Skip to main content
Erschienen in: Cancer Cell International 1/2023

Open Access 01.12.2023 | Review

PRC2 mediated KLF2 down regulation: a therapeutic and diagnostic axis during tumor progression

verfasst von: Negin Taghehchian, Amirhosein Maharati, Iman Akhlaghipour, Amir Sadra Zangouei, Meysam Moghbeli

Erschienen in: Cancer Cell International | Ausgabe 1/2023

Abstract

Surgery and chemo-radiotherapy are used as the common first-line treatment options in many cancers. However, tumor relapse is observed in many cancer patients following such first-line treatments. Therefore, targeted therapy according to the molecular cancer biology can be very important in reducing tumor recurrence. In this regard, a wide range of monoclonal antibodies against the growth factors and their receptors can offer more targeted treatment in cancer patients. However, due to the importance of growth factors in the normal biology of body cells, side effects can also be observed following the application of growth factor inhibitors. Therefore, more specific factors should be introduced as therapeutic targets with less side effects. Krüppel-like factors 2 (KLF2) belongs to the KLF family of transcription factors that are involved in the regulation of many cellular processes. KLF2 deregulations have been also reported during the progression of many tumors. In the present review we discussed the molecular mechanisms of KLF2 during tumor growth and invasion. It has been shown that the KLF2 as a tumor suppressor is mainly inhibited by the non-coding RNAs (ncRNAs) through the polycomb repressive complex 2 (PRC2) recruitment. This review is an effective step towards introducing the KLF2 as a suitable diagnostic and therapeutic target in cancer patients.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BCa
Breast cancer
CRC
Colorectal cancer
Dhh
Desert
EGFL7
Epidermal growth factor-like protein-7
EMT
Epithelial-to-mesenchymal transition
ESCC
Esophageal squamous cell carcinoma
ECM
Extracellular matrix
GC
Gastric cancer
Hh
Hedgehog
HCC
Hepatocellular cancer
Ihh
Indian
KLF2
Krüppel-like factors 2
LncRNAs
Long non-coding RNAs
MMPs
Matrix metalloproteinases
MPF
M-phasepromoting factor
MM
Multiple myeloma
ncRNAs
Non-coding RNAs
NSCLC
Non small-cell lung cancer
OSCC
Oral squamous cell carcinoma
OC
Ovarian cancer
Ptch2
Patched 2
PRC2
Polycomb repressive complex 2
PCa
Prostate cancer
SEMA3F
Semaphorin-3 F
Shh
Sonic
WWP1
WW domain-containing protein 1

Background

Despite significant advances in cancer treatment, it is still considered as one of the main causes of human deaths globally [1, 2]. Surgery, hormone therapy, chemo-radio therapy, and targeted therapy are among the routine cancer treatment options. In some circumstances, the treatment plan may include a variety of therapeutic methods to maximize the therapeutic efficiency. Radiotherapy and surgery are the most effective treatments for non-metastatic and localized tumors but are ineffective in metastatic cancers. As a result, metastasis is the leading cause of cancer death, accounting for more than 90% of all cancer mortalities [3]. Since, anticancer drugs can reach any part of the body through the bloodstream, they are considered as the common treatment options for metastatic tumors [4]. However, chemotherapeutic side effects and multidrug resistance highlight the need for novel and effective targeted therapies based on molecular tumor biology [5, 6]. Such targeted therapies disrupt particular oncogenes and signaling pathways to trigger apoptosis and immune system stimulation with a lower side effects compared with chemotherapeutic modalities [7]. Transcription factors are the main transcriptional regulators [8]. Accordingly, understanding the role of transcription factors, downstream targets, and upstream regulators in tumor cells can help us to develop novel therapeutic approaches to overcome drug resistance [9]. Krüppel-like factors (KLFs) are a family of developmental transcription factors that participate in the modulation of cell growth and differentiation [10, 11]. KLF2 belongs to the KLF protein family that contains Cys2/His2 zinc-finger domains to interact with GC boxes in promoter sequences and exert as transcriptional activators or suppressors [12]. KLF2 can be regulated by ubiquitination, non-coding RNAs, and signaling pathways [1317]. The polycomb repressive complex 2 (PRC2) belongs to the Polycomb proteins complex that inhibits gene expression through histone modification. PRC2 consists of EZH2, EED, and SUZ12 components. EZH2 catalyzes the H3K27me3 that results in transcriptional inhibition [18]. It has been reported that PRC2 complex has a key role in regulation of KLF2 expression in tumor cells via histone methylation in promoter region [19, 20]. KLF2 functions as a tumor suppressor or oncogene in different tumors [21, 22]. Therefore, in the present review, we discussed the molecular mechanisms of the KLF2 during tumor progression to introduce that as a reliable diagnostic and therapetutic target in cancer patients (Tables 1 and 2) (Fig. 1).
Table 1
Oncogenic ncRNAs inhibit the KLF2 by PRC2 recruitment
ncRNA
KLF2 regulation
Tumor Type
Samples
KLF2 Function
Clinical Application
Year
Study
TUG1
KLF2 down regulation
Hepatocellular carcinoma
77T 77 N tissues HepG2, Hep3B, MHCC-97 H cell lines Nude mice
Tumor suppressor
Diagnosis
2015
Huang (15)
ZFAS1
KLF2 down regulation
Gastric cancer
54T 54 N tissues BGC823, SGC7901, MGC803, AGS, HGC27 cell line Nude mice
Tumor suppressor
Diagnosis
2017
Nie (19)
DLEU1
KLF2 down regulation
Gastric cancer
68T 68 N tissues AGS, SGC7901, MGC803, and BGC823 cell lines
Tumor suppressor
Diagnosis
2018
Li (20)
LINC00202
KLF2 down regulation
Gastric cancer
60T 60 N tissues AGS and SGC-7901 cell lines
Tumor suppressor
Diagnosis
2021
Xu (40)
LINC01296
KLF2 down regulation
Esophageal squamous cell carcinoma
78T 78 N tissues EC109, EC9706, and TE-1 cell lines Nude mice
Tumor suppressor
Diagnosis
2018
Wang (41)
AFAP1-AS1
KLF2 down regulation
Gastric cancer
SGC-7901 and AGS cell lines
Tumor suppressor
Diagnosis
2020
Yuan (42)
MiR-32-5p
KLF2 down regulation
Oral squamous cell carcinoma
30T 30 N tissues SCC-9, SCC-15, SCC-25, CAL-27, and Tca-8113 cell lines
Tumor suppressor
Diagnosis
2022
Qin (47)
HOXA11-AS
KLF2 down regulation
Gastric cancer
BGC823, SGC7901 and AGS cell lines Nude mice
Tumor suppressor
Diagnosis
2017
Liu (50)
LINC00460
KLF2 down regulation
Colorectal cancer
60T 60 N tissues HCT116, SW480, HT-29, and Lovo cell lines Nude mice
Tumor suppressor
Diagnosis
2018
Lian (58)
L22NC03-N64E9.1
KLF2 down regulation
Colorectal cancer
50T 50 N tissue DLD-1, Lovo, HT-29, SW480, SW620, and HCT116 cell line
Tumor suppressor
Diagnosis
2017
Lian (59)
SNHG1
KLF2 down regulation
Colorectal cancer
160T 80 N tissues HCT-116, HCT-8, SW-480, SW-620, DLD-1 and HT-29 cell lines Nude mice
Tumor suppressor
Diagnosis
2018
Xu (67)
HOXA-AS2
KLF2 down regulation
Colorectal cancer
69T 69 N tissues HCT116, DLD1, SW480, SW620, HT-29 and LOVO cell lines Nude mice
Tumor suppressor
Diagnosis
2017
Ding (68)
miR-25-3p
KLF2 down regulation
Colorectal cancer
27T 27 N tissues SW480, LS174T, SW620, LOVO, and HCT116 cell lines Nude mice
Tumor suppressor
Diagnosis
2018
Zeng (75)
LINC01133
KLF2 down regulation
Non-small cell lung cancer
68T 68 N tissues PC9, SPC-A1, NCI-H1975, H1299, and A549 cell lines Nude mice
Tumor suppressor
Diagnosis
2016
Zang (83)
miR-572
KLF2 down regulation
Non-small cell lung cancer
46T 46 N tissues A549, H1299, PC-9, H358, and SPC-A1 cell lines
Tumor suppressor
Diagnosis
2022
Sun (85)
AGAP2-AS1
KLF2 down regulation
Non-small cell lung cancer
80T 80 N tissues A549, PC9, SPCA1, H1975 and H1299 cell lines Nude mice
Tumor suppressor
Diagnosis
2016
Li (91)
LINC00511
KLF2 down regulation
Non-small cell lung cancer
57T 57 N tissues A549, PC9 and H460 cell lines
Tumor suppressor
Diagnosis
2019
Zhu (92)
XIST
KLF2 down regulation
Non-small cell lung cancer
53T 53 N tissues A549, SK-MES-1, H1299, 95D, H460, H520, H1975, H157, SK-LU-1, and SPC-A-1 cell lines Nude mice
Tumor suppressor
Diagnosis
2016
Fang (93)
miR-126-5p
KLF2 up regulation
Lung adenocarcinoma
78T 78 N tissues H1975, A549 and H1650 cell lines Nude mice
Tumor suppressor
Diagnosis
2022
Han (94)
FBXL19-AS1
KLF2 down regulation
Hepatocellular cancer
60T 60 N tissues SMMC7721 and HCCLM3 cell lines
Tumor suppressor
Diagnosis
2021
Chen (111)
ANRIL
KLF2 down regulation
Hepatocellular cancer
77T 77 N tissues HepG2, Hep3B, and MHCC-97 H cell lines BALB/c nude mice
Tumor suppressor
Diagnosis
2015
Huang (112)
DUXAP8
KLF2 down regulation
Hepatocellular carcinoma
HepG2 and Hep3 cell lines
Tumor suppressor
Diagnosis
2019
Jiang (113)
IRAIN
KLF2 down regulation
Pancreatic cancer
37T 37 N tissues AsPC-1, BxPC-3, and PANC-1 cell lines
Tumor suppressor
Diagnosis
2016
Lian (128)
SNHG15
KLF2 down regulation
Pancreatic cancer
48T 48 N tissues AsPC-1, BxPC-3 and PANC-1 cell lines Nude mice
Tumor suppressor
Diagnosis
2017
Ma (129)
DUXAP8
KLF2 down regulation
Pancreatic cancer
58T tissues AsPC-1, BxPC-3, and PANC-1 cell lines Athymic mice
Tumor suppressor
Diagnosis
2018
Lian (130)
LINC00702
KLF2 down regulation
Ovarian cancer
36T 36 N tissues ES-2, SKOV-3, A2780, and HEY cell lines
Tumor suppressor
Diagnosis
2019
Wang (137)
SNHG7
KLF2 down regulation
Ovarian cancer
30T 30 N tissues A2780, OCC1, H8710 and SK-OV3 cell lines Nude mice
Tumor suppressor
Diagnosis
2020
Bai (138)
GHET1
KLF2 down regulation
Prostate cancer
30T 30 N tissues LNCap and C4-2 cell lines
Tumor suppressor
Diagnosis
2019
Zhu (143)
LINC00665
KLF2 down regulation
Prostate cancer
50T 50 N tissues PC-3, DU-145, 22RV1, LNCaP cell lines Nude mice
Tumor suppressor
Diagnosis
2021
Xue (144)
SNHG6
KLF2 down regulation
Osteosarcoma
58T 58 N tissues KHOS, MG-63, and U2OS cell lines Nude mice
Tumor suppressor
Diagnosis
2018
Ruan (165)
* Tumor (T) tissues and Normal (N) margins
Table 2
KLF2 functions as a tumor suppressor or oncogene by the transcriptional regulation of target genes
KLF2 target gene
Tumor Type
Samples
KLF2 Function
Clinical Application
Year
Study
TGF-β/Smad down regulation
Hepatocellular carcinoma
SMMC-7721, MHCC97H, MHCC97L, and HCCLM3 cell lines
Tumor suppressor
Diagnosis
2020
Li (14)
PTEN/AKT down regulation
Gastric cancer
15T 15 N tissues HGC-27, SNU-1, SGC-7901, NCI-N87, KATOIII, AGS, MKN-28, MKN-45, BGC-823, MGC-803 and GES-1 cell lines Nude mice
Tumor suppressor
Diagnosis and prognosis
2017
Wang (54)
P21 up regulation
Colon cancer
HCT116, mutp53, SW1116, and HEK293A cell lines
Tumor suppressor
Diagnosis
2019
Lu (66)
HIF-1Α/ NOTCH-1 down regulation
Colorectal cancer
SW480 HT29, SW620 and HCT116 cell lines
Tumor suppressor
Diagnosis
2017
Wang (74)
WEE1 down regulation
Ovarian cancer
OV167, OV177, OV202 and OV207 cell lines
Tumor suppressor
Diagnosis
2005
Wang (77)
P21/ P15 up regulation
Non-small cell lung cancer
113T 113 N tissues A549, SPC-A1, SK-MES-1, NCI-H1299, and NCI-H1650 cell lines
Tumor suppressor
Diagnosis and prognosis
2015
Yin (82)
P15/ P21 up regulation
Non-small cell lung cancer
47T 47 N tissues A549, HCC827, SK-MES-1, NCI-H1299 and NCI-H1975 cell lines
Tumor suppressor
Diagnosis and prognosis
2017
Jiang (84)
Glutamine transaminase down regulation
Non-small cell lung cancer
A549, NCI-H1299 cell lines
Tumor suppressor
Diagnosis
2020
Xiao (99)
Hedgehog/Gli1 down regulation
Hepatocellular carcinoma
38T 38 N tissues L02, Chang, 7404 and Huh-7 cell lines Nude mice
Tumor suppressor
Diagnosis
2019
Lin (104)
C-Myc up regulation
Hepatocellular carcinoma
60T 60 N tissues HuH-7 and HepG2 cell lines Nude mice
Oncogene
Diagnosis
2016
Zou (114)
B-Catenin/TCF down regulation
Pancreatic cancer
52T 52 N tissues BXPC3 and Suit2 cell lines
Tumor suppressor
Diagnosis
2016
Zhang (127)
P21 up regulation
Pancreatic cancer
HPAC and SW1990 cell lines Nude mice
Tumor suppressor
Diagnosis
2020
Yuedi (131)
P16, P21, And P27 up regulation and CCND1/ Survivin down regulation
Breast cancer
20T 20 N tissues MCF10A, MCF-7, T47D, SK-BR-3, CAL-51 and MDA-MB-231cell lines
Tumor suppressor
Diagnosis
2022
Zhu (136)
MMP2 down regulation
Prostate cancer
30T 30 N tissues PC-3 and 22Rv1 cell lines
Tumor suppressor
Diagnosis
2019
Wang (142)
IRF4 up regulation
Multiple myeloma
3T tissues RPMI8226, MM.1 S and U266 cell lines
Oncogene
Diagnosis
2016
Ohguchi (154)
* Tumor (T) tissues and Normal (N) margins

