J. Effect of maternal heat-stress on follicular growth and oocyte competence in Bos indicus cattle. Theriogenology. 2008;69:155–66.PubMed
141.
Zurück zum Zitat Hale BJ, Hager CL, Seibert JT, Selsby JT, Baumgard LH, Keating AF, Ross JW. Heat stress induces autophagy in pig ovaries during follicular development. Biol Reprod. 2017;97:426–37.PubMed Hale BJ, Hager CL, Seibert JT, Selsby JT, Baumgard LH, Keating AF, Ross JW. Heat stress induces autophagy in pig ovaries during follicular development. Biol Reprod. 2017;97:426–37.PubMed
142.
Zurück zum Zitat Gaskins AJ, Mínguez-Alarcón L, VoPham T, Hart JE, Chavarro JE, Schwartz J, Souter I, Laden F. Impact of ambient temperature on ovarian reserve. Fertil Steril. 2021;116:1052–60.PubMedPubMedCentral Gaskins AJ, Mínguez-Alarcón L, VoPham T, Hart JE, Chavarro JE, Schwartz J, Souter I, Laden F. Impact of ambient temperature on ovarian reserve. Fertil Steril. 2021;116:1052–60.PubMedPubMedCentral
143.
Zurück zum Zitat Qiang J, Tao FY, Lu QS, He J, Xu P. Upregulation of miR-33 exacerbates heat-stress-Induced apoptosis in Granulosa Cell and Follicular Atresia of Nile Tilapia (Oreochromis niloticus) by targeting TGFβ1I1. Genes (Basel) 2022, 13. Qiang J, Tao FY, Lu QS, He J, Xu P. Upregulation of miR-33 exacerbates heat-stress-Induced apoptosis in Granulosa Cell and Follicular Atresia of Nile Tilapia (Oreochromis niloticus) by targeting TGFβ1I1. Genes (Basel) 2022, 13.
144.
Zurück zum Zitat Khan A, Dou J, Wang Y, Jiang X, Khan MZ, Luo H, Usman T, Zhu H. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J Anim Sci Biotechnol. 2020;11:25.PubMedPubMedCentral Khan A, Dou J, Wang Y, Jiang X, Khan MZ, Luo H, Usman T, Zhu H. Evaluation of heat stress effects on cellular and transcriptional adaptation of bovine granulosa cells. J Anim Sci Biotechnol. 2020;11:25.PubMedPubMedCentral
145.
Zurück zum Zitat Li GM, Liu LP, Yin B, Liu YY, Dong WW, Gong S, Zhang J, Tan JH. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems. Poult Sci. 2020;99:6084–93.PubMedPubMedCentral Li GM, Liu LP, Yin B, Liu YY, Dong WW, Gong S, Zhang J, Tan JH. Heat stress decreases egg production of laying hens by inducing apoptosis of follicular cells via activating the FasL/Fas and TNF-α systems. Poult Sci. 2020;99:6084–93.PubMedPubMedCentral
146.
Zurück zum Zitat Shehab-El-Deen MA, Leroy JL, Fadel MS, Saleh SY, Maes D, Van Soom A. Biochemical changes in the follicular fluid of the dominant follicle of high producing dairy cows exposed to heat stress early post-partum. Anim Reprod Sci. 2010;117:189–200.PubMed Shehab-El-Deen MA, Leroy JL, Fadel MS, Saleh SY, Maes D, Van Soom A. Biochemical changes in the follicular fluid of the dominant follicle of high producing dairy cows exposed to heat stress early post-partum. Anim Reprod Sci. 2010;117:189–200.PubMed
147.
Zurück zum Zitat Shimizu T, Ohshima I, Ozawa M, Takahashi S, Tajima A, Shiota M, Miyazaki H, Kanai Y. Heat stress diminishes gonadotropin receptor expression and enhances susceptibility to apoptosis of rat granulosa cells. Reproduction. 2005;129:463–72.PubMed Shimizu T, Ohshima I, Ozawa M, Takahashi S, Tajima A, Shiota M, Miyazaki H, Kanai Y. Heat stress diminishes gonadotropin receptor expression and enhances susceptibility to apoptosis of rat granulosa cells. Reproduction. 2005;129:463–72.PubMed
148.
Zurück zum Zitat Mínguez-Alarcón L, Souter I, Williams PL, Ford JB, Hauser R, Chavarro JE, Gaskins AJ. Occupational factors and markers of ovarian reserve and response among women at a fertility centre. Occup Environ Med. 2017;74:426–31.PubMed Mínguez-Alarcón L, Souter I, Williams PL, Ford JB, Hauser R, Chavarro JE, Gaskins AJ. Occupational factors and markers of ovarian reserve and response among women at a fertility centre. Occup Environ Med. 2017;74:426–31.PubMed
149.
