Skip to main content
Erschienen in: Neurocritical Care 3/2011

01.12.2011 | Review Article

Potential Non-Hypoxic/Ischemic Causes of Increased Cerebral Interstitial Fluid Lactate/Pyruvate Ratio: A Review of Available Literature

verfasst von: Daniel B. Larach, W. Andrew Kofke, Peter Le Roux

Erschienen in: Neurocritical Care | Ausgabe 3/2011

Einloggen, um Zugang zu erhalten

Abstract

Microdialysis, an in vivo technique that permits collection and analysis of small molecular weight substances from the interstitial space, was developed more than 30 years ago and introduced into the clinical neurosciences in the 1990s. Today cerebral microdialysis is an established, commercially available clinical tool that is focused primarily on markers of cerebral energy metabolism (glucose, lactate, and pyruvate) and cell damage (glycerol), and neurotransmitters (glutamate). Although the brain comprises only 2% of body weight, it consumes 20% of total body energy. Consequently, the ability to monitor cerebral metabolism can provide significant insights during clinical care. Measurements of lactate, pyruvate, and glucose give information about the comparative contributions of aerobic and anaerobic metabolisms to brain energy. The lactate/pyruvate ratio reflects cytoplasmic redox state and thus provides information about tissue oxygenation. An elevated lactate pyruvate ratio (>40) frequently is interpreted as a sign of cerebral hypoxia or ischemia. However, several other factors may contribute to an elevated LPR. This article reviews potential non-hypoxic/ischemic causes of an increased LPR.
Literatur
1.
Zurück zum Zitat Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss. 1974;30:44–55.PubMed Ungerstedt U, Pycock C. Functional correlates of dopamine neurotransmission. Bull Schweiz Akad Med Wiss. 1974;30:44–55.PubMed
2.
Zurück zum Zitat Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Curr Protoc Neurosci. 2009;47:7.1.1–1.28. Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Curr Protoc Neurosci. 2009;47:7.1.1–1.28.
3.
Zurück zum Zitat Torregrossa MM, Kalivas PW. Microdialysis and the neurochemistry of addiction. Pharmacol Biochem Behav. 2008;90:261–72.PubMedCrossRef Torregrossa MM, Kalivas PW. Microdialysis and the neurochemistry of addiction. Pharmacol Biochem Behav. 2008;90:261–72.PubMedCrossRef
4.
Zurück zum Zitat Meeusen R. Exercise and the brain: insight in new therapeutic modalities. Ann Transplant. 2005;10:49–51.PubMed Meeusen R. Exercise and the brain: insight in new therapeutic modalities. Ann Transplant. 2005;10:49–51.PubMed
5.
Zurück zum Zitat van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH. Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav. 2008;90:135–47.PubMedCrossRef van der Zeyden M, Oldenziel WH, Rea K, Cremers TI, Westerink BH. Microdialysis of GABA and glutamate: analysis, interpretation and comparison with microsensors. Pharmacol Biochem Behav. 2008;90:135–47.PubMedCrossRef
6.
Zurück zum Zitat Li Y, Peris J, Zhong L, Derendorf H. Microdialysis as a tool in local pharmacodynamics. AAPS J. 2006;8:E222–35.PubMed Li Y, Peris J, Zhong L, Derendorf H. Microdialysis as a tool in local pharmacodynamics. AAPS J. 2006;8:E222–35.PubMed
7.
Zurück zum Zitat Stiller CO, Taylor BK, Linderoth B, Gustafsson H, Warsame Afrah A, Brodin E. Microdialysis in pain research. Adv Drug Deliv Rev. 2003;55:1065–79.PubMedCrossRef Stiller CO, Taylor BK, Linderoth B, Gustafsson H, Warsame Afrah A, Brodin E. Microdialysis in pain research. Adv Drug Deliv Rev. 2003;55:1065–79.PubMedCrossRef
8.
Zurück zum Zitat Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U. Extracellular measurements in the thalamus of parkinsonian patients. Life Sci. 1990;46:301–8.PubMedCrossRef Meyerson BA, Linderoth B, Karlsson H, Ungerstedt U. Extracellular measurements in the thalamus of parkinsonian patients. Life Sci. 1990;46:301–8.PubMedCrossRef
9.
Zurück zum Zitat Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22:3–41.PubMedCrossRef Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22:3–41.PubMedCrossRef
10.
Zurück zum Zitat Bellander BM, Cantais E, Enblad P, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.PubMedCrossRef Bellander BM, Cantais E, Enblad P, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.PubMedCrossRef
11.
Zurück zum Zitat Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien). 2008;150:461–9.CrossRef Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien). 2008;150:461–9.CrossRef
12.
Zurück zum Zitat Adamides AA, Rosenfeldt FL, Winter CD, et al. Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury. J Am Coll Surg. 2009;209:531–9.PubMedCrossRef Adamides AA, Rosenfeldt FL, Winter CD, et al. Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury. J Am Coll Surg. 2009;209:531–9.PubMedCrossRef
13.
Zurück zum Zitat Ungerstedt U, Rostami E. Microdialysis in neurointensive care. Curr Pharm Des. 2004;10:2145–52.PubMedCrossRef Ungerstedt U, Rostami E. Microdialysis in neurointensive care. Curr Pharm Des. 2004;10:2145–52.PubMedCrossRef
14.
Zurück zum Zitat Goodman JC, Robertson CS. Microdialysis: is it ready for prime time? Curr Opin Crit Care. 2009;15:110–7.PubMedCrossRef Goodman JC, Robertson CS. Microdialysis: is it ready for prime time? Curr Opin Crit Care. 2009;15:110–7.PubMedCrossRef
15.
Zurück zum Zitat Nordström CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst. 2010;26:465–72.PubMedCrossRef Nordström CH. Cerebral energy metabolism and microdialysis in neurocritical care. Childs Nerv Syst. 2010;26:465–72.PubMedCrossRef
16.
Zurück zum Zitat Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97:18–25.PubMedCrossRef Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97:18–25.PubMedCrossRef
17.
Zurück zum Zitat Oddo M, Schmidt JM, Carrera E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.PubMedCrossRef Oddo M, Schmidt JM, Carrera E, et al. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.PubMedCrossRef
18.
Zurück zum Zitat Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.PubMedCrossRef Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23:865–77.PubMedCrossRef
19.
Zurück zum Zitat Oddo M, Milby A, Chen I, et al. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2009;40:1275–81.PubMedCrossRef Oddo M, Milby A, Chen I, et al. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2009;40:1275–81.PubMedCrossRef
20.
Zurück zum Zitat Nordström CH, Reinstrup P, Xu W, Gärdenfors A, Ungerstedt U. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98:809–14.PubMedCrossRef Nordström CH, Reinstrup P, Xu W, Gärdenfors A, Ungerstedt U. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98:809–14.PubMedCrossRef