Gastric, esophageal, and oral cancers

SUZ12 has a pivotal role in promotion of tumor cell proliferation and metastasis. Up regulation of SUZ12 has been observed in different types of human cancers [2325]. There was significant SUZ12 up regulation in gastric cancer (GC) tissues that was associated with distant metastasis, tumor size, stage, and lower survival. SUZ12 induced GC cell proliferation and metastasis by KLF2 and CDH1 down regulations [26]. LSD1 is one of the components of CoREST transcriptional co-suppressor complex by demethylation of H3K4m1/m2 [27, 28]. Several studies demonstrated that LSD1 plays critical roles in cell growth, differentiation, EMT, and invasion [2931]. Down regulation of LSD1 reduced GC cell proliferation and invasion while promoted apoptosis. LSD1 had an oncogenic role via inhibition of KLF2 through H3K4 demethylation [32]. Long non-coding RNAs (LncRNAs) are involved in X chromosome inactivation, self-renewal, differentiation, and apoptosis [3335]. Deregulation of lncRNAs was also associated with several cancers by the modulation of gene expression through chromatin remodeling, histone modification, and microRNAs sponging [36, 37]. They are also correlated with tumor cell metastasis and poor prognosis [38, 39]. There was significant DLEU1 up regulation in GC tissues that was linked with the poor prognosis. Downregulation of DLEU1 suppressed the proliferation of GC cells by provoking cell cycle arrest. DLEU1 directly interacted with LSD1 in promoter regions of KLF2, consequently promoting H3K4me2 modification [20]. Suppression of ZFAS1 reduced GC cell growth while promoted apoptosis. ZFAS1 recruited the EZH2 and LSD1 to NDK2 and KLF2 promoters that inhibited their transcription through H3K27me3 and demethylation of H3K4me2. ZFAS1 had a critical role in inhibition of tumor suppressors by EZH2 and LSD1 recruitments in GC cells [19]. There were LINC00202 up regulations in GC tissues and cells. Downregulation of LINC00202 significantly decreased the GC cell proliferation. The KLF2 expression level was affected by the high level of LINC00202 that recruited the EZH2. LINC00202 attenuated the GC progression by KLF2 inhibition [40]. There was significant LINC01296 up regulation in esophageal squamous cell carcinoma (ESCC) tissues compared with normal tissues that was correlated with lymph node metastasis, TNM stage, and poor prognosis. Silencing of LINC01296 decreased ESCC cell proliferation and invasion. LINC01296 down regulated the KLF2 via binding to EZH2 in ESCC cells [41]. There was AFAP1-AS1 up regulation in GC tissues. AFAP1-AS1 induced GC cell proliferation and invasion through KLF2 targeting [42].
Epithelial-to-mesenchymal transition (EMT) is known as a critical biological process in which epithelial cells are altered into mesenchymal cells during particular physiological and pathological contexts to acquire invasive properties [43, 44]. CXCR4 is activated via binding to SDF1, which is a critical oncogene [45]. It has been shown that CXCR4 was significantly correlated with EMT in lung cancer [46]. MiR-32-5p up regulated the CXCR4 through KLF2 targeting, which induced cell proliferation and EMT process in oral squamous cell carcinoma (OSCC) cells [47]. β-catenin is the critical modulator of the Wnt/β-catenin signaling pathway that is involved in tumor progression [48]. Wnt pathway also participates in GC progression via EMT modulation [49]. HOXA11-AS induced GC cell progression by β-catenin up regulation via WDR5 interaction, KLF2 down regulation, and EZH2 mediated P21 inhibition [50]. PI3K/AKT signaling as the main down stream cascade of the growth factor receptors has a key role in tumor progression [51, 52]. PTEN functions as a tumor suppressor by the inhibition of PI3K/AKT [53]. It has been reported that KLF2 was significantly down regulated in GC tissues compared to normal tissues that was associated with overall survival. KLF2 reduced cell migration while promoted apoptosis by the suppression of PTEN/AKT signaling in GC cells. It promoted PTEN expression and inhibited AKT-mTOR signaling. KLF2 also induced apoptosis by regulating p16/CDKN2A and p27/CDKN1B [54].

Colorectal cancer

CUL4A belongs to the cullin family of proteins that functions as an oncogene by regulation of cell proliferation, differentiation, and apoptosis [5557]. There was LINC00460 up regulation in colorectal cancer (CRC) tissues that was positively associated with lymph node involvement, stage, and tumor size. Downregulation of LINC00460 reduced CRC cell proliferation while promoted apoptosis. LINC00460 functioned as an oncogene by engaging EZH2 and H3K27me3 to the KLF2 promoter, consequently the inactivation of KLF2. LINC00460 negatively regulated miR-149-5p to up regulate CUL4A. LINC00460 inhibition repressed CRC progression through either EZH2/KLF2 and miR-149-5p/CUL4A pathways [58]. There was L22NC03-N64E9.1 up regulation in CRC tissues that was correlated with CRC progression. L22NC03-N64E9.1 induced CRC cell proliferation through down regulation of KLF2 via interacting with EZH2 [59].
The p53 is a tumor suppressor that plays an important role in mediating cell cycle arrest, apoptosis, and genomic stability [60]. It inhibits tumor progression via mediating transcription of different downstream target genes which are participated in apoptosis and cell-cycle arrest [61]. Several studies found that simvastatin had therapeutic influence on several types of cancers by NF-kB, AKT, JNK, and CASP3/Bcl-2/cIAP mediated apoptosis [6265]. Simvastatin remarkably up regulated KLF2 in p53-muted colon cancer cells. KLF2 was demonstrated to intervene in the anti-proliferative impact and anti-metastasis consequence of simvastatin on mutp53 colon cancer cells. Anti-proliferative effects of KLF2 were revealed by p21 up regulation in mutp53 cancer cells [66].
CDKN2B belongs to the cyclin-associated kinase inhibitors that may form a complex with CDK4 or CDK6 and inhibits the activation of the cyclin-dependent kinase to suppress cell cycle. There was significant SNHG1 up regulation in CRC tissues that was associated with poor prognosis. SNHG1 up regulated the CCND2 through the miR-154-5p sponging. SNHG1 interacted with EZH2 for a PRC2-associated down regulation of KLF2 and CDKN2B [67]. HOXA-AS2 induced CRC cell proliferation by promotion of cell proliferation while inhibition of apoptosis. HOXA-AS2 epigenetically suppressed the p21 and KLF2 transcription via interacting with EZH2 and LSD1 [68].
HIF-1α is an important modulator of hypoxic response in cancer cells [69]. Accumulating evidence revealed that hypoxia plays a critical role in tumor progression, angiogenesis, distant metastasis, and cancer therapy [70, 71]. It has been demonstrated that HIF-1α can interact with the Notch target gene to regulate its signaling in cancer stem cells [72]. Notch-1 induces tumorigenesis in CRC and preserves cells from apoptosis [73]. KLF2 repressed CRC cell growth through suppressing the HIF-1α/ Notch-1 axis [74]. Exosomal miR-25-3p intervened in the construction of a pre-metastatic niche in nude mice through promotion of the vascular permeability and subsequent CRC metastasis. MiR-25-3p targeted the KLF2 and KLF4 in HUVECs that resulted in ZO-1, occludin, and Claudin5 down regulations while VEGFR2 up regulation [75].