Zurück zum Zitat Bleil ME, Adler NE, Pasch LA, Sternfeld B, Gregorich SE, Rosen MP, Cedars MI. Depressive symptomatology, psychological stress, and ovarian reserve: a role for psychological factors in ovarian aging? Menopause. 2012;19:1176–85.PubMedPubMedCentral Bleil ME, Adler NE, Pasch LA, Sternfeld B, Gregorich SE, Rosen MP, Cedars MI. Depressive symptomatology, psychological stress, and ovarian reserve: a role for psychological factors in ovarian aging? Menopause. 2012;19:1176–85.PubMedPubMedCentral
150.
Zurück zum Zitat Dong YZ, Zhou FJ, Sun YP. Psychological stress is related to a decrease of serum anti-müllerian hormone level in infertile women. Reprod Biol Endocrinol. 2017;15:51.PubMedPubMedCentral Dong YZ, Zhou FJ, Sun YP. Psychological stress is related to a decrease of serum anti-müllerian hormone level in infertile women. Reprod Biol Endocrinol. 2017;15:51.PubMedPubMedCentral
151.
Zurück zum Zitat Cizmeli C, Lobel M, Franasiak J, Pastore LM. Levels and associations among self-esteem, fertility distress, coping, and reaction to potentially being a genetic carrier in women with diminished ovarian reserve. Fertil Steril. 2013;99:2037–44. e2033.PubMedPubMedCentral Cizmeli C, Lobel M, Franasiak J, Pastore LM. Levels and associations among self-esteem, fertility distress, coping, and reaction to potentially being a genetic carrier in women with diminished ovarian reserve. Fertil Steril. 2013;99:2037–44. e2033.PubMedPubMedCentral
152.
Zurück zum Zitat Teal S, Edelman A. Contraception Selection, Effectiveness, and adverse effects: a review. JAMA. 2021;326:2507–18.PubMed Teal S, Edelman A. Contraception Selection, Effectiveness, and adverse effects: a review. JAMA. 2021;326:2507–18.PubMed
153.
Zurück zum Zitat Kavanaugh ML, Pliskin E. Use of contraception among reproductive-aged women in the United States, 2014 and 2016. F S Rep. 2020;1:83–93.PubMedPubMedCentral Kavanaugh ML, Pliskin E. Use of contraception among reproductive-aged women in the United States, 2014 and 2016. F S Rep. 2020;1:83–93.PubMedPubMedCentral
154.
Zurück zum Zitat Birch Petersen K, Hvidman HW, Forman JL, Pinborg A, Larsen EC, Macklon KT, Sylvest R, Andersen AN. Ovarian reserve assessment in users of oral contraception seeking fertility advice on their reproductive lifespan. Hum Reprod. 2015;30:2364–75.PubMed Birch Petersen K, Hvidman HW, Forman JL, Pinborg A, Larsen EC, Macklon KT, Sylvest R, Andersen AN. Ovarian reserve assessment in users of oral contraception seeking fertility advice on their reproductive lifespan. Hum Reprod. 2015;30:2364–75.PubMed
155.
Zurück zum Zitat Hariton E, Shirazi TN, Douglas NC, Hershlag A, Briggs SF. Anti-Müllerian hormone levels among contraceptive users: evidence from a cross-sectional cohort of 27,125 individuals. Am J Obstet Gynecol 2021, 225:515.e511-515.e510. Hariton E, Shirazi TN, Douglas NC, Hershlag A, Briggs SF. Anti-Müllerian hormone levels among contraceptive users: evidence from a cross-sectional cohort of 27,125 individuals. Am J Obstet Gynecol 2021, 225:515.e511-515.e510.
156.
Zurück zum Zitat Deb S, Campbell BK, Pincott-Allen C, Clewes JS, Cumberpatch G, Raine-Fenning NJ. Quantifying effect of combined oral contraceptive pill on functional ovarian reserve as measured by serum anti-Müllerian hormone and small antral follicle count using three-dimensional ultrasound. Ultrasound Obstet Gynecol. 2012;39:574–80.PubMed Deb S, Campbell BK, Pincott-Allen C, Clewes JS, Cumberpatch G, Raine-Fenning NJ. Quantifying effect of combined oral contraceptive pill on functional ovarian reserve as measured by serum anti-Müllerian hormone and small antral follicle count using three-dimensional ultrasound. Ultrasound Obstet Gynecol. 2012;39:574–80.PubMed
157.