21.
Zurück zum Zitat Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.PubMedCrossRef Vespa PM, Miller C, McArthur D, et al. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35:2830–6.PubMedCrossRef
22.
Zurück zum Zitat Hashemi P, Bhatia R, Nakamura H, et al. Persisting depletion of brain glucose following cortical spreading depression, despite apparent hyperaemia: evidence for risk of an adverse effect of Leão’s spreading depression. J Cereb Blood Flow Metab. 2009;29:166–75.PubMedCrossRef Hashemi P, Bhatia R, Nakamura H, et al. Persisting depletion of brain glucose following cortical spreading depression, despite apparent hyperaemia: evidence for risk of an adverse effect of Leão’s spreading depression. J Cereb Blood Flow Metab. 2009;29:166–75.PubMedCrossRef
23.
Zurück zum Zitat Schneweis S, Grond M, Staub F, et al. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke. 2001;32:1863–7.PubMedCrossRef Schneweis S, Grond M, Staub F, et al. Predictive value of neurochemical monitoring in large middle cerebral artery infarction. Stroke. 2001;32:1863–7.PubMedCrossRef
24.
Zurück zum Zitat Nortje J, Coles JP, Timofeev I, et al. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med. 2008;36:273–81.PubMedCrossRef Nortje J, Coles JP, Timofeev I, et al. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med. 2008;36:273–81.PubMedCrossRef
25.
Zurück zum Zitat Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36:2871–7.PubMedCrossRef Marcoux J, McArthur DA, Miller C, et al. Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Crit Care Med. 2008;36:2871–7.PubMedCrossRef
26.
Zurück zum Zitat Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006;12:112–8.PubMedCrossRef Hillered L, Persson L, Nilsson P, Ronne-Engstrom E, Enblad P. Continuous monitoring of cerebral metabolism in traumatic brain injury: a focus on cerebral microdialysis. Curr Opin Crit Care. 2006;12:112–8.PubMedCrossRef
27.
Zurück zum Zitat Leegsma-Vogt G, van der Werf S, Venema K, Korf J. Modeling cerebral arteriovenous lactate kinetics after intravenous lactate infusion in the rat. J Cereb Blood Flow Metab. 2004;24:1071–80.PubMedCrossRef Leegsma-Vogt G, van der Werf S, Venema K, Korf J. Modeling cerebral arteriovenous lactate kinetics after intravenous lactate infusion in the rat. J Cereb Blood Flow Metab. 2004;24:1071–80.PubMedCrossRef
28.
Zurück zum Zitat Miller LP, Oldendorf WH. Regional kinetic constants for blood-brain barrier pyruvic acid transport in conscious rats by the monocarboxylic acid carrier. J Neurochem. 1986;46:1412–6.PubMedCrossRef Miller LP, Oldendorf WH. Regional kinetic constants for blood-brain barrier pyruvic acid transport in conscious rats by the monocarboxylic acid carrier. J Neurochem. 1986;46:1412–6.PubMedCrossRef
29.
Zurück zum Zitat Hutchinson PJ, O’Connell MT, Al-Rawi PG, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93:37–43.PubMedCrossRef Hutchinson PJ, O’Connell MT, Al-Rawi PG, et al. Clinical cerebral microdialysis: a methodological study. J Neurosurg. 2000;93:37–43.PubMedCrossRef
30.
Zurück zum Zitat Nelson DL, Cox MM. Lehninger principles of biochemistry. 5th ed. New York: WH Freeman; 2008. Nelson DL, Cox MM. Lehninger principles of biochemistry. 5th ed. New York: WH Freeman; 2008.
31.
Zurück zum Zitat Johnston AJ, Gupta AK. Advanced monitoring in the neurology intensive care unit: microdialysis. Curr Opin Crit Care. 2002;8:121–7.PubMedCrossRef Johnston AJ, Gupta AK. Advanced monitoring in the neurology intensive care unit: microdialysis. Curr Opin Crit Care. 2002;8:121–7.PubMedCrossRef
32.
Zurück zum Zitat Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47:701–9.PubMed Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47:701–9.PubMed
33.
Zurück zum Zitat Gårdenfors A, Nilsson F, Skagerberg G, Ungerstedt U, Nordström CH. Cerebral physiological and biochemical changes during vasogenic brain edema induced by intrathecal injection of bacterial lipopolysaccharides in piglets. Acta Neurochir. 2002;144:601–8.CrossRef Gårdenfors A, Nilsson F, Skagerberg G, Ungerstedt U, Nordström CH. Cerebral physiological and biochemical changes during vasogenic brain edema induced by intrathecal injection of bacterial lipopolysaccharides in piglets. Acta Neurochir. 2002;144:601–8.CrossRef
34.
Zurück zum Zitat Dusick JR, Glenn TC, Lee WN, et al. Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1, 2–13C2]glucose labeling study in humans. J Cereb Blood Flow Metab. 2007;27:1593–602.PubMedCrossRef Dusick JR, Glenn TC, Lee WN, et al. Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1, 2–13C2]glucose labeling study in humans. J Cereb Blood Flow Metab. 2007;27:1593–602.PubMedCrossRef
35.
Zurück zum Zitat Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–4.PubMedCrossRef Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25:763–4.PubMedCrossRef
36.
Zurück zum Zitat Simpson NE, Han Z, Berendzen KM, et al. Magnetic resonance spectroscopic investigation of mitochondrial fuel metabolism and energetics in cultured human fibroblasts: effects of pyruvate dehydrogenase complex deficiency and dichloroacetate. Mol Genet Metab. 2006;89:97–105.PubMedCrossRef Simpson NE, Han Z, Berendzen KM, et al. Magnetic resonance spectroscopic investigation of mitochondrial fuel metabolism and energetics in cultured human fibroblasts: effects of pyruvate dehydrogenase complex deficiency and dichloroacetate. Mol Genet Metab. 2006;89:97–105.PubMedCrossRef
37.
Zurück zum Zitat Nakasaki H, Ohta M, Soeda J, et al. Clinical and biochemical aspects of thiamine treatment for metabolic acidosis during total parenteral nutrition. Nutrition. 1997;13:110–7.PubMedCrossRef Nakasaki H, Ohta M, Soeda J, et al. Clinical and biochemical aspects of thiamine treatment for metabolic acidosis during total parenteral nutrition. Nutrition. 1997;13:110–7.PubMedCrossRef
38.
Zurück zum Zitat Tinsa F, Ben Amor S, Kaabachi N, Ben Lasouad M, Boussetta K, Bousnina S. Unusual case of thiamine responsive megaloblastic anemia. Tunis Med. 2009;87:159–63.PubMed Tinsa F, Ben Amor S, Kaabachi N, Ben Lasouad M, Boussetta K, Bousnina S. Unusual case of thiamine responsive megaloblastic anemia. Tunis Med. 2009;87:159–63.PubMed
39.
Zurück zum Zitat Poggi-Travert F, Martin D, Billette de Villemeur T, et al. Metabolic intermediates in lactic acidosis: compounds, samples and interpretation. J Inherit Metab Dis. 1996;19:478–88.PubMedCrossRef Poggi-Travert F, Martin D, Billette de Villemeur T, et al. Metabolic intermediates in lactic acidosis: compounds, samples and interpretation. J Inherit Metab Dis. 1996;19:478–88.PubMedCrossRef