Lung cancer

KLF2 inhibits the leukemia cell growth by p21 up regulation [76], while down regulates the Wee1 to promote apoptosis [77]. WW domain-containing protein 1 (WWP1) induces the ubiquitination and degradation of KLF2 [78]. Smurf1 plays important roles in regulating cell polarity and tumor progression via mediating BMP-Smad, RhoA signaling pathways [79, 80]. WWP1 and Smurf1/2 have been also demonstrated to mediate Smads degradation in TGF-b signaling pathway [81]. Smurf1 as the HECT-type ubiquitin ligase might promote the KLF2 degradation in lung tumor cells [13]. There were significant KLF2 down regulations in non small-cell lung cancer (NSCLC) tissues that was correlated with tumor size, tumor stage, lymphatic metastasis, and survival. KLF2 repressed NSCLC cell growth via p21 and p15 targeting [82]. There was LINC01133 up regulation in NSCLC cells that was correlated with poor prognosis. LINC01133 had an oncogenic role in NSCLC cells through associating with EZH2 and LSD1, and KLF2, P21, and CDH1 down regulations. LINC01133 promoted EMT via CDH1 down regulation in NSCLC cells [83]. It has been indicated that KLF2 was notably downregulated in NSCLC tissue samples that was correlated with NSCLC lymph node metastasis and advanced TNM stage. KLF2 remarkably inhibited tumor cell viability while induced apoptosis through the expression of p15 and p21 in NSCLC cells [84]. There was miR-572 up regulation in NSCLC samples that was significantly correlated with metastasis and prognosis. MiR-572 promoted NSCLC cell proliferation and migration via KLF2 targeting [85].
EZH2 is a catalytic subunit of PRC2 that has a histone methyltransferase function to mediate the H3K27me3 tails of different target genes [86]. LSD1 is a histone demethylase as the core subunit of the REST suppressor which particularly demethylases H3K4me1/2 [87]. LncRNAs can modulate the transcription of target genes by interacting with PRC2 [88]. LATS2 belongs to the LATS family of protein kinases that is involved in spindle construction and genome integrity [89, 90]. It has been documented that there was AGAP2-AS1 up regulation in NSCLC tissues that was correlated with poor prognosis. AGAP2-AS1 acted as an oncogene in NSCLC cells through the LATS2 and KLF2 down regulations. AGAP2-AS1 recruited the EZH2 and LSD1 to down regulate the LATS2 and KLF2 in NSCLC cells [91]. LINC00511 induced the NSCLC progression via LATS2 and KLF2 down regulations followning the recruitment of EZH2 and LSD1 to their promoter sequences, respectively [92]. XIST mediates cell proliferation and invasion via epigenetically inhibiting KLF2 in NSCLC cells. There was XIST up regulation in NSCLC tissues that was associated with poor prognosis and poor overall survival. KLF2 acts as tumor suppressor in NSCLC cells and its’ expression could be repressed through XIST via recruiting EZH2 to its promoter region [93]. MiR-126-5p down regulation was found in lung adenocarcinoma tissues that was correlated with poor prognosis. MiR-126-5p suppressed EZH2 to increase the expression level of KLF2 and decreased BIRC5 expression, that inhibited lung tumor cell proliferation, migration while increased radiosensitivity and apoptosis [94].
The ATP production by glycolysis is lower than oxidative phosphorylation that can be substituted by the higher glucose absorption in tumor cells. Glycolysis also supplies many nutrients to maintain the tumor cell proliferation [95, 96]. Tumor cells have a high level of the glutamine consumption to prepare their required energy for the cell proliferation and growth [97, 98]. It was shown that KLF2 significantly reduced the NSCLC cell proliferation through the reduced glutamine consumption following the glutamine transaminase down regulation [99].

Hepatocellular cancer

Hedgehog (Hh) signaling pathway participates in the promotion of tumor cell growth and metastasis [100]. Sonic (Shh), Desert (Dhh), and Indian (Ihh) encode secretory proteins that act as Hh ligands [101]. The secreted Hh ligand associates with Hip1, Patched 2 (Ptch2), and Ptch1 as transmembrane receptors through dissemination [102]. The Ptch receptor inhibits the effect of Smo in ligand loss. Activation of Smo may induce Gli1 transcription factor [103]. There was KLF2 down regulation in hepatocellular cancer (HCC) tissue that suppressed the cell growth and metastasis by repressing the Hedgehog/Gli1 signaling cascade. KLF2 competed with Gli1 to interact with HDAC1 to inhibit the Hedgehog signal [104].
TGF-β belongs to the TGF-β cytokine family that contains activin, nodal, and bone morphogenetic proteins [105]. TGF-β signaling is activated by TGF-β ligand that promotes Smad2/3 through phosphorylation. Then smad2/3/4 oligomeric complex enters into the nucleus to regulate the TGF-β target genes [106108]. KLF2 has been found to reduce TGFβ/Smad signaling in endothelial cells through Smad7 up regulation [109, 110]. TGF-β promoted the expression of KLF2 in numerous HCC cells. KLF2 suppressed the TGF-β/Smad pathway by provoking the transcriptional activity of Smad3 and Smad4 [14].
FBXL19-AS1 promoted the HCC cell proliferation while inhibited apoptosis via KLF2 down regulation [111]. There was ANRIL up regulation in HCC tissues that was associated with tumor size and stage. It may modulate cell growth by epigenetic inhibition of KLF2 via interacting with PRC2. The expression of ANRIL could also be regulated by SP1. SP1-mediated ANRIL expression modulated the KLF2 expression. ANRIL suppressed KLF2 transcription through cooperating with EZH2 and SUZ12 in HCC cells and recruitment of PRC2 to the KLF2 promoter [112]. DUXAP8 was considerably up regulated in HCC that was correlated with poor prognosis. DUXAP8 induced HCC cell growth by KLF2 down regulation [113]. There was TUG1 up regulation in HCC tissues that was associated with tumor size and BCLC stage. The high expression level of TUG1 was promoted through SP1 and mediated HCC cell growth by epigenetically inhibiting KLF2 via interacting with PRC2 [15]. KLF2 was significantly up regulated in HCC tissues compared to surrounding normal liver tissues. KLF2 induced HCC cell proliferation through c-MYC targeting [114].

Pancreatic cancer

CDK protein family has critical roles in cell cycle and gene expression regulation through interacting with transcription factors to mediate RNA polymerase II activity [115117]. CDK8 as a part of the mediator complex, which contains cyclin C, MED12, and MED13, modulates transcription [118120]. CDK8 induces the β-catenin expression in pancreatic cancer that enters into the nucleus to mediate the activation of angiogenesis-promoting transcription factors [121123]. KLF2 is a critical downstream target of β-catenin that is involved in transcriptional regulation of several target genes [16, 17]. KLF2 was also known as a critical transcriptional modulator of endothelial inflammation, that could suppress VEGF-associated angiogenesis and tissue edema, and its upregulation may elevate the expression level of Semaphorin-3 F (SEMA3F) [124, 125]. The high expression level of CDK8 in pancreatic cancer was considerably associated with poor prognosis. KLF2 inhibited cancer cell angiogenesis. CDK8 was critical for tumor vessel progression in pancreatic carcinoma through the β-catenin-KLF2 axis [126]. KLF2 inhibited the growth and metastasis of pancreatic cancer cells by interaction with b-catenin that suppressed the activity of b-catenin/TCF complex [127].
P15 is a CDK inhibitor that functions through inhibition of CDK activation by CCND resulting in cell cycle G1 arrest. There was significant IRAIN up regulation in pancreatic cancer tissues that was associated with larger tumor sizes, higher TNM stages, and lymph node metastasis. IRAIN induced cell proliferation directly through interacting with EZH2 and LSD1 complexes and suppressing KLF2 and P15 in pancreatic cancer cells [128]. SNHG15 induced pancreatic cancer cell proliferation by repressing P15 and KLF2 expression via EZH2-related H3K27me3 [129]. There was significant DUXAP8 up regulation in pancreatic cancer tissues that was correlated with the larger size of the tumor, advanced clinical stage, and shorter survival rate. DUXAP8 promoted the cell proliferation and tumor progression in pancreatic cancer through p21 and KLF2 down regulations following interaction with EZH2 and LSD1 [130]. KLF2 also induced pancreatic tumor cell senescence through cooperating with FOXO4 and promoting the expression of p21 [131].

Breast, ovarian, and prostate cancers

Wee1 is a tyrosine kinase that regulates cell cycle progression. M-phasepromoting factor (MPF), which is a member of the CDC2 and cyclin B complex, could mediate the G2/M transition through cell cycle. MPF is required for mitosis and is also necessary for DNA damage-associated apoptosis. Wee1 negatively modulates the MPF complex via CDC2 phosphorylation that leads to mitosis deregulation and resistance to apoptosis [132134]. KLF2 recruited the SP1/CPBP to down regulate the WEE1 that sensitized ovarian tumor cells toward the DNA damage mediated apoptosis [77]. It has been suggested that KLF2 can be introduced as a promising target to increase the sensitivity of breast cancer (BCa) to cisplatin via down regulation of WEE1 [135]. KLF2 promoted cell apoptosis while inhibited cell proliferation through p16, p21, and p27 up regulations and CCND1 and survivin down regulations in breast tumor cells [136]. Silencing of LINC00702 decreased the ovarian cancer (OC) cell proliferation. It facilitated the progression of OC through binding to EZH2 to suppress the transcription of KLF2 [137]. SNHG7 inhibition reduced the OC cell growth and invasive. SP1 up regulated the SNHG7 that interacted with EZH2 to inhibit KLF2 expression in ovarian tumor cells [138].
Matrix metalloproteinases (MMPs) are a multifunctional family of zinc-dependent endopeptidases that has a critical role in the degradation of the extracellular matrix (ECM). These extracellular molecules are secreted via cells that supply structural and biochemical associates with normal physiological cells. MMP2 has a critical role in tumor cell migration due to the degradation of collagens [139141]. KLF2 was considerably down regulated in prostate cancer (PCa) tissues in comparison with normal margins. It suppressed the prostate tumor cell invasion through MMP2 inhibition [142]. KLF2 inhibits CRC cell proliferation by promoting HIF-1α/Notch-1 signal pathway [74]. There was GHET1 up regulation in PCa tissues that was negatively linked to KLF2 expression. GHET1 promoted the PCa progression through decreasing the level of KLF2 expression. Accumulating evidences demonstrated that HIF-1α and Notch-1 were also considerably down regulated through GHET1 inhibition in prostate tumor cells [143]. LINC00665 was significantly up regulated in PCa tissues and cell lines. LINC00665 down regulation reduced the PCa cell proliferation and migration. It facilitated the malignant progression of PCa by epigenetically suppressing the expression level of KLF2 via interaction with EZH2 and LSD1 [144].