Zurück zum Zitat Bentzen JG, Forman JL, Pinborg A, Lidegaard Ø, Larsen EC, Friis-Hansen L, Johannsen TH, Nyboe Andersen A. Ovarian reserve parameters: a comparison between users and non-users of hormonal contraception. Reprod Biomed Online. 2012;25:612–9.PubMed Bentzen JG, Forman JL, Pinborg A, Lidegaard Ø, Larsen EC, Friis-Hansen L, Johannsen TH, Nyboe Andersen A. Ovarian reserve parameters: a comparison between users and non-users of hormonal contraception. Reprod Biomed Online. 2012;25:612–9.PubMed
158.
Zurück zum Zitat Gullo G, Scaglione M, Cucinella G, Perino A, Chiantera V, D’Anna R, Laganà AS, Buzzaccarini G. Impact of assisted reproduction techniques on the neuro-psycho-motor outcome of newborns: a critical appraisal. J Obstet Gynaecol. 2022;42:2583–7.PubMed Gullo G, Scaglione M, Cucinella G, Perino A, Chiantera V, D’Anna R, Laganà AS, Buzzaccarini G. Impact of assisted reproduction techniques on the neuro-psycho-motor outcome of newborns: a critical appraisal. J Obstet Gynaecol. 2022;42:2583–7.PubMed
159.
Zurück zum Zitat Berntsen S, Söderström-Anttila V, Wennerholm UB, Laivuori H, Loft A, Oldereid NB, Romundstad LB, Bergh C, Pinborg A. The health of children conceived by ART: ‘the chicken or the egg?‘. Hum Reprod Update. 2019;25:137–58.PubMed Berntsen S, Söderström-Anttila V, Wennerholm UB, Laivuori H, Loft A, Oldereid NB, Romundstad LB, Bergh C, Pinborg A. The health of children conceived by ART: ‘the chicken or the egg?‘. Hum Reprod Update. 2019;25:137–58.PubMed
160.
Zurück zum Zitat Gullo G, Scaglione M, Laganà AS, Perino A, Andrisani A, Chiantera V, Cucinella G, Gitas G, Barra F, Riemma G. Assisted Reproductive techniques and risk of congenital Heart Diseases in children: a systematic review and Meta-analysis. Reprod Sci 2023. Gullo G, Scaglione M, Laganà AS, Perino A, Andrisani A, Chiantera V, Cucinella G, Gitas G, Barra F, Riemma G. Assisted Reproductive techniques and risk of congenital Heart Diseases in children: a systematic review and Meta-analysis. Reprod Sci 2023.
161.
Zurück zum Zitat Medenica S, Abazovic D, Ljubić A, Vukovic J, Begovic A, Cucinella G, Zaami S, Gullo G. The role of cell and Gene Therapies in the treatment of infertility in patients with thyroid autoimmunity. Int J Endocrinol. 2022;2022:4842316.PubMedPubMedCentral Medenica S, Abazovic D, Ljubić A, Vukovic J, Begovic A, Cucinella G, Zaami S, Gullo G. The role of cell and Gene Therapies in the treatment of infertility in patients with thyroid autoimmunity. Int J Endocrinol. 2022;2022:4842316.PubMedPubMedCentral
162.
Zurück zum Zitat Wang Q, Li X, Wang Q, Xie J, Xie C, Fu X. Heat shock pretreatment improves mesenchymal stem cell viability by heat shock proteins and autophagy to prevent cisplatin-induced granulosa cell apoptosis. Stem Cell Res Ther. 2019;10:348.PubMedPubMedCentral Wang Q, Li X, Wang Q, Xie J, Xie C, Fu X. Heat shock pretreatment improves mesenchymal stem cell viability by heat shock proteins and autophagy to prevent cisplatin-induced granulosa cell apoptosis. Stem Cell Res Ther. 2019;10:348.PubMedPubMedCentral
Metadaten
Titel
Potential factors result in diminished ovarian reserve: a comprehensive review
verfasst von
Qinying Zhu
Yi Li
Jianhong Ma
Hao Ma
Xiaolei Liang
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Journal of Ovarian Research / Ausgabe 1/2023
Elektronische ISSN: 1757-2215
DOI
https://doi.org/10.1186/s13048-023-01296-x

Weitere Artikel der Ausgabe 1/2023

Journal of Ovarian Research 1/2023 Zur Ausgabe

Blutdrucksenkung könnte Uterusmyome verhindern

Frauen mit unbehandelter oder neu auftretender Hypertonie haben ein deutlich erhöhtes Risiko für Uterusmyome. Eine Therapie mit Antihypertensiva geht hingegen mit einer verringerten Inzidenz der gutartigen Tumoren einher.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.