40.
Zurück zum Zitat Stacpoole PW, Wright EC, Baumgartner TG, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. NEJM. 1992;327:1564–9.PubMedCrossRef Stacpoole PW, Wright EC, Baumgartner TG, et al. A controlled clinical trial of dichloroacetate for treatment of lactic acidosis in adults. The Dichloroacetate-Lactic Acidosis Study Group. NEJM. 1992;327:1564–9.PubMedCrossRef
41.
Zurück zum Zitat Hoppel CL, Kerr DS, Dahms B, Roessmann U. Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy. J Clin Invest. 1987;80:71–7.PubMedCrossRef Hoppel CL, Kerr DS, Dahms B, Roessmann U. Deficiency of the reduced nicotinamide adenine dinucleotide dehydrogenase component of complex I of mitochondrial electron transport. Fatal infantile lactic acidosis and hypermetabolism with skeletal-cardiac myopathy and encephalopathy. J Clin Invest. 1987;80:71–7.PubMedCrossRef
42.
Zurück zum Zitat Moreadith RW, Batshaw ML, Ohnishi T, et al. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J Clin Invest. 1984;74:685–97.PubMedCrossRef Moreadith RW, Batshaw ML, Ohnishi T, et al. Deficiency of the iron-sulfur clusters of mitochondrial reduced nicotinamide-adenine dinucleotide-ubiquinone oxidoreductase (complex I) in an infant with congenital lactic acidosis. J Clin Invest. 1984;74:685–97.PubMedCrossRef
43.
Zurück zum Zitat Robinson BH, McKay N, Goodyer P, Lancaster G. Defective intramitochondrial NADH oxidation in skin fibroblasts from an infant with fatal neonatal lacitcacidemia. Am J Hum Genet. 1985;37:938–46.PubMed Robinson BH, McKay N, Goodyer P, Lancaster G. Defective intramitochondrial NADH oxidation in skin fibroblasts from an infant with fatal neonatal lacitcacidemia. Am J Hum Genet. 1985;37:938–46.PubMed
44.
Zurück zum Zitat Van Hove JL, Saenz MS, Thomas JA, et al. Succinyl-CoA ligase deficiency: a mitochondrial hepatoencephalomyopathy. Pediatr Res. 2010;68:159–64.PubMedCrossRef Van Hove JL, Saenz MS, Thomas JA, et al. Succinyl-CoA ligase deficiency: a mitochondrial hepatoencephalomyopathy. Pediatr Res. 2010;68:159–64.PubMedCrossRef
45.
Zurück zum Zitat Chesney RW, Kaplan BS, Colle E, et al. Abnormalities of carbohydrate metabolism in idiopathic Fanconi syndrome. Pediatr Res. 1980;14:209–15.PubMed Chesney RW, Kaplan BS, Colle E, et al. Abnormalities of carbohydrate metabolism in idiopathic Fanconi syndrome. Pediatr Res. 1980;14:209–15.PubMed
46.
Zurück zum Zitat Boustany RN, Aprille JR, Halperin J, Levy H, DeLong GR. Mitochondrial cytochrome deficiency presenting as a myopathy with hypotonia, external ophthalmoplegia, and lactic acidosis in an infant and as fatal hepatopathy in a second cousin. Ann Neurol. 1983;14:462–70.PubMedCrossRef Boustany RN, Aprille JR, Halperin J, Levy H, DeLong GR. Mitochondrial cytochrome deficiency presenting as a myopathy with hypotonia, external ophthalmoplegia, and lactic acidosis in an infant and as fatal hepatopathy in a second cousin. Ann Neurol. 1983;14:462–70.PubMedCrossRef
47.
Zurück zum Zitat Komaki H, Nishigaki Y, Fuku N, et al. Pyruvate therapy for Leigh syndrome due to cytochrome c oxidase deficiency. Biochim Biophys Acta. 2010;1800:313–5.PubMedCrossRef Komaki H, Nishigaki Y, Fuku N, et al. Pyruvate therapy for Leigh syndrome due to cytochrome c oxidase deficiency. Biochim Biophys Acta. 2010;1800:313–5.PubMedCrossRef
48.
Zurück zum Zitat Mannan AA, Sharma MC, Shrivastava P, et al. Leigh’s syndrome. Indian J Pediatr. 2004;71:1029–33.PubMedCrossRef Mannan AA, Sharma MC, Shrivastava P, et al. Leigh’s syndrome. Indian J Pediatr. 2004;71:1029–33.PubMedCrossRef
49.
Zurück zum Zitat Hertz L, Kala G. Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis. 2007;22:199–218.PubMedCrossRef Hertz L, Kala G. Energy metabolism in brain cells: effects of elevated ammonia concentrations. Metab Brain Dis. 2007;22:199–218.PubMedCrossRef
50.
Zurück zum Zitat Lin S, Raabe W. Ammonia intoxication: effects on cerebral cortex and spinal cord. J Neurochem. 1985;44:1252–8.PubMedCrossRef Lin S, Raabe W. Ammonia intoxication: effects on cerebral cortex and spinal cord. J Neurochem. 1985;44:1252–8.PubMedCrossRef
51.
Zurück zum Zitat Adams JM, Feustel PJ, Donnelly DF, Dutton RE. Hypoxia, hyperammonemia, and cerebrospinal fluid metabolites. Adv Shock Res. 1978;1:209–20.PubMed Adams JM, Feustel PJ, Donnelly DF, Dutton RE. Hypoxia, hyperammonemia, and cerebrospinal fluid metabolites. Adv Shock Res. 1978;1:209–20.PubMed
52.
Zurück zum Zitat O’Connor JE, Costell M, Grisolía S. Prevention of ammonia toxicity by L-carnitine: metabolic changes in brain. Neurochem Res. 1984;9:563–70.PubMedCrossRef O’Connor JE, Costell M, Grisolía S. Prevention of ammonia toxicity by L-carnitine: metabolic changes in brain. Neurochem Res. 1984;9:563–70.PubMedCrossRef
53.
Zurück zum Zitat Hindfelt B, Plum F, Duffy TE. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest. 1977;59:386–96.PubMedCrossRef Hindfelt B, Plum F, Duffy TE. Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts. J Clin Invest. 1977;59:386–96.PubMedCrossRef
54.
Zurück zum Zitat Bjerring PN, Hauerberg J, Frederiksen HJ, et al. Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver failure. Neurocrit Care. 2008;9:3–7.PubMedCrossRef Bjerring PN, Hauerberg J, Frederiksen HJ, et al. Cerebral glutamine concentration and lactate-pyruvate ratio in patients with acute liver failure. Neurocrit Care. 2008;9:3–7.PubMedCrossRef
55.
Zurück zum Zitat Ratnakumari L, Murthy CR. Response of rat cerebral glycolytic enzymes to hyperammonemic states. Neurosci Lett. 1993;161:37–40.PubMedCrossRef Ratnakumari L, Murthy CR. Response of rat cerebral glycolytic enzymes to hyperammonemic states. Neurosci Lett. 1993;161:37–40.PubMedCrossRef
56.
Zurück zum Zitat Qureshi K, Rama Rao KV, Qureshi IA. Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient spf-mice: restoration by acetyl-L-carnitine. Neurochem Res. 1998;23:855–61.PubMedCrossRef Qureshi K, Rama Rao KV, Qureshi IA. Differential inhibition by hyperammonemia of the electron transport chain enzymes in synaptosomes and non-synaptic mitochondria in ornithine transcarbamylase-deficient spf-mice: restoration by acetyl-L-carnitine. Neurochem Res. 1998;23:855–61.PubMedCrossRef
57.
Zurück zum Zitat Ratnakumari L, Qureshi IA, Butterworth RF. Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Biochem Biophys Res Commun. 1992;184:746–51.PubMedCrossRef Ratnakumari L, Qureshi IA, Butterworth RF. Effects of congenital hyperammonemia on the cerebral and hepatic levels of the intermediates of energy metabolism in spf mice. Biochem Biophys Res Commun. 1992;184:746–51.PubMedCrossRef