Myeloma and osteosarcoma

Histone methylation is one of the main regulators of chromatin remodeling and gene expression that is required for several biological activities such as cell proliferation, DNA damage, and stress response [145, 146]. KDM3A belongs to the Jumonji histone demethylases family that acts as a coactivator for the androgen receptor and mediates the elimination of H3K9me1 and H3K9me2 [147]. It has a critical role as a modulator of spermatogenesis, self-renewal, metabolic gene expression, and sex resolvation [147150]. IRF4 belongs to the interferon regulatory family of transcription factors that has a crucial role in mediating the plasma cell differentiation [151153]. Silencing of KDM3A induced apoptosis in myeloma cells through KLF2 and IRF4 up regulations by H3K9 elimination. Down regulation of KLF2 promoted apoptosis and that KLF2 positively regulated the IRF4 promoter [154].
The epidermal growth factor-like protein-7 (EGFL7) stimulates endothelial cell survival, migration, and differentiation [155, 156]. Deregulation of EGFL7 has been frequently observed in multiple types of solid tumors and acute myeloid leukemia [157, 158]. Multiple myeloma (MM) cells can evade drug treatment via integrin-mediated cellular adhesion. ITGB3 promotes MM cell proliferation, protease secretion, and invasion [159161]. EGFL7 is involved in angiogenesis by interaction with ITGB3 and Notch receptors [162]. EGFL7 induced MM growth through ITGB3 and KLF2 up regulations [163].
KLF2 functions as a tumor suppressor by PCNA and CCND1 down regulations while p21 up regulation [164]. It has been documented that SNHG6 was up regulated in osteosarcoma tissues that was correlated with tumor grade and shorter overall survival. Downregulation of SNHG6 repressed cell proliferation while increased apoptosis. There was a negative association between p21, KLF2, and SNHG6 and a positive association between CCND1 and SNHG6. SNHG6 facilitated the osteosarcoma cell proliferation via p21 and KLF2 modulations [165].

Conclusions

It has been reported that the KLF2 has mainly a tumor suppressor function that can be suppressed by the oncogenic ncRNAs following the PRC2 recruitment. On the other hand, ncRNAs can promote the tumor cell growth and proliferation by PRC2 mediated KLF2 targeting. Therefore, KLF2 and its ncRNA regulators can be introduced as appropriate therapeutic and diagnostic targets in cancer patients. Considering that the PRC2 complex as an KLF2 inhibitor has an oncogenic role, PRC2 inhibitors can indirectly inhibit the tumor growth and progression by KLF2 activation. On the other hand, it has been shown that lncRNAs promote PRC2-mediated KLF2 down regulation in tumor cells. Therefore, inhibition of lncRNAs/PRC2 axis can up regulate the KLF2 to reduce tumor progression. Besides the therapeutic importance, lncRNAs/PRC2/KLF2 axis can also be used as a diagnostic/prognostic marker in cancer patients. However, due to the pivotal role of KLF2 and PRC2 in normal cellular processes, targeted therapy against the PRC2/KLF2 axis results in side effects in normal cells and tissues. Therefore, it is required to use the novel methods to deliver the inhibitors of PRC2/KLF2 axis locally and specifically to the tumor tissue in order to reduce the side effects as much as possible. Indeed, further animal studies and clinical trials are needed to be able to use the lncRNAs/PRC2/KLF2 axis for diagnostic and therapeutic purposes in cancer patients.

Acknowledgements

None.

Declarations

Not applicable.
Not applicable.

Competing interests

The authors declare no competing interests.
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Wei G, Wang Y, Yang G, Wang Y, Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics. 2021;11(13):6370–92.PubMedPubMedCentral Wei G, Wang Y, Yang G, Wang Y, Ju R. Recent progress in nanomedicine for enhanced cancer chemotherapy. Theranostics. 2021;11(13):6370–92.PubMedPubMedCentral
2.
Zurück zum Zitat Siegel RL, Miller KD, Fuchs HE, Jemal A, Cancer Statistics. 2021. CA Cancer J Clin. 2021;71(1):7–33. Siegel RL, Miller KD, Fuchs HE, Jemal A, Cancer Statistics. 2021. CA Cancer J Clin. 2021;71(1):7–33.
4.
Zurück zum Zitat Chabner BA, Roberts TG Jr, Timeline. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65–72.PubMed Chabner BA, Roberts TG Jr, Timeline. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5(1):65–72.PubMed
5.
Zurück zum Zitat Moghbeli M. MicroRNAs as the critical regulators of cisplatin resistance in ovarian cancer cells. J Ovarian Res. 2021;14(1):127.PubMedPubMedCentral Moghbeli M. MicroRNAs as the critical regulators of cisplatin resistance in ovarian cancer cells. J Ovarian Res. 2021;14(1):127.PubMedPubMedCentral
6.
Zurück zum Zitat Zangouei AS, Alimardani M, Moghbeli M. MicroRNAs as the critical regulators of doxorubicin resistance in breast tumor cells. Cancer Cell Int. 2021;21(1):213.PubMedPubMedCentral Zangouei AS, Alimardani M, Moghbeli M. MicroRNAs as the critical regulators of doxorubicin resistance in breast tumor cells. Cancer Cell Int. 2021;21(1):213.PubMedPubMedCentral
7.
Zurück zum Zitat Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.PubMed Perez-Herrero E, Fernandez-Medarde A. Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm. 2015;93:52–79.PubMed
8.
Zurück zum Zitat Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet. 2006;7:29–59.PubMed Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Annu Rev Genomics Hum Genet. 2006;7:29–59.PubMed
9.
Zurück zum Zitat Yao S, Fan LY, Lam EW. The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol. 2018;50:77–89.PubMedPubMedCentral Yao S, Fan LY, Lam EW. The FOXO3-FOXM1 axis: a key cancer drug target and a modulator of cancer drug resistance. Semin Cancer Biol. 2018;50:77–89.PubMedPubMedCentral
10.
Zurück zum Zitat Preiss A, Rosenberg UB, Kienlin A, Seifert E, Jäckle H. Molecular genetics of Krüppel, a gene required for segmentation of the Drosophila embryo. Nature. 1985;313(5997):27–32.PubMed Preiss A, Rosenberg UB, Kienlin A, Seifert E, Jäckle H. Molecular genetics of Krüppel, a gene required for segmentation of the Drosophila embryo. Nature. 1985;313(5997):27–32.PubMed
11.
Zurück zum Zitat Miller I, Bieker JJ. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol. 1993;13(5):2776–86.PubMedPubMedCentral Miller I, Bieker JJ. A novel, erythroid cell-specific murine transcription factor that binds to the CACCC element and is related to the Krüppel family of nuclear proteins. Mol Cell Biol. 1993;13(5):2776–86.PubMedPubMedCentral
12.
Zurück zum Zitat Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development. 2017;144(5):737–54.PubMedPubMedCentral Bialkowska AB, Yang VW, Mallipattu SK. Krüppel-like factors in mammalian stem cells and development. Development. 2017;144(5):737–54.PubMedPubMedCentral
13.
Zurück zum Zitat Xie P, Tang Y, Shen S, Wang Y, Xing G, Yin Y, et al. Smurf1 ubiquitin ligase targets Kruppel-like factor KLF2 for ubiquitination and degradation in human lung cancer H1299 cells. Biochem Biophys Res Commun. 2011;407(1):254–9.PubMed Xie P, Tang Y, Shen S, Wang Y, Xing G, Yin Y, et al. Smurf1 ubiquitin ligase targets Kruppel-like factor KLF2 for ubiquitination and degradation in human lung cancer H1299 cells. Biochem Biophys Res Commun. 2011;407(1):254–9.PubMed
14.
Zurück zum Zitat Li Y, Tu S, Zeng Y, Zhang C, Deng T, Luo W, et al. KLF2 inhibits TGF-β-mediated cancer cell motility in hepatocellular carcinoma. Acta Biochim Biophys Sin. 2020;52(5):485–94.PubMed Li Y, Tu S, Zeng Y, Zhang C, Deng T, Luo W, et al. KLF2 inhibits TGF-β-mediated cancer cell motility in hepatocellular carcinoma. Acta Biochim Biophys Sin. 2020;52(5):485–94.PubMed
15.
Zurück zum Zitat Huang M-D, Chen W-M, Qi F-Z, Sun M, Xu T-P, Ma P, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer. 2015;14(1):1–12. Huang M-D, Chen W-M, Qi F-Z, Sun M, Xu T-P, Ma P, et al. Long non-coding RNA TUG1 is up-regulated in hepatocellular carcinoma and promotes cell growth and apoptosis by epigenetically silencing of KLF2. Mol Cancer. 2015;14(1):1–12.
16.
Zurück zum Zitat Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. Circul Res. 2010;107(8):943–52. Dejana E. The role of wnt signaling in physiological and pathological angiogenesis. Circul Res. 2010;107(8):943–52.
17.
Zurück zum Zitat Phng L-K, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, et al. Nrarp coordinates endothelial notch and wnt signaling to control vessel density in angiogenesis. Dev Cell. 2009;16(1):70–82.PubMedPubMedCentral Phng L-K, Potente M, Leslie JD, Babbage J, Nyqvist D, Lobov I, et al. Nrarp coordinates endothelial notch and wnt signaling to control vessel density in angiogenesis. Dev Cell. 2009;16(1):70–82.PubMedPubMedCentral
18.
19.
Zurück zum Zitat Nie F, Yu X, Huang M, Wang Y, Xie M, Ma H, et al. Long noncoding RNA ZFAS1 promotes gastric cancer cells proliferation by epigenetically repressing KLF2 and NKD2 expression. Oncotarget. 2017;8(24):38227.PubMed Nie F, Yu X, Huang M, Wang Y, Xie M, Ma H, et al. Long noncoding RNA ZFAS1 promotes gastric cancer cells proliferation by epigenetically repressing KLF2 and NKD2 expression. Oncotarget. 2017;8(24):38227.PubMed
20.
Zurück zum Zitat Li X, Li Z, Liu Z, Xiao J, Yu S, Song Y, Correction. Long non-coding RNA DLEU1 predicts poor prognosis of gastric cancer and contributes to cell proliferation by epigenetically suppressing KLF2. Cancer Gene Ther. 2022;29(6):873.PubMed Li X, Li Z, Liu Z, Xiao J, Yu S, Song Y, Correction. Long non-coding RNA DLEU1 predicts poor prognosis of gastric cancer and contributes to cell proliferation by epigenetically suppressing KLF2. Cancer Gene Ther. 2022;29(6):873.PubMed
21.
Zurück zum Zitat Zhang W, Levi L, Banerjee P, Jain M, Noy N. Kruppel-like factor 2 suppresses mammary carcinoma growth by regulating retinoic acid signaling. Oncotarget. 2015;6(34):35830.PubMedPubMedCentral Zhang W, Levi L, Banerjee P, Jain M, Noy N. Kruppel-like factor 2 suppresses mammary carcinoma growth by regulating retinoic acid signaling. Oncotarget. 2015;6(34):35830.PubMedPubMedCentral
22.
Zurück zum Zitat Zou K, Lu X, Ye K, Wang C, You T, Chen J. Kruppel-like factor 2 promotes cell proliferation in hepatocellular carcinoma through up-regulation of c-myc. Cancer Biol Ther. 2016;17(1):20–6.PubMedPubMedCentral Zou K, Lu X, Ye K, Wang C, You T, Chen J. Kruppel-like factor 2 promotes cell proliferation in hepatocellular carcinoma through up-regulation of c-myc. Cancer Biol Ther. 2016;17(1):20–6.PubMedPubMedCentral
23.
Zurück zum Zitat Li H, Cai Q, Wu H, Vathipadiekal V, Dobbin ZC, Li T, et al. SUZ12 promotes human epithelial ovarian Cancer by suppressing apoptosis via silencing HRKSUZ12 promotes EOC via silencing HRK. Mol Cancer Res. 2012;10(11):1462–72.PubMedPubMedCentral Li H, Cai Q, Wu H, Vathipadiekal V, Dobbin ZC, Li T, et al. SUZ12 promotes human epithelial ovarian Cancer by suppressing apoptosis via silencing HRKSUZ12 promotes EOC via silencing HRK. Mol Cancer Res. 2012;10(11):1462–72.PubMedPubMedCentral
24.
Zurück zum Zitat Martín-Pérez D, Sánchez E, Maestre L, Suela J, Vargiu P, Di Lisio L, et al. Deregulated expression of the polycomb-group protein SUZ12 target genes characterizes mantle cell lymphoma. Am J Pathol. 2010;177(2):930–42.PubMedPubMedCentral Martín-Pérez D, Sánchez E, Maestre L, Suela J, Vargiu P, Di Lisio L, et al. Deregulated expression of the polycomb-group protein SUZ12 target genes characterizes mantle cell lymphoma. Am J Pathol. 2010;177(2):930–42.PubMedPubMedCentral
25.
Zurück zum Zitat Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010;39(5):761–72.PubMedPubMedCentral Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K. Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell. 2010;39(5):761–72.PubMedPubMedCentral
26.
Zurück zum Zitat Xia R, Jin F-y, Lu K, Wan L, Xie M, Xu T-p, et al. SUZ12 promotes gastric cancer cell proliferation and metastasis by regulating KLF2 and E-cadherin. Tumor Biology. 2015;36(7):5341–51.PubMed Xia R, Jin F-y, Lu K, Wan L, Xie M, Xu T-p, et al. SUZ12 promotes gastric cancer cell proliferation and metastasis by regulating KLF2 and E-cadherin. Tumor Biology. 2015;36(7):5341–51.PubMed
27.
Zurück zum Zitat Lee MG, Wynder C, Cooch N, Shiekhattar R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature. 2005;437(7057):432–5.PubMed Lee MG, Wynder C, Cooch N, Shiekhattar R. An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature. 2005;437(7057):432–5.PubMed
28.
Zurück zum Zitat Shi Y-J, Matson C, Lan F, Iwase S, Baba T, Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell. 2005;19(6):857–64.PubMed Shi Y-J, Matson C, Lan F, Iwase S, Baba T, Shi Y. Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell. 2005;19(6):857–64.PubMed
29.
Zurück zum Zitat Adamo A, Sesé B, Boue S, Castaño J, Paramonov I, Barrero MJ, et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol. 2011;13(6):652–9.PubMed Adamo A, Sesé B, Boue S, Castaño J, Paramonov I, Barrero MJ, et al. LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol. 2011;13(6):652–9.PubMed
30.
Zurück zum Zitat McDonald OG, Wu H, Timp W, Feinberg AP. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol. 2011;18(8):867–74.PubMedPubMedCentral McDonald OG, Wu H, Timp W, Feinberg AP. Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition. Nat Struct Mol Biol. 2011;18(8):867–74.PubMedPubMedCentral
31.
Zurück zum Zitat Lv T, Yuan D, Miao X, Lv Y, Zhan P, Shen X, et al. Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS ONE. 2012;7(4):e35065.PubMedPubMedCentral Lv T, Yuan D, Miao X, Lv Y, Zhan P, Shen X, et al. Over-expression of LSD1 promotes proliferation, migration and invasion in non-small cell lung cancer. PLoS ONE. 2012;7(4):e35065.PubMedPubMedCentral
32.