58.
Zurück zum Zitat She P, Zhou Y, Zhang Z, Griffin K, Gowda K, Lynch CJ. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance. J Appl Physiol. 2010;108:941–9.PubMedCrossRef She P, Zhou Y, Zhang Z, Griffin K, Gowda K, Lynch CJ. Disruption of BCAA metabolism in mice impairs exercise metabolism and endurance. J Appl Physiol. 2010;108:941–9.PubMedCrossRef
59.
Zurück zum Zitat Kauppinen RA, Sihra TS, Nicholls DG. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta. 1987;930:173–8.PubMedCrossRef Kauppinen RA, Sihra TS, Nicholls DG. Aminooxyacetic acid inhibits the malate-aspartate shuttle in isolated nerve terminals and prevents the mitochondria from utilizing glycolytic substrates. Biochim Biophys Acta. 1987;930:173–8.PubMedCrossRef
60.
Zurück zum Zitat Nagasaka H, Okano Y, Tsukahara H, et al. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol Genet Metab. 2009;97:21–6.PubMedCrossRef Nagasaka H, Okano Y, Tsukahara H, et al. Sustaining hypercitrullinemia, hypercholesterolemia and augmented oxidative stress in Japanese children with aspartate/glutamate carrier isoform 2-citrin-deficiency even during the silent period. Mol Genet Metab. 2009;97:21–6.PubMedCrossRef
61.
Zurück zum Zitat Hanley PJ, Ray J, Brandt U, Daut J. Halothane, isoflurane and sevoflurane inhibit NADH:ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J Physiol. 2002;544:687–93.PubMedCrossRef Hanley PJ, Ray J, Brandt U, Daut J. Halothane, isoflurane and sevoflurane inhibit NADH:ubiquinone oxidoreductase (complex I) of cardiac mitochondria. J Physiol. 2002;544:687–93.PubMedCrossRef
62.
Zurück zum Zitat Michenfelder JD, Theye RA. In vivo toxic effects of halothane on canine cerebral metabolic pathways. Am J Physiol. 1975;229:1050–5.PubMed Michenfelder JD, Theye RA. In vivo toxic effects of halothane on canine cerebral metabolic pathways. Am J Physiol. 1975;229:1050–5.PubMed
63.
Zurück zum Zitat Dahlbacka S, Mäkelä J, Kaakinen T, et al. Propofol is associated with impaired brain metabolism during hypothermic circulatory arrest: an experimental microdialysis study. Heart Surg Forum. 2006;9:E710–8.PubMedCrossRef Dahlbacka S, Mäkelä J, Kaakinen T, et al. Propofol is associated with impaired brain metabolism during hypothermic circulatory arrest: an experimental microdialysis study. Heart Surg Forum. 2006;9:E710–8.PubMedCrossRef
64.
Zurück zum Zitat Carles M, Dellamonica J, Roux J, et al. Sevoflurane but not propofol increases interstitial glycolysis metabolites availability during tourniquet-induced ischaemia-reperfusion. Br J Anaesth. 2008;100:29–35.PubMedCrossRef Carles M, Dellamonica J, Roux J, et al. Sevoflurane but not propofol increases interstitial glycolysis metabolites availability during tourniquet-induced ischaemia-reperfusion. Br J Anaesth. 2008;100:29–35.PubMedCrossRef
65.
Zurück zum Zitat Marian M, Parrino C, Leo AM, Vincenti E, Bindoli A, Scutari G. Effect of the intravenous anesthetic 2,6-diisopropylphenol on respiration and energy production by rat brain synaptosomes. Neurochem Res. 1997;22:287–92.PubMedCrossRef Marian M, Parrino C, Leo AM, Vincenti E, Bindoli A, Scutari G. Effect of the intravenous anesthetic 2,6-diisopropylphenol on respiration and energy production by rat brain synaptosomes. Neurochem Res. 1997;22:287–92.PubMedCrossRef
66.
Zurück zum Zitat Branca D, Roberti MS, Lorenzin P, Vincenti E, Scutari G. Influence of the anesthetic 2,6-diisopropylphenol on the oxidative phosphorylation of isolated rat liver mitochondria. Biochem Pharmacol. 1991;42:87–90.PubMedCrossRef Branca D, Roberti MS, Lorenzin P, Vincenti E, Scutari G. Influence of the anesthetic 2,6-diisopropylphenol on the oxidative phosphorylation of isolated rat liver mitochondria. Biochem Pharmacol. 1991;42:87–90.PubMedCrossRef
67.
Zurück zum Zitat Fudickar A, Bein B. Propofol infusion syndrome: update of clinical manifestation and pathophysiology. Minerva Anestesiol. 2009;75:339–44.PubMed Fudickar A, Bein B. Propofol infusion syndrome: update of clinical manifestation and pathophysiology. Minerva Anestesiol. 2009;75:339–44.PubMed
68.
Zurück zum Zitat Pisapia JM, Wendell LC, Kumar MA, Zager EL, Levine JM. Lactate-to-pyruvate ratio as a marker of propofol infusion syndrome after subarachnoid hemorrhage. Neurocrit Care. 2010. doi:10.1007/s12028-010-9467-6. Pisapia JM, Wendell LC, Kumar MA, Zager EL, Levine JM. Lactate-to-pyruvate ratio as a marker of propofol infusion syndrome after subarachnoid hemorrhage. Neurocrit Care. 2010. doi:10.​1007/​s12028-010-9467-6.
69.
Zurück zum Zitat Nam YT, Kim JS, Park KW. Effects of hypotensive anesthesia with sodium nitroprusside or isoflurane on hemodynamic and metabolic changes. Yonsei Med J. 1992;33:320–5.PubMed Nam YT, Kim JS, Park KW. Effects of hypotensive anesthesia with sodium nitroprusside or isoflurane on hemodynamic and metabolic changes. Yonsei Med J. 1992;33:320–5.PubMed
70.
Zurück zum Zitat Michenfelder JD. Cyanide release from sodium nitroprusside in the dog. Anesthesiology. 1977;46:196–201.PubMedCrossRef Michenfelder JD. Cyanide release from sodium nitroprusside in the dog. Anesthesiology. 1977;46:196–201.PubMedCrossRef
71.
Zurück zum Zitat Tinker JH, Michenfelder JD. Cardiac cyanide toxicity induced by nitroprusside in the dog: potential for reversal. Anesthesiology. 1978;49:109–16.PubMedCrossRef Tinker JH, Michenfelder JD. Cardiac cyanide toxicity induced by nitroprusside in the dog: potential for reversal. Anesthesiology. 1978;49:109–16.PubMedCrossRef
72.
Zurück zum Zitat Dai YL, Luk TH, Siu CW, et al. Mitochondrial dysfunction induced by statin contributes to endothelial dysfunction in patients with coronary artery disease. Cardiovasc Toxicol. 2010;10:130–8.PubMedCrossRef Dai YL, Luk TH, Siu CW, et al. Mitochondrial dysfunction induced by statin contributes to endothelial dysfunction in patients with coronary artery disease. Cardiovasc Toxicol. 2010;10:130–8.PubMedCrossRef
73.
Zurück zum Zitat Ruddick JA. Toxicology, metabolism, and biochemistry of 1,2-propanediol. Toxicol Appl Pharmacol. 1972;21:102–11.PubMedCrossRef Ruddick JA. Toxicology, metabolism, and biochemistry of 1,2-propanediol. Toxicol Appl Pharmacol. 1972;21:102–11.PubMedCrossRef
74.
Zurück zum Zitat Saini M, Nagpaul JP, Amma MK. Effect of propane-1,2-diol ingestion on carbohydrate metabolism in female rat erythrocytes. J Appl Toxicol. 1993;13:69–75.PubMedCrossRef Saini M, Nagpaul JP, Amma MK. Effect of propane-1,2-diol ingestion on carbohydrate metabolism in female rat erythrocytes. J Appl Toxicol. 1993;13:69–75.PubMedCrossRef