Zurück zum Zitat Fang R, Xu J, Lin H, Xu X, Tian F. The histone demethylase lysine-specific demethylase-1–mediated epigenetic silence of KLF2 contributes to gastric cancer cell proliferation, migration, and invasion. Tumor Biology. 2017;39(4):1010428317698356.PubMed Fang R, Xu J, Lin H, Xu X, Tian F. The histone demethylase lysine-specific demethylase-1–mediated epigenetic silence of KLF2 contributes to gastric cancer cell proliferation, migration, and invasion. Tumor Biology. 2017;39(4):1010428317698356.PubMed
33.
Zurück zum Zitat Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.PubMed Fatica A, Bozzoni I. Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21.PubMed
34.
Zurück zum Zitat Payer B, Lee JT. Coupling of X-chromosome reactivation with the pluripotent stem cell state. RNA Biol. 2014;11(7):798–807.PubMedPubMedCentral Payer B, Lee JT. Coupling of X-chromosome reactivation with the pluripotent stem cell state. RNA Biol. 2014;11(7):798–807.PubMedPubMedCentral
35.
Zurück zum Zitat Flynn RA, Chang HY. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell. 2014;14(6):752–61.PubMedPubMedCentral Flynn RA, Chang HY. Long noncoding RNAs in cell-fate programming and reprogramming. Cell Stem Cell. 2014;14(6):752–61.PubMedPubMedCentral
36.
Zurück zum Zitat Fatima R, Akhade VS, Pal D, Rao SM. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Mol Cell Ther. 2015;3(1):1–19. Fatima R, Akhade VS, Pal D, Rao SM. Long noncoding RNAs in development and cancer: potential biomarkers and therapeutic targets. Mol Cell Ther. 2015;3(1):1–19.
37.
Zurück zum Zitat Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett. 2021;26(1):39.PubMedPubMedCentral Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett. 2021;26(1):39.PubMedPubMedCentral
38.
Zurück zum Zitat Zhang F, Zhang L, Zhang C. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies. Tumor Biology. 2016;37(1):163–75.PubMed Zhang F, Zhang L, Zhang C. Long noncoding RNAs and tumorigenesis: genetic associations, molecular mechanisms, and therapeutic strategies. Tumor Biology. 2016;37(1):163–75.PubMed
39.
Zurück zum Zitat Rahmani Z, Mojarrad M, Moghbeli M. Long non-coding RNAs as the critical factors during tumor progressions among iranian population: an overview. Cell Biosci. 2020;10:6.PubMedPubMedCentral Rahmani Z, Mojarrad M, Moghbeli M. Long non-coding RNAs as the critical factors during tumor progressions among iranian population: an overview. Cell Biosci. 2020;10:6.PubMedPubMedCentral
40.
Zurück zum Zitat Xu Q, Qiao S, Liu L, Xu J, Yang L, Chen X, et al. LINC00202 attenuates the progression of gastric cancer via suppressing expression level of KLF2. J BU ON: Official J Balkan Union Oncol. 2021;26(2):506–12. Xu Q, Qiao S, Liu L, Xu J, Yang L, Chen X, et al. LINC00202 attenuates the progression of gastric cancer via suppressing expression level of KLF2. J BU ON: Official J Balkan Union Oncol. 2021;26(2):506–12.
41.
Zurück zum Zitat Wang L, Meng D, Wang Y, Hu J. Long non-coding RNA LINC01296 promotes esophageal squamous cell carcinoma cell proliferation and invasion by epigenetic suppression of KLF2. Am J Cancer Res. 2018;8(10):2020.PubMedPubMedCentral Wang L, Meng D, Wang Y, Hu J. Long non-coding RNA LINC01296 promotes esophageal squamous cell carcinoma cell proliferation and invasion by epigenetic suppression of KLF2. Am J Cancer Res. 2018;8(10):2020.PubMedPubMedCentral
42.
Zurück zum Zitat Yuan X, Li J, Cao Y, Jie Z, Zeng Y. Long non-coding RNA AFAP1-AS1 promotes proliferation and migration of gastric cancer by downregulating KLF2. Eur Rev Med Pharmacol Sci. 2020;24:673–80.PubMed Yuan X, Li J, Cao Y, Jie Z, Zeng Y. Long non-coding RNA AFAP1-AS1 promotes proliferation and migration of gastric cancer by downregulating KLF2. Eur Rev Med Pharmacol Sci. 2020;24:673–80.PubMed
43.
Zurück zum Zitat Forghanifard MM, Rad A, Farshchian M, Khaleghizadeh M, Gholamin M, Moghbeli M, et al. TWIST1 upregulates the MAGEA4 oncogene. Mol Carcinog. 2017;56(3):877–85.PubMed Forghanifard MM, Rad A, Farshchian M, Khaleghizadeh M, Gholamin M, Moghbeli M, et al. TWIST1 upregulates the MAGEA4 oncogene. Mol Carcinog. 2017;56(3):877–85.PubMed
44.
Zurück zum Zitat Hamidi AA, Khalili-Tanha G, Nasrpour Navaei Z, Moghbeli M. Long non-coding RNAs as the critical regulators of epithelial mesenchymal transition in colorectal tumor cells: an overview. Cancer Cell Int. 2022;22(1):71.PubMedPubMedCentral Hamidi AA, Khalili-Tanha G, Nasrpour Navaei Z, Moghbeli M. Long non-coding RNAs as the critical regulators of epithelial mesenchymal transition in colorectal tumor cells: an overview. Cancer Cell Int. 2022;22(1):71.PubMedPubMedCentral
45.
Zurück zum Zitat Zlotnik A. New insights on the role of CXCR4 in cancer metastasis. J Pathology: J Pathological Soc Great Br Irel. 2008;215(3):211–3. Zlotnik A. New insights on the role of CXCR4 in cancer metastasis. J Pathology: J Pathological Soc Great Br Irel. 2008;215(3):211–3.
46.
Zurück zum Zitat Yin H, Wang Y, Chen W, Zhong S, Liu Z, Zhao J. Drug-resistant CXCR4-positive cells have the molecular characteristics of EMT in NSCLC. Gene. 2016;594(1):23–9.PubMed Yin H, Wang Y, Chen W, Zhong S, Liu Z, Zhao J. Drug-resistant CXCR4-positive cells have the molecular characteristics of EMT in NSCLC. Gene. 2016;594(1):23–9.PubMed
47.
Zurück zum Zitat Qin SY, Li B, Chen M, Qin MQ, Liu JM, Lv QL. MiR-32‐5p promoted epithelial‐to‐mesenchymal transition of oral squamous cell carcinoma cells via regulating the KLF2/CXCR4 pathway. Kaohsiung J Med Sci. 2022;38(2):120–8.PubMed Qin SY, Li B, Chen M, Qin MQ, Liu JM, Lv QL. MiR-32‐5p promoted epithelial‐to‐mesenchymal transition of oral squamous cell carcinoma cells via regulating the KLF2/CXCR4 pathway. Kaohsiung J Med Sci. 2022;38(2):120–8.PubMed
48.
Zurück zum Zitat Yao H, Ashihara E, Maekawa T. Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets. 2011;15(7):873–87.PubMed Yao H, Ashihara E, Maekawa T. Targeting the Wnt/β-catenin signaling pathway in human cancers. Expert Opin Ther Targets. 2011;15(7):873–87.PubMed
49.
Zurück zum Zitat Huang L, Wu R-L, Xu A-M. Epithelial-mesenchymal transition in gastric cancer. Am J Translational Res. 2015;7(11):2141. Huang L, Wu R-L, Xu A-M. Epithelial-mesenchymal transition in gastric cancer. Am J Translational Res. 2015;7(11):2141.
50.
Zurück zum Zitat Liu Z, Chen Z, Fan R, Jiang B, Chen X, Chen Q, et al. Over-expressed long noncoding RNA HOXA11-AS promotes cell cycle progression and metastasis in gastric cancer. Mol Cancer. 2017;16(1):1–9. Liu Z, Chen Z, Fan R, Jiang B, Chen X, Chen Q, et al. Over-expressed long noncoding RNA HOXA11-AS promotes cell cycle progression and metastasis in gastric cancer. Mol Cancer. 2017;16(1):1–9.
51.
Zurück zum Zitat Zangouei AS, Barjasteh AH, Rahimi HR, Mojarrad M, Moghbeli M. Role of tyrosine kinases in bladder cancer progression: an overview. Cell Commun Signal. 2020;18(1):127.PubMedPubMedCentral Zangouei AS, Barjasteh AH, Rahimi HR, Mojarrad M, Moghbeli M. Role of tyrosine kinases in bladder cancer progression: an overview. Cell Commun Signal. 2020;18(1):127.PubMedPubMedCentral
52.
Zurück zum Zitat Moghbeli M, Makhdoumi Y, Soltani Delgosha M, Aarabi A, Dadkhah E, Memar B, et al. ErbB1 and ErbB3 co-over expression as a prognostic factor in gastric cancer. Biol Res. 2019;52(1):2.PubMedPubMedCentral Moghbeli M, Makhdoumi Y, Soltani Delgosha M, Aarabi A, Dadkhah E, Memar B, et al. ErbB1 and ErbB3 co-over expression as a prognostic factor in gastric cancer. Biol Res. 2019;52(1):2.PubMedPubMedCentral
53.
Zurück zum Zitat Navaei ZN, Khalili-Tanha G, Zangouei AS, Abbaszadegan MR, Moghbeli M. PI3K/AKT signaling pathway as a critical regulator of cisplatin response in tumor cells. Oncol Res. 2021;29(4):235–50.PubMed Navaei ZN, Khalili-Tanha G, Zangouei AS, Abbaszadegan MR, Moghbeli M. PI3K/AKT signaling pathway as a critical regulator of cisplatin response in tumor cells. Oncol Res. 2021;29(4):235–50.PubMed
54.
Zurück zum Zitat Wang C, Li L, Duan Q, Wang Q, Chen J. Krüppel-like factor 2 suppresses human gastric tumorigenesis through inhibiting PTEN/AKT signaling. Oncotarget. 2017;8(59):100358.PubMedPubMedCentral Wang C, Li L, Duan Q, Wang Q, Chen J. Krüppel-like factor 2 suppresses human gastric tumorigenesis through inhibiting PTEN/AKT signaling. Oncotarget. 2017;8(59):100358.PubMedPubMedCentral
55.
Zurück zum Zitat Wang Y, Wen M, Kwon Y, Xu Y, Liu Y, Zhang P, et al. CUL4A induces epithelial–mesenchymal transition and promotes cancer metastasis by regulating ZEB1 expression. Cancer Res. 2014;74(2):520–31.PubMed Wang Y, Wen M, Kwon Y, Xu Y, Liu Y, Zhang P, et al. CUL4A induces epithelial–mesenchymal transition and promotes cancer metastasis by regulating ZEB1 expression. Cancer Res. 2014;74(2):520–31.PubMed
56.
Zurück zum Zitat Ren W, Sun Z, Zeng Q, Han S, Zhang Q, Jiang L. Aberrant expression of CUL4A is associated with IL-6/STAT3 activation in colorectal cancer progression. Arch Med Res. 2016;47(3):214–22.PubMed Ren W, Sun Z, Zeng Q, Han S, Zhang Q, Jiang L. Aberrant expression of CUL4A is associated with IL-6/STAT3 activation in colorectal cancer progression. Arch Med Res. 2016;47(3):214–22.PubMed
57.
Zurück zum Zitat Sharma P, Nag A. CUL4A ubiquitin ligase: a promising drug target for cancer and other human diseases. Open Biology. 2014;4(2):130217.PubMedPubMedCentral Sharma P, Nag A. CUL4A ubiquitin ligase: a promising drug target for cancer and other human diseases. Open Biology. 2014;4(2):130217.PubMedPubMedCentral
58.
Zurück zum Zitat Lian Y, Yan C, Xu H, Yang J, Yu Y, Zhou J, et al. A novel lncRNA, LINC00460, affects cell proliferation and apoptosis by regulating KLF2 and CUL4A expression in colorectal cancer. Mol Therapy-Nucleic Acids. 2018;12:684–97. Lian Y, Yan C, Xu H, Yang J, Yu Y, Zhou J, et al. A novel lncRNA, LINC00460, affects cell proliferation and apoptosis by regulating KLF2 and CUL4A expression in colorectal cancer. Mol Therapy-Nucleic Acids. 2018;12:684–97.
59.
Zurück zum Zitat Lian Y, Yan C, Ding J, Xia R, Ma Z, Hui B, et al. A novel lncRNA, LL22NC03-N64E9. 1, represses KLF2 transcription through binding with EZH2 in colorectal cancer. Oncotarget. 2017;8(35):59435.PubMedPubMedCentral Lian Y, Yan C, Ding J, Xia R, Ma Z, Hui B, et al. A novel lncRNA, LL22NC03-N64E9. 1, represses KLF2 transcription through binding with EZH2 in colorectal cancer. Oncotarget. 2017;8(35):59435.PubMedPubMedCentral
60.
Zurück zum Zitat Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 2016;85:375–404.PubMed Joerger AC, Fersht AR. The p53 pathway: origins, inactivation in cancer, and emerging therapeutic approaches. Annu Rev Biochem. 2016;85:375–404.PubMed
61.
Zurück zum Zitat Labuschagne CF, Zani F, Vousden KH. Control of metabolism by p53–cancer and beyond. Biochim et Biophys Acta (BBA)-Reviews Cancer. 2018;1870(1):32–42. Labuschagne CF, Zani F, Vousden KH. Control of metabolism by p53–cancer and beyond. Biochim et Biophys Acta (BBA)-Reviews Cancer. 2018;1870(1):32–42.
62.
Zurück zum Zitat Ghosh-Choudhury N, Mandal CC, Ghosh-Choudhury N, Choudhury GG. Simvastatin induces derepression of PTEN expression via NFκB to inhibit breast cancer cell growth. Cell Signal. 2010;22(5):749–58.PubMedPubMedCentral Ghosh-Choudhury N, Mandal CC, Ghosh-Choudhury N, Choudhury GG. Simvastatin induces derepression of PTEN expression via NFκB to inhibit breast cancer cell growth. Cell Signal. 2010;22(5):749–58.PubMedPubMedCentral
63.
Zurück zum Zitat Fang Z, Tang Y, Fang J, Zhou Z, Xing Z, Guo Z, et al. Simvastatin inhibits renal cancer cell growth and metastasis via AKT/mTOR, ERK and JAK2/STAT3 pathway. PLoS ONE. 2013;8(5):e62823.PubMedPubMedCentral Fang Z, Tang Y, Fang J, Zhou Z, Xing Z, Guo Z, et al. Simvastatin inhibits renal cancer cell growth and metastasis via AKT/mTOR, ERK and JAK2/STAT3 pathway. PLoS ONE. 2013;8(5):e62823.PubMedPubMedCentral
64.
Zurück zum Zitat Cho SJ, Kim JS, Kim JM, Lee JY, Jung HC, Song IS. Simvastatin induces apoptosis in human colon cancer cells and in tumor xenografts, and attenuates colitis-associated colon cancer in mice. Int J Cancer. 2008;123(4):951–7.PubMed Cho SJ, Kim JS, Kim JM, Lee JY, Jung HC, Song IS. Simvastatin induces apoptosis in human colon cancer cells and in tumor xenografts, and attenuates colitis-associated colon cancer in mice. Int J Cancer. 2008;123(4):951–7.PubMed
65.
Zurück zum Zitat Gopalan A, Yu W, Sanders BG, Kline K. Simvastatin inhibition of mevalonate pathway induces apoptosis in human breast cancer cells via activation of JNK/CHOP/DR5 signaling pathway. Cancer Lett. 2013;329(1):9–16.PubMed Gopalan A, Yu W, Sanders BG, Kline K. Simvastatin inhibition of mevalonate pathway induces apoptosis in human breast cancer cells via activation of JNK/CHOP/DR5 signaling pathway. Cancer Lett. 2013;329(1):9–16.PubMed
66.
Zurück zum Zitat Lu L, Huang W, Hu W, Jiang L, Li Y, Wu X, et al. Kruppel-like factor 2 mediated anti-proliferative and anti-metastasis effects of simvastatin in p53 mutant colon cancer. Biochem Biophys Res Commun. 2019;511(4):772–9.PubMed Lu L, Huang W, Hu W, Jiang L, Li Y, Wu X, et al. Kruppel-like factor 2 mediated anti-proliferative and anti-metastasis effects of simvastatin in p53 mutant colon cancer. Biochem Biophys Res Commun. 2019;511(4):772–9.PubMed
67.
Zurück zum Zitat Xu M, Chen X, Lin K, Zeng K, Liu X, Pan B, et al. The long noncoding RNA SNHG1 regulates colorectal cancer cell growth through interactions with EZH2 and miR-154-5p. Mol Cancer. 2018;17(1):1–16. Xu M, Chen X, Lin K, Zeng K, Liu X, Pan B, et al. The long noncoding RNA SNHG1 regulates colorectal cancer cell growth through interactions with EZH2 and miR-154-5p. Mol Cancer. 2018;17(1):1–16.
68.
Zurück zum Zitat Ding J, Xie M, Lian Y, Zhu Y, Peng P, Wang J, et al. Long noncoding RNA HOXA-AS2 represses P21 and KLF2 expression transcription by binding with EZH2, LSD1 in colorectal cancer. Oncogenesis. 2017;6(1):e288–e.PubMedPubMedCentral Ding J, Xie M, Lian Y, Zhu Y, Peng P, Wang J, et al. Long noncoding RNA HOXA-AS2 represses P21 and KLF2 expression transcription by binding with EZH2, LSD1 in colorectal cancer. Oncogenesis. 2017;6(1):e288–e.PubMedPubMedCentral
69.
Zurück zum Zitat Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.PubMed Semenza GL. Targeting HIF-1 for cancer therapy. Nat Rev Cancer. 2003;3(10):721–32.PubMed
70.
Zurück zum Zitat Shen G, Li X, Jia Y-f, Piazza GA, Xi Y. Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol Sin. 2013;34(3):336–41.PubMedPubMedCentral Shen G, Li X, Jia Y-f, Piazza GA, Xi Y. Hypoxia-regulated microRNAs in human cancer. Acta Pharmacol Sin. 2013;34(3):336–41.PubMedPubMedCentral
71.
Zurück zum Zitat Tian Q, Xue Y, Zheng W, Sun R, Ji W, Wang X, et al. Overexpression of hypoxia-inducible factor 1α induces migration and invasion through notch signaling. Int J Oncol. 2015;47(2):728–38.PubMed Tian Q, Xue Y, Zheng W, Sun R, Ji W, Wang X, et al. Overexpression of hypoxia-inducible factor 1α induces migration and invasion through notch signaling. Int J Oncol. 2015;47(2):728–38.PubMed
72.
Zurück zum Zitat Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell. 2011;8(4):399–411.PubMedPubMedCentral Wang Y, Liu Y, Malek SN, Zheng P, Liu Y. Targeting HIF1α eliminates cancer stem cells in hematological malignancies. Cell Stem Cell. 2011;8(4):399–411.PubMedPubMedCentral
73.
Zurück zum Zitat Meng RD, Shelton CC, Li Y-M, Qin L-X, Notterman D, Paty PB, et al. γ-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 2009;69(2):573–82.PubMedPubMedCentral Meng RD, Shelton CC, Li Y-M, Qin L-X, Notterman D, Paty PB, et al. γ-Secretase inhibitors abrogate oxaliplatin-induced activation of the Notch-1 signaling pathway in colon cancer cells resulting in enhanced chemosensitivity. Cancer Res. 2009;69(2):573–82.PubMedPubMedCentral
74.
Zurück zum Zitat Wang H-G, Cao B, Zhang L-X, Song N, Li H, Zhao W-Z, et al. KLF2 inhibits cell growth via regulating HIF-1α/Notch-1 signal pathway in human colorectal cancer HCT116 cells. Oncol Rep. 2017;38(1):584–90.PubMed Wang H-G, Cao B, Zhang L-X, Song N, Li H, Zhao W-Z, et al. KLF2 inhibits cell growth via regulating HIF-1α/Notch-1 signal pathway in human colorectal cancer HCT116 cells. Oncol Rep. 2017;38(1):584–90.PubMed
75.
Zurück zum Zitat Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, et al. Cancer-derived exosomal mir-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):1–14. Zeng Z, Li Y, Pan Y, Lan X, Song F, Sun J, et al. Cancer-derived exosomal mir-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat Commun. 2018;9(1):1–14.
76.
Zurück zum Zitat Wu J, Lingrel JB. KLF2 inhibits Jurkat T leukemia cell growth via upregulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1. Oncogene. 2004;23(49):8088–96.PubMed Wu J, Lingrel JB. KLF2 inhibits Jurkat T leukemia cell growth via upregulation of cyclin-dependent kinase inhibitor p21WAF1/CIP1. Oncogene. 2004;23(49):8088–96.PubMed
77.
Zurück zum Zitat Wang F, Zhu Y, Huang Y, McAvoy S, Johnson WB, Cheung TH, et al. Transcriptional repression of WEE1 by Kruppel-like factor 2 is involved in DNA damage-induced apoptosis. Oncogene. 2005;24(24):3875–85.PubMed Wang F, Zhu Y, Huang Y, McAvoy S, Johnson WB, Cheung TH, et al. Transcriptional repression of WEE1 by Kruppel-like factor 2 is involved in DNA damage-induced apoptosis. Oncogene. 2005;24(24):3875–85.PubMed
78.
Zurück zum Zitat Zhang X, Srinivasan SV, Lingrel JB. WWP1-dependent ubiquitination and degradation of the lung Krüppel-like factor, KLF2. Biochem Biophys Res Commun. 2004;316(1):139–48.PubMed Zhang X, Srinivasan SV, Lingrel JB. WWP1-dependent ubiquitination and degradation of the lung Krüppel-like factor, KLF2. Biochem Biophys Res Commun. 2004;316(1):139–48.PubMed
79.
Zurück zum Zitat Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999;400(6745):687–93.PubMed Zhu H, Kavsak P, Abdollah S, Wrana JL, Thomsen GH. A SMAD ubiquitin ligase targets the BMP pathway and affects embryonic pattern formation. Nature. 1999;400(6745):687–93.PubMed
80.
Zurück zum Zitat Wang H-R, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science. 2003;302(5651):1775–9.PubMed Wang H-R, Zhang Y, Ozdamar B, Ogunjimi AA, Alexandrova E, Thomsen GH, et al. Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science. 2003;302(5651):1775–9.PubMed
81.
Zurück zum Zitat Morén A, Imamura T, Miyazono K, Heldin C-H, Moustakas A. Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem. 2005;280(23):22115–23.PubMed Morén A, Imamura T, Miyazono K, Heldin C-H, Moustakas A. Degradation of the tumor suppressor Smad4 by WW and HECT domain ubiquitin ligases. J Biol Chem. 2005;280(23):22115–23.PubMed
82.
Zurück zum Zitat Yin L, Wang J-p, Xu T-p, Chen W-m, Huang M-d, Xia R, et al. Downregulation of Kruppel-like factor 2 is associated with poor prognosis for nonsmall-cell lung cancer. Tumor Biology. 2015;36(4):3075–84.PubMed Yin L, Wang J-p, Xu T-p, Chen W-m, Huang M-d, Xia R, et al. Downregulation of Kruppel-like factor 2 is associated with poor prognosis for nonsmall-cell lung cancer. Tumor Biology. 2015;36(4):3075–84.PubMed
83.
Zurück zum Zitat Zang C, Nie F-q, Wang Q, Sun M, Li W, He J, et al. Long non-coding RNA LINC01133 represses KLF2, P21 and E-cadherin transcription through binding with EZH2, LSD1 in non small cell lung cancer. Oncotarget. 2016;7(10):11696.PubMedPubMedCentral Zang C, Nie F-q, Wang Q, Sun M, Li W, He J, et al. Long non-coding RNA LINC01133 represses KLF2, P21 and E-cadherin transcription through binding with EZH2, LSD1 in non small cell lung cancer. Oncotarget. 2016;7(10):11696.PubMedPubMedCentral
84.
Zurück zum Zitat Jiang W, Xu X, Deng S, Luo J, Xu H, Wang C, et al. Methylation of kruppel-like factor 2 (KLF2) associates with its expression and non-small cell lung cancer progression. Am J Translational Res. 2017;9(4):2024. Jiang W, Xu X, Deng S, Luo J, Xu H, Wang C, et al. Methylation of kruppel-like factor 2 (KLF2) associates with its expression and non-small cell lung cancer progression. Am J Translational Res. 2017;9(4):2024.
85.
Zurück zum Zitat Sun B, Zhao J, Shao Z. MiR-572 promotes the development of non-small cell lung cancer by targeting KLF2. Eur Rev Med Pharmacol Sci. 2022;26(9):3083–90.PubMed Sun B, Zhao J, Shao Z. MiR-572 promotes the development of non-small cell lung cancer by targeting KLF2. Eur Rev Med Pharmacol Sci. 2022;26(9):3083–90.PubMed
86.
Zurück zum Zitat Völkel P, Dupret B, Le Bourhis X, Angrand P-O. Diverse involvement of EZH2 in cancer epigenetics. Am J Translational Res. 2015;7(2):175. Völkel P, Dupret B, Le Bourhis X, Angrand P-O. Diverse involvement of EZH2 in cancer epigenetics. Am J Translational Res. 2015;7(2):175.
87.
88.
Zurück zum Zitat Sun C-C, Li S-J, Li G, Hua R-X, Zhou X-H, Li D-J. Long intergenic noncoding RNA 00511 acts as an oncogene in non–small-cell lung cancer by binding to EZH2 and suppressing p57. Mol Therapy-Nucleic Acids. 2016;5:e385. Sun C-C, Li S-J, Li G, Hua R-X, Zhou X-H, Li D-J. Long intergenic noncoding RNA 00511 acts as an oncogene in non–small-cell lung cancer by binding to EZH2 and suppressing p57. Mol Therapy-Nucleic Acids. 2016;5:e385.