75.
Zurück zum Zitat Morshed KM, Nagpaul JP, Majumdar S, Amma MKP. Kinetics of oral propylene glycol-induced acute hyperlactatemia. Biochem Med Metab Biol. 1989;42:87–94.PubMedCrossRef Morshed KM, Nagpaul JP, Majumdar S, Amma MKP. Kinetics of oral propylene glycol-induced acute hyperlactatemia. Biochem Med Metab Biol. 1989;42:87–94.PubMedCrossRef
76.
Zurück zum Zitat Schölmerich J, Kitamura S, Miyai K. Effects of propylene glycol on redox state of the perfused rat liver—a note of caution. Res Exp Med (Berl). 1989;189:39–42.CrossRef Schölmerich J, Kitamura S, Miyai K. Effects of propylene glycol on redox state of the perfused rat liver—a note of caution. Res Exp Med (Berl). 1989;189:39–42.CrossRef
77.
Zurück zum Zitat Wilson KC, Reardon C, Theodore AC, Farber HW. Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines. Chest. 2005;128:1674–81.PubMedCrossRef Wilson KC, Reardon C, Theodore AC, Farber HW. Propylene glycol toxicity: a severe iatrogenic illness in ICU patients receiving IV benzodiazepines. Chest. 2005;128:1674–81.PubMedCrossRef
78.
Zurück zum Zitat Barnes BJ, Gerst C, Smith JR, Terrell AR, Mullins ME. Osmol gap as a surrogate marker for serum propylene glycol concentrations in patients receiving lorazepam for sedation. Pharmacotherapy. 2006;26:23–33.PubMedCrossRef Barnes BJ, Gerst C, Smith JR, Terrell AR, Mullins ME. Osmol gap as a surrogate marker for serum propylene glycol concentrations in patients receiving lorazepam for sedation. Pharmacotherapy. 2006;26:23–33.PubMedCrossRef
79.
Zurück zum Zitat Ganesh A, Audu P. Hyperosmolar, increased-anion-gap metabolic acidosis and hyperglycemia after etomidate infusion. J Clin Anesth. 2008;20:290–3.PubMedCrossRef Ganesh A, Audu P. Hyperosmolar, increased-anion-gap metabolic acidosis and hyperglycemia after etomidate infusion. J Clin Anesth. 2008;20:290–3.PubMedCrossRef
80.
Zurück zum Zitat Szajewski J. Poisons information monographs: Propylene glycol. No. 443. Geneva, Switzerland: International Programme on Chemical Safety, 1994. Szajewski J. Poisons information monographs: Propylene glycol. No. 443. Geneva, Switzerland: International Programme on Chemical Safety, 1994.
81.
Zurück zum Zitat Zar T, Graeber C, Perazella MA. Recognition, treatment, and prevention of propylene glycol toxicity. Sem Dial. 2007;20:217–9.CrossRef Zar T, Graeber C, Perazella MA. Recognition, treatment, and prevention of propylene glycol toxicity. Sem Dial. 2007;20:217–9.CrossRef
82.
Zurück zum Zitat Rengel-Aranda M, Gougoux A, Vinay P, Lopez-Novoa JM. Effect of valproate on renal metabolism in the intact dog. Kidney Int. 1988;34:645–54.PubMedCrossRef Rengel-Aranda M, Gougoux A, Vinay P, Lopez-Novoa JM. Effect of valproate on renal metabolism in the intact dog. Kidney Int. 1988;34:645–54.PubMedCrossRef
83.
Zurück zum Zitat Dubas TC, Johnson WJ. Metformin-induced lactic acidosis: potentiation by ethanol. Res Commun Chem Pathol Pharmacol. 1981;33:21–31.PubMed Dubas TC, Johnson WJ. Metformin-induced lactic acidosis: potentiation by ethanol. Res Commun Chem Pathol Pharmacol. 1981;33:21–31.PubMed
84.
Zurück zum Zitat Jalling O, Olsen C. The effects of metformin compared to the effects of phenformin on the lactate production and the metabolism of isolated parenchymal rat liver cell. Acta Pharmacol Toxicol (Copenh). 1984;54:327–32.CrossRef Jalling O, Olsen C. The effects of metformin compared to the effects of phenformin on the lactate production and the metabolism of isolated parenchymal rat liver cell. Acta Pharmacol Toxicol (Copenh). 1984;54:327–32.CrossRef
85.
Zurück zum Zitat Nattrass M, Hinks L, Smythe P, Todd PG, Alberti KGMM. Metabolic effects of combined sulphonylurea and metformin therapy in maturity-onset diabetes. Horm Metab Res. 1979;11:332–7.PubMedCrossRef Nattrass M, Hinks L, Smythe P, Todd PG, Alberti KGMM. Metabolic effects of combined sulphonylurea and metformin therapy in maturity-onset diabetes. Horm Metab Res. 1979;11:332–7.PubMedCrossRef
86.
Zurück zum Zitat Ramanathan S, Masih AK, Ashok U, Arismendy J, Turndorf H. Concentrations of lactate and pyruvate in maternal and neonatal blood with different intravenous fluids used for prehydration before epidural anesthesia. Anesth Analg. 1984;63:69–74.PubMedCrossRef Ramanathan S, Masih AK, Ashok U, Arismendy J, Turndorf H. Concentrations of lactate and pyruvate in maternal and neonatal blood with different intravenous fluids used for prehydration before epidural anesthesia. Anesth Analg. 1984;63:69–74.PubMedCrossRef
87.
Zurück zum Zitat Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55:1251–62.PubMedCrossRef Pellerin L, Bouzier-Sore AK, Aubert A, et al. Activity-dependent regulation of energy metabolism by astrocytes: an update. Glia. 2007;55:1251–62.PubMedCrossRef
88.
Zurück zum Zitat Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia. 2007;55:1263–71.PubMedCrossRef Brown AM, Ransom BR. Astrocyte glycogen and brain energy metabolism. Glia. 2007;55:1263–71.PubMedCrossRef
89.
Zurück zum Zitat Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab. 1996;16:1079–89.PubMedCrossRef Bittar PG, Charnay Y, Pellerin L, Bouras C, Magistretti PJ. Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain. J Cereb Blood Flow Metab. 1996;16:1079–89.PubMedCrossRef
90.
Zurück zum Zitat Abi-Saab WM, Maggs DG, Jones T, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab. 2002;22:271–9.PubMedCrossRef Abi-Saab WM, Maggs DG, Jones T, et al. Striking differences in glucose and lactate levels between brain extracellular fluid and plasma in conscious human subjects: effects of hyperglycemia and hypoglycemia. J Cereb Blood Flow Metab. 2002;22:271–9.PubMedCrossRef
91.
Zurück zum Zitat Agardh CD, Folbergrová J, Siesjö BK. Cerebral metabolic changes in profound, insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem. 1978;31:1135–42.PubMedCrossRef Agardh CD, Folbergrová J, Siesjö BK. Cerebral metabolic changes in profound, insulin-induced hypoglycemia, and in the recovery period following glucose administration. J Neurochem. 1978;31:1135–42.PubMedCrossRef
92.
Zurück zum Zitat Cardell M, Siesjö BK, Wieloch T. Changes in pyruvate dehydrogenase complex activity during and following severe insulin-induced hypoglycemia. J Cereb Blood Flow Metab. 1991;11:122–8.PubMedCrossRef Cardell M, Siesjö BK, Wieloch T. Changes in pyruvate dehydrogenase complex activity during and following severe insulin-induced hypoglycemia. J Cereb Blood Flow Metab. 1991;11:122–8.PubMedCrossRef
93.
Zurück zum Zitat Schlenk F, Nagel A, Graetz D, Sarrafzadeh AS. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2008;34:1200–7.PubMedCrossRef Schlenk F, Nagel A, Graetz D, Sarrafzadeh AS. Hyperglycemia and cerebral glucose in aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2008;34:1200–7.PubMedCrossRef
94.
Zurück zum Zitat Vespa P, Boonyaputthikul R, McArthur DL, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34:850–6.PubMedCrossRef Vespa P, Boonyaputthikul R, McArthur DL, et al. Intensive insulin therapy reduces microdialysis glucose values without altering glucose utilization or improving the lactate/pyruvate ratio after traumatic brain injury. Crit Care Med. 2006;34:850–6.PubMedCrossRef
95.
Zurück zum Zitat Kennan RP, Takahashi K, Pan C, Shamoon H, Pan JW. Human cerebral blood flow and metabolism in acute insulin-induced hypoglycemia. J Cereb Blood Flow Metab. 2005;25:527–34.PubMedCrossRef Kennan RP, Takahashi K, Pan C, Shamoon H, Pan JW. Human cerebral blood flow and metabolism in acute insulin-induced hypoglycemia. J Cereb Blood Flow Metab. 2005;25:527–34.PubMedCrossRef
96.
Zurück zum Zitat Choi IY, Lee SP, Kim SG, Gruetter R. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab. 2001;21:653–63.PubMedCrossRef Choi IY, Lee SP, Kim SG, Gruetter R. In vivo measurements of brain glucose transport using the reversible Michaelis-Menten model and simultaneous measurements of cerebral blood flow changes during hypoglycemia. J Cereb Blood Flow Metab. 2001;21:653–63.PubMedCrossRef
97.
Zurück zum Zitat Eckert B, Ryding E, Agardh CD. Sustained elevation of cerebral blood flow after hypoglycaemia in normal man. Diabetes Res Clin Pract. 1998;40:91–100.PubMedCrossRef Eckert B, Ryding E, Agardh CD. Sustained elevation of cerebral blood flow after hypoglycaemia in normal man. Diabetes Res Clin Pract. 1998;40:91–100.PubMedCrossRef
98.
Zurück zum Zitat Rosdahl H, Samuelsson AC, Ungerstedt U, Henriksson J. Influence of adrenergic agonists on the release of amino acids from rat skeletal muscle studied by microdialysis. Acta Physiol Scand. 1998;163:349–60.PubMedCrossRef Rosdahl H, Samuelsson AC, Ungerstedt U, Henriksson J. Influence of adrenergic agonists on the release of amino acids from rat skeletal muscle studied by microdialysis. Acta Physiol Scand. 1998;163:349–60.PubMedCrossRef
99.
Zurück zum Zitat Levy B, Mansart A, Bollaert PE, Franck P, Mallie JP. Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats. Intensive Care Med. 2003;29:292–300.PubMed Levy B, Mansart A, Bollaert PE, Franck P, Mallie JP. Effects of epinephrine and norepinephrine on hemodynamics, oxidative metabolism, and organ energetics in endotoxemic rats. Intensive Care Med. 2003;29:292–300.PubMed
100.
Zurück zum Zitat Levy B, Bollaert PE, Charpentier C, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23:282–7.PubMedCrossRef Levy B, Bollaert PE, Charpentier C, et al. Comparison of norepinephrine and dobutamine to epinephrine for hemodynamics, lactate metabolism, and gastric tonometric variables in septic shock: a prospective, randomized study. Intensive Care Med. 1997;23:282–7.PubMedCrossRef
101.
Zurück zum Zitat Pernet A, Walker M, Gill GV, Ørskov H, Alberti KGMM, Johnston DG. Metabolic effects of adrenaline and noradrenaline in man: studies with somatostatin. Diabete Metab. 1984;10:98–105.PubMed Pernet A, Walker M, Gill GV, Ørskov H, Alberti KGMM, Johnston DG. Metabolic effects of adrenaline and noradrenaline in man: studies with somatostatin. Diabete Metab. 1984;10:98–105.PubMed
102.
Zurück zum Zitat Christensen NJ, Alberti KG, Brandsborg O. Plasma catecholamines and blood substrate concentrations: studies in insulin induced hypoglycaemia and after adrenaline infusions. Eur J Clin Invest. 1975;5:415–23.PubMed Christensen NJ, Alberti KG, Brandsborg O. Plasma catecholamines and blood substrate concentrations: studies in insulin induced hypoglycaemia and after adrenaline infusions. Eur J Clin Invest. 1975;5:415–23.PubMed
103.
Zurück zum Zitat Heringlake M, Wernerus M, Grünefeld J, et al. The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting. Crit Care. 2007;11:R51.PubMedCrossRef Heringlake M, Wernerus M, Grünefeld J, et al. The metabolic and renal effects of adrenaline and milrinone in patients with myocardial dysfunction after coronary artery bypass grafting. Crit Care. 2007;11:R51.PubMedCrossRef
104.
Zurück zum Zitat Cano A, Martínez P, Parrilla JJ, Abad L. Effects of intravenous ritodrine on lactate and pyruvate levels: role of glycemia and anaerobiosis. Obstet Gynecol. 1985;66:207–10.PubMed Cano A, Martínez P, Parrilla JJ, Abad L. Effects of intravenous ritodrine on lactate and pyruvate levels: role of glycemia and anaerobiosis. Obstet Gynecol. 1985;66:207–10.PubMed
105.
Zurück zum Zitat d’Avila JC, Santiago AP, Amâncio RT, et al. Sepsis induces brain mitochondrial dysfunction. Crit Care Med. 2008;36:1925–32.PubMedCrossRef d’Avila JC, Santiago AP, Amâncio RT, et al. Sepsis induces brain mitochondrial dysfunction. Crit Care Med. 2008;36:1925–32.PubMedCrossRef
106.
Zurück zum Zitat Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol. 1986;250:E634–40.PubMed Vary TC, Siegel JH, Nakatani T, Sato T, Aoyama H. Effect of sepsis on activity of pyruvate dehydrogenase complex in skeletal muscle and liver. Am J Physiol. 1986;250:E634–40.PubMed
107.
Zurück zum Zitat Malaisse WJ, Nadi AB, Ladriere L, Zhang TM. Protective effects of succinic acid dimethyl ester infusion in experimental endotoxemia. Nutrition. 1997;13:330–41.PubMed Malaisse WJ, Nadi AB, Ladriere L, Zhang TM. Protective effects of succinic acid dimethyl ester infusion in experimental endotoxemia. Nutrition. 1997;13:330–41.PubMed
108.
Zurück zum Zitat Gnaegi A, Feihl F, Boulat O, Waeber B, Liaudet L. Moderate hypercapnia exerts beneficial effects on splanchnic energy metabolism during endotoxemia. Intensive Care Med. 2009;35:1297–304.PubMedCrossRef Gnaegi A, Feihl F, Boulat O, Waeber B, Liaudet L. Moderate hypercapnia exerts beneficial effects on splanchnic energy metabolism during endotoxemia. Intensive Care Med. 2009;35:1297–304.PubMedCrossRef
109.
Zurück zum Zitat Chvojka J, Sykora R, Krouzecky A, et al. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care. 2008;12:R164.PubMedCrossRef Chvojka J, Sykora R, Krouzecky A, et al. Renal haemodynamic, microcirculatory, metabolic and histopathological responses to peritonitis-induced septic shock in pigs. Crit Care. 2008;12:R164.PubMedCrossRef
110.
Zurück zum Zitat Boekstegers P, Weidenhöfer S, Kapsner T, Werdan K. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med. 1994;22:640–50.PubMedCrossRef Boekstegers P, Weidenhöfer S, Kapsner T, Werdan K. Skeletal muscle partial pressure of oxygen in patients with sepsis. Crit Care Med. 1994;22:640–50.PubMedCrossRef
111.
Zurück zum Zitat Astiz M, Rackow EC, Weil MH, Schumer W. Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock. 1988;26:311–20.PubMed Astiz M, Rackow EC, Weil MH, Schumer W. Early impairment of oxidative metabolism and energy production in severe sepsis. Circ Shock. 1988;26:311–20.PubMed
112.
Zurück zum Zitat Blennow G, Folbergrová J, Nilsson B, Siesjö BK. Cerebral metabolic and circulatory changes in the rat during sustained seizures induced by DL-homocysteine. Brain Res. 1979;179:129–46.PubMedCrossRef Blennow G, Folbergrová J, Nilsson B, Siesjö BK. Cerebral metabolic and circulatory changes in the rat during sustained seizures induced by DL-homocysteine. Brain Res. 1979;179:129–46.PubMedCrossRef
113.
Zurück zum Zitat Folbergrová J, Jesina P, Drahota Z, et al. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp Neurol. 2007;204:597–609.PubMedCrossRef Folbergrová J, Jesina P, Drahota Z, et al. Mitochondrial complex I inhibition in cerebral cortex of immature rats following homocysteic acid-induced seizures. Exp Neurol. 2007;204:597–609.PubMedCrossRef
114.
Zurück zum Zitat Howse DCN. Metabolic responses to status epilepticus in the rat, cat, and mouse. Can J Physiol Pharmacol. 1979;57:205–12.PubMedCrossRef Howse DCN. Metabolic responses to status epilepticus in the rat, cat, and mouse. Can J Physiol Pharmacol. 1979;57:205–12.PubMedCrossRef
115.
Zurück zum Zitat Folbergrová J, Ingvar M, Nevander G, Siesjö BK. Cerebral metabolic changes during and following fluorothyl-induced seizures in ventilated rats. J Neurochem. 1985;44:1419–26.PubMedCrossRef Folbergrová J, Ingvar M, Nevander G, Siesjö BK. Cerebral metabolic changes during and following fluorothyl-induced seizures in ventilated rats. J Neurochem. 1985;44:1419–26.PubMedCrossRef
116.
Zurück zum Zitat Ingvar M, Folbergrová J, Siesjö BK. Metabolic alterations underlying the development of hypermetabolic necrosis in the substantia nigra in status epilepticus. J Cereb Blood Flow Metab. 1987;7:103–8.PubMedCrossRef Ingvar M, Folbergrová J, Siesjö BK. Metabolic alterations underlying the development of hypermetabolic necrosis in the substantia nigra in status epilepticus. J Cereb Blood Flow Metab. 1987;7:103–8.PubMedCrossRef
117.
Zurück zum Zitat Chapman AG, Meldrum BS, Siesjö BK. Cerebral metabolic changes during prolonged epileptic seizures in rats. J Neurochem. 1977;28:1025–35.PubMedCrossRef Chapman AG, Meldrum BS, Siesjö BK. Cerebral metabolic changes during prolonged epileptic seizures in rats. J Neurochem. 1977;28:1025–35.PubMedCrossRef
118.
Zurück zum Zitat Johansson BB, Fredriksson K. Cerebral energy metabolism during bicuculline-induced status epilepticus in spontaneously hypertensive rats. Acta Phys Scand. 1985;123:299–302.CrossRef Johansson BB, Fredriksson K. Cerebral energy metabolism during bicuculline-induced status epilepticus in spontaneously hypertensive rats. Acta Phys Scand. 1985;123:299–302.CrossRef
119.
Zurück zum Zitat Slais K, Vorisek I, Zoremba N, Homola A, Dmytrenko L, Sykova E. Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus. Exp Neurol. 2008;209:145–54.PubMedCrossRef Slais K, Vorisek I, Zoremba N, Homola A, Dmytrenko L, Sykova E. Brain metabolism and diffusion in the rat cerebral cortex during pilocarpine-induced status epilepticus. Exp Neurol. 2008;209:145–54.PubMedCrossRef
120.
Zurück zum Zitat Darbin O, Risso JJ, Carre E, Lonjon M, Naritoku DK. Metabolic changes in rat striatum following convulsive seizures. Brain Res. 2005;1050:124–9.PubMedCrossRef Darbin O, Risso JJ, Carre E, Lonjon M, Naritoku DK. Metabolic changes in rat striatum following convulsive seizures. Brain Res. 2005;1050:124–9.PubMedCrossRef
121.
Zurück zum Zitat Claassen J, Jetté N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1256–65.CrossRef Claassen J, Jetté N, Chum F, et al. Electrographic seizures and periodic discharges after intracerebral hemorrhage. Neurology. 2007;69:1256–65.CrossRef
122.
Zurück zum Zitat Folbergrová J, MacMillan V, Siesjö BK. The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmic NADH-NAD+ ratio of the rat brain. J Neurochem. 1972;19:2497–505.PubMedCrossRef Folbergrová J, MacMillan V, Siesjö BK. The effect of moderate and marked hypercapnia upon the energy state and upon the cytoplasmic NADH-NAD+ ratio of the rat brain. J Neurochem. 1972;19:2497–505.PubMedCrossRef
123.
Zurück zum Zitat Folbergrová J, Pontén U, Siesjö BK. Patterns of changes in brain carbohydrate metabolites, amino acids and organic phosphates at increased carbon dioxide tensions. J Neurochem. 1974;22:1115–25.PubMedCrossRef Folbergrová J, Pontén U, Siesjö BK. Patterns of changes in brain carbohydrate metabolites, amino acids and organic phosphates at increased carbon dioxide tensions. J Neurochem. 1974;22:1115–25.PubMedCrossRef
124.
Zurück zum Zitat Weyne J, Demeester G, Leusen I. Effects of carbon dioxide, bicarbonate, and pH on lactate and pyruvate in the brain of rats. Pflugers Arch. 1970;31:292–311.CrossRef Weyne J, Demeester G, Leusen I. Effects of carbon dioxide, bicarbonate, and pH on lactate and pyruvate in the brain of rats. Pflugers Arch. 1970;31:292–311.CrossRef
125.
Zurück zum Zitat Kjällquist Å, Nardini M, Siesjö BK. The regulation of extra- and intracellular acid-base parameters in the rat brain during hyper- and hypocapnia. Acta Physiol Scand. 1969;76:485–94.PubMedCrossRef Kjällquist Å, Nardini M, Siesjö BK. The regulation of extra- and intracellular acid-base parameters in the rat brain during hyper- and hypocapnia. Acta Physiol Scand. 1969;76:485–94.PubMedCrossRef
126.
Zurück zum Zitat Granholm L, Siesjö BK. The effects of hypercapnia and hypocapnia upon the cerebrospinal fluid lactate and pyruvate concentrations and upon the lactate, pyruvate, ATP, ADP, phosphocreatine and creatine concentrations of cat brain tissue. Acta Physiol Scand. 1969;75:257–66.PubMedCrossRef Granholm L, Siesjö BK. The effects of hypercapnia and hypocapnia upon the cerebrospinal fluid lactate and pyruvate concentrations and upon the lactate, pyruvate, ATP, ADP, phosphocreatine and creatine concentrations of cat brain tissue. Acta Physiol Scand. 1969;75:257–66.PubMedCrossRef
127.
Zurück zum Zitat Frauendorf E, Hartmann N, Hübner G, Meng W, Weber A. Das verhalten des laktat/pyruvat-quotienten im rahmen moderner schilddrüsendiagnostik. Z Gesamte Inn Med. 1980;35:155–61.PubMed Frauendorf E, Hartmann N, Hübner G, Meng W, Weber A. Das verhalten des laktat/pyruvat-quotienten im rahmen moderner schilddrüsendiagnostik. Z Gesamte Inn Med. 1980;35:155–61.PubMed
128.
Zurück zum Zitat Hübner G, Schwinger E, Meng W. Zum verhalten von laktat und pyruvat sowie des laktat/pyruvat-quotienten im blut bei schilddrüsenfunktionsstörungen des menschen. Z Gesamte Inn Med. 1975;30:786–9.PubMed Hübner G, Schwinger E, Meng W. Zum verhalten von laktat und pyruvat sowie des laktat/pyruvat-quotienten im blut bei schilddrüsenfunktionsstörungen des menschen. Z Gesamte Inn Med. 1975;30:786–9.PubMed
129.
Zurück zum Zitat Katyare SS, Joshi MV, Fatterpaker P, Sreenivasan A. Effect of thyroid deficiency on oxidative phosphorylation in rat liver, kidney, and brain mitochondria. Arch Biochem Biophys. 1977;182:155–63.PubMedCrossRef Katyare SS, Joshi MV, Fatterpaker P, Sreenivasan A. Effect of thyroid deficiency on oxidative phosphorylation in rat liver, kidney, and brain mitochondria. Arch Biochem Biophys. 1977;182:155–63.PubMedCrossRef
130.
Zurück zum Zitat Lecky FE, Little RA, Maycock PF, et al. Effect of alcohol on the lactate/pyruvate ratio of recently injured adults. Crit Care Med. 2002;30:981–5.PubMedCrossRef Lecky FE, Little RA, Maycock PF, et al. Effect of alcohol on the lactate/pyruvate ratio of recently injured adults. Crit Care Med. 2002;30:981–5.PubMedCrossRef
131.
Zurück zum Zitat Yap M, Mascord DJ, Starmer GA, Whitfield JB. Studies on the chronopharmacology of ethanol. Alcohol Alcohol. 1993;28:17–24.PubMed Yap M, Mascord DJ, Starmer GA, Whitfield JB. Studies on the chronopharmacology of ethanol. Alcohol Alcohol. 1993;28:17–24.PubMed
132.
Zurück zum Zitat Myrsten AL, Rydberg U, Ideström CM, Lamble R. Alcohol intoxication and hangover: modification of hangover by chlormethiazole. Psychopharmacology (Berl). 1980;69:117–25.CrossRef Myrsten AL, Rydberg U, Ideström CM, Lamble R. Alcohol intoxication and hangover: modification of hangover by chlormethiazole. Psychopharmacology (Berl). 1980;69:117–25.CrossRef
133.
Zurück zum Zitat Ginestal da Cruz A, Correia JP, Menezes L. Ethanol metabolism in liver cirrhosis and chronic alcoholism. Acta Hepatogastroenterol (Stuttg). 1975;22:369–74. Ginestal da Cruz A, Correia JP, Menezes L. Ethanol metabolism in liver cirrhosis and chronic alcoholism. Acta Hepatogastroenterol (Stuttg). 1975;22:369–74.
134.
Zurück zum Zitat Frayn KN, Coppack SW, Walsh PE, Butterworth HC, Humphreys SM, Pedrosa HC. Metabolic responses of forearm and adipose tissues to acute ethanol ingestion. Metabolism. 1990;39:958–66.PubMedCrossRef Frayn KN, Coppack SW, Walsh PE, Butterworth HC, Humphreys SM, Pedrosa HC. Metabolic responses of forearm and adipose tissues to acute ethanol ingestion. Metabolism. 1990;39:958–66.PubMedCrossRef
135.
Zurück zum Zitat Hollstedt C, Rydberg U, Olsson O, Buijten J. Effects of ethanol on the developing rat. I. Ethanol metabolism and effects on lactate, pyruvate, and glucose concentrations. Med Biol. 1980;58:158–63.PubMed Hollstedt C, Rydberg U, Olsson O, Buijten J. Effects of ethanol on the developing rat. I. Ethanol metabolism and effects on lactate, pyruvate, and glucose concentrations. Med Biol. 1980;58:158–63.PubMed
136.
Zurück zum Zitat Pronko PS, Velichko MG, Moroz AR, Rubanovich NN. Low-molecular-weight metabolites relevant to ethanol metabolism: correlation with alcohol withdrawal severity and utility for identification of alcoholics. Alcohol Alcohol. 1997;32:761–8.PubMed Pronko PS, Velichko MG, Moroz AR, Rubanovich NN. Low-molecular-weight metabolites relevant to ethanol metabolism: correlation with alcohol withdrawal severity and utility for identification of alcoholics. Alcohol Alcohol. 1997;32:761–8.PubMed
137.
Zurück zum Zitat Krebs HA, Freedland RA, Hems R, Stubbs M. Inhibition of hepatic gluconeogenesis by ethanol. Biochem J. 1969;112:117–24.PubMed Krebs HA, Freedland RA, Hems R, Stubbs M. Inhibition of hepatic gluconeogenesis by ethanol. Biochem J. 1969;112:117–24.PubMed
138.
Zurück zum Zitat Tskuamoto S, Kanegae T, Saito M, et al. Concentrations of blood and urine ethanol, acetaldehyde, acetate and acetone during experimental hangover in volunteers. Arukoru Kenkyuto Yakubutsu Ison. 1991;26:500–10. Tskuamoto S, Kanegae T, Saito M, et al. Concentrations of blood and urine ethanol, acetaldehyde, acetate and acetone during experimental hangover in volunteers. Arukoru Kenkyuto Yakubutsu Ison. 1991;26:500–10.
139.
Zurück zum Zitat Martin E, Rosenthal RE, Fiskum G. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res. 2005;79:240–7.PubMedCrossRef Martin E, Rosenthal RE, Fiskum G. Pyruvate dehydrogenase complex: metabolic link to ischemic brain injury and target of oxidative stress. J Neurosci Res. 2005;79:240–7.PubMedCrossRef
140.
Zurück zum Zitat Ehrig K, Heckel R, Lajios G. Molecular analysis of metabolic pathway with graph transformation. Lect Notes Comput Sci. 2006;4178:107–21.CrossRef Ehrig K, Heckel R, Lajios G. Molecular analysis of metabolic pathway with graph transformation. Lect Notes Comput Sci. 2006;4178:107–21.CrossRef
Metadaten
Titel
Potential Non-Hypoxic/Ischemic Causes of Increased Cerebral Interstitial Fluid Lactate/Pyruvate Ratio: A Review of Available Literature
verfasst von
Daniel B. Larach
W. Andrew Kofke
Peter Le Roux
Publikationsdatum
01.12.2011
Verlag
Humana Press Inc
Erschienen in
Neurocritical Care / Ausgabe 3/2011
Print ISSN: 1541-6933
Elektronische ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-011-9517-8

Weitere Artikel der Ausgabe 3/2011

Neurocritical Care 3/2011 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Thrombektomie auch bei großen Infarkten von Vorteil

16.05.2024 Ischämischer Schlaganfall Nachrichten

Auch ein sehr ausgedehnter ischämischer Schlaganfall scheint an sich kein Grund zu sein, von einer mechanischen Thrombektomie abzusehen. Dafür spricht die LASTE-Studie, an der Patienten und Patientinnen mit einem ASPECTS von maximal 5 beteiligt waren.

Schwindelursache: Massagepistole lässt Otholiten tanzen

14.05.2024 Benigner Lagerungsschwindel Nachrichten

Wenn jüngere Menschen über ständig rezidivierenden Lagerungsschwindel klagen, könnte eine Massagepistole der Auslöser sein. In JAMA Otolaryngology warnt ein Team vor der Anwendung hochpotenter Geräte im Bereich des Nackens.

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Viertel reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.