89.
Zurück zum Zitat Abe Y, Ohsugi M, Haraguchi K, Fujimoto J, Yamamoto T. LATS2–Ajuba complex regulates γ-tubulin recruitment to centrosomes and spindle organization during mitosis. FEBS Lett. 2006;580(3):782–8.PubMed Abe Y, Ohsugi M, Haraguchi K, Fujimoto J, Yamamoto T. LATS2–Ajuba complex regulates γ-tubulin recruitment to centrosomes and spindle organization during mitosis. FEBS Lett. 2006;580(3):782–8.PubMed
90.
Zurück zum Zitat McPherson JP, Tamblyn L, Elia A, Migon E, Shehabeldin A, Matysiak-Zablocki E, et al. Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO J. 2004;23(18):3677–88.PubMedPubMedCentral McPherson JP, Tamblyn L, Elia A, Migon E, Shehabeldin A, Matysiak-Zablocki E, et al. Lats2/Kpm is required for embryonic development, proliferation control and genomic integrity. EMBO J. 2004;23(18):3677–88.PubMedPubMedCentral
91.
Zurück zum Zitat Li W, Sun M, Zang C, Ma P, He J, Zhang M, et al. Upregulated long non-coding RNA AGAP2-AS1 represses LATS2 and KLF2 expression through interacting with EZH2 and LSD1 in non-small-cell lung cancer cells. Cell Death Dis. 2016;7(5):e2225–e.PubMedPubMedCentral Li W, Sun M, Zang C, Ma P, He J, Zhang M, et al. Upregulated long non-coding RNA AGAP2-AS1 represses LATS2 and KLF2 expression through interacting with EZH2 and LSD1 in non-small-cell lung cancer cells. Cell Death Dis. 2016;7(5):e2225–e.PubMedPubMedCentral
92.
Zurück zum Zitat Zhu F, Zhang S, Wang L, Wu W, Zhao H. LINC00511 promotes the progression of non-small cell lung cancer through downregulating LATS2 and KLF2 by binding to EZH2 and LSD1. Eur Rev Med Pharmacol Sci. 2019;23(19):8377–90.PubMed Zhu F, Zhang S, Wang L, Wu W, Zhao H. LINC00511 promotes the progression of non-small cell lung cancer through downregulating LATS2 and KLF2 by binding to EZH2 and LSD1. Eur Rev Med Pharmacol Sci. 2019;23(19):8377–90.PubMed
93.
Zurück zum Zitat Fang J, Sun C-C, Gong C. Long noncoding RNA XIST acts as an oncogene in non-small cell lung cancer by epigenetically repressing KLF2 expression. Biochem Biophys Res Commun. 2016;478(2):811–7.PubMed Fang J, Sun C-C, Gong C. Long noncoding RNA XIST acts as an oncogene in non-small cell lung cancer by epigenetically repressing KLF2 expression. Biochem Biophys Res Commun. 2016;478(2):811–7.PubMed
94.
Zurück zum Zitat Han F, Huang D, Meng J, Chu J, Wang M, Chen S. Mir-126‐5p enhances radiosensitivity of lung adenocarcinoma cells by inhibiting EZH2 via the KLF2/BIRC axis. J Cell Mol Med. 2022;26(9):2529–42.PubMedPubMedCentral Han F, Huang D, Meng J, Chu J, Wang M, Chen S. Mir-126‐5p enhances radiosensitivity of lung adenocarcinoma cells by inhibiting EZH2 via the KLF2/BIRC axis. J Cell Mol Med. 2022;26(9):2529–42.PubMedPubMedCentral
95.
Zurück zum Zitat Lu J. The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev. 2019;38(1):157–64.PubMed Lu J. The Warburg metabolism fuels tumor metastasis. Cancer Metastasis Rev. 2019;38(1):157–64.PubMed
96.
Zurück zum Zitat Grasmann G, Smolle E, Olschewski H, Leithner K. Gluconeogenesis in cancer cells–repurposing of a starvation-induced metabolic pathway? Biochim et Biophys Acta (BBA)-Reviews Cancer. 2019;1872(1):24–36. Grasmann G, Smolle E, Olschewski H, Leithner K. Gluconeogenesis in cancer cells–repurposing of a starvation-induced metabolic pathway? Biochim et Biophys Acta (BBA)-Reviews Cancer. 2019;1872(1):24–36.
97.
Zurück zum Zitat Matés JM, Campos-Sandoval JA, Márquez J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2018;1870(2):158–64. Matés JM, Campos-Sandoval JA, Márquez J. Glutaminase isoenzymes in the metabolic therapy of cancer. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer. 2018;1870(2):158–64.
98.
Zurück zum Zitat Scalise M, Pochini L, Galluccio M, Console L, Indiveri C. Glutamine transport and mitochondrial metabolism in cancer cell growth. Front Oncol. 2017;7:306.PubMedPubMedCentral Scalise M, Pochini L, Galluccio M, Console L, Indiveri C. Glutamine transport and mitochondrial metabolism in cancer cell growth. Front Oncol. 2017;7:306.PubMedPubMedCentral
99.
Zurück zum Zitat Xiao S, Jin-Xiang Y, Long T, Xiu-Rong L, Hong G, Jie-Cheng Y, et al. Kruppel-like factor 2 disturb non-small cell lung cancer energy metabolism by inhibited glutamine consumption. J Pharm Pharmacol. 2020;72(6):843–51.PubMed Xiao S, Jin-Xiang Y, Long T, Xiu-Rong L, Hong G, Jie-Cheng Y, et al. Kruppel-like factor 2 disturb non-small cell lung cancer energy metabolism by inhibited glutamine consumption. J Pharm Pharmacol. 2020;72(6):843–51.PubMed
100.
Zurück zum Zitat Shi Y, Sun X, He X. Overexpression of Aristaless-like Homeobox-4 inhibits proliferation, invasion, and EMT in hepatocellular carcinoma cells. Oncol Res. 2017;25(1):11.PubMedPubMedCentral Shi Y, Sun X, He X. Overexpression of Aristaless-like Homeobox-4 inhibits proliferation, invasion, and EMT in hepatocellular carcinoma cells. Oncol Res. 2017;25(1):11.PubMedPubMedCentral
101.
Zurück zum Zitat Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, wnt and hedgehog. Nat Rev Nephrol. 2016;12(7):426–39.PubMedPubMedCentral Edeling M, Ragi G, Huang S, Pavenstädt H, Susztak K. Developmental signalling pathways in renal fibrosis: the roles of Notch, wnt and hedgehog. Nat Rev Nephrol. 2016;12(7):426–39.PubMedPubMedCentral
103.
Zurück zum Zitat di Magliano MP, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer. 2003;3(12):903–11. di Magliano MP, Hebrok M. Hedgehog signalling in cancer formation and maintenance. Nat Rev Cancer. 2003;3(12):903–11.
104.
Zurück zum Zitat Lin J, Tan H, Nie Y, Wu D, Zheng W, Lin W, et al. Krüppel-like factor 2 inhibits hepatocarcinogenesis through negative regulation of the hedgehog pathway. Cancer Sci. 2019;110(4):1220–31.PubMedPubMedCentral Lin J, Tan H, Nie Y, Wu D, Zheng W, Lin W, et al. Krüppel-like factor 2 inhibits hepatocarcinogenesis through negative regulation of the hedgehog pathway. Cancer Sci. 2019;110(4):1220–31.PubMedPubMedCentral
105.
Zurück zum Zitat Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873.PubMedPubMedCentral Morikawa M, Derynck R, Miyazono K. TGF-β and the TGF-β family: context-dependent roles in cell and tissue physiology. Cold Spring Harb Perspect Biol. 2016;8(5):a021873.PubMedPubMedCentral
106.
Zurück zum Zitat Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019;12(570):eaav5183.PubMedPubMedCentral Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019;12(570):eaav5183.PubMedPubMedCentral
107.
Zurück zum Zitat David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19(7):419–35.PubMedPubMedCentral David CJ, Massagué J. Contextual determinants of TGFβ action in development, immunity and cancer. Nat Rev Mol Cell Biol. 2018;19(7):419–35.PubMedPubMedCentral
108.
109.
Zurück zum Zitat Boon RA, Fledderus JO, Volger OL, Van Wanrooij EJ, Pardali E, Weesie F, et al. KLF2 suppresses TGF-β signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler Thromb Vasc Biol. 2007;27(3):532–9.PubMed Boon RA, Fledderus JO, Volger OL, Van Wanrooij EJ, Pardali E, Weesie F, et al. KLF2 suppresses TGF-β signaling in endothelium through induction of Smad7 and inhibition of AP-1. Arterioscler Thromb Vasc Biol. 2007;27(3):532–9.PubMed
110.
Zurück zum Zitat Yan X, Chen Y-G. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling. Biochem J. 2011;434(1):1–10.PubMed Yan X, Chen Y-G. Smad7: not only a regulator, but also a cross-talk mediator of TGF-β signalling. Biochem J. 2011;434(1):1–10.PubMed
111.
Zurück zum Zitat Chen Y, Yang L. FBXL19-AS1 aggravates the progression of hepatocellular cancer by downregulating KLF2. J BU ON: Official J Balkan Union Oncol. 2021;26(4):1333–9. Chen Y, Yang L. FBXL19-AS1 aggravates the progression of hepatocellular cancer by downregulating KLF2. J BU ON: Official J Balkan Union Oncol. 2021;26(4):1333–9.
112.
Zurück zum Zitat Huang M-d, Chen W-m, Qi F-z, Xia R, Sun M, Xu T-p, et al. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2. J Hematol Oncol. 2015;8(1):1–14.PubMedPubMedCentral Huang M-d, Chen W-m, Qi F-z, Xia R, Sun M, Xu T-p, et al. Long non-coding RNA ANRIL is upregulated in hepatocellular carcinoma and regulates cell proliferation by epigenetic silencing of KLF2. J Hematol Oncol. 2015;8(1):1–14.PubMedPubMedCentral
113.
Zurück zum Zitat Jiang H, Shi X, Ye G, Xu Y, Xu J, Lu J, et al. Up-regulated long non-coding RNA DUXAP8 promotes cell growth through repressing Krüppel-like factor 2 expression in human hepatocellular carcinoma. OncoTargets and Therapy. 2019;12:7429.PubMedPubMedCentral Jiang H, Shi X, Ye G, Xu Y, Xu J, Lu J, et al. Up-regulated long non-coding RNA DUXAP8 promotes cell growth through repressing Krüppel-like factor 2 expression in human hepatocellular carcinoma. OncoTargets and Therapy. 2019;12:7429.PubMedPubMedCentral
114.
Zurück zum Zitat Zou K, Lu X, Ye K, Wang C, You T, Chen J. Krüppel-like factor 2 promotes cell proliferation in hepatocellular carcinoma through up-regulation of c-myc. Cancer Biol Ther. 2016;17(1):20–6.PubMedPubMedCentral Zou K, Lu X, Ye K, Wang C, You T, Chen J. Krüppel-like factor 2 promotes cell proliferation in hepatocellular carcinoma through up-regulation of c-myc. Cancer Biol Ther. 2016;17(1):20–6.PubMedPubMedCentral
115.
Zurück zum Zitat Baker SJ, Reddy EP. CDK4: a key player in the cell cycle, development, and cancer. Genes & cancer. 2012;3(11–12):658–69. Baker SJ, Reddy EP. CDK4: a key player in the cell cycle, development, and cancer. Genes & cancer. 2012;3(11–12):658–69.
116.
Zurück zum Zitat Rea K, Sensi M, Anichini A, Canevari S, Tomassetti A. EGFR/MEK/ERK/CDK5-dependent integrin-independent FAK phosphorylated on serine 732 contributes to microtubule depolymerization and mitosis in tumor cells. Cell Death Dis. 2013;4(10):e815–e.PubMedPubMedCentral Rea K, Sensi M, Anichini A, Canevari S, Tomassetti A. EGFR/MEK/ERK/CDK5-dependent integrin-independent FAK phosphorylated on serine 732 contributes to microtubule depolymerization and mitosis in tumor cells. Cell Death Dis. 2013;4(10):e815–e.PubMedPubMedCentral
117.
Zurück zum Zitat Alarcón C, Zaromytidou A-I, Xi Q, Gao S, Yu J, Fujisawa S, et al. CDK8/9 drive smad transcriptional action, turnover and YAP interactions in BMP and TGFβ pathways. Cell. 2009;139(4):757.PubMedPubMedCentral Alarcón C, Zaromytidou A-I, Xi Q, Gao S, Yu J, Fujisawa S, et al. CDK8/9 drive smad transcriptional action, turnover and YAP interactions in BMP and TGFβ pathways. Cell. 2009;139(4):757.PubMedPubMedCentral
118.
Zurück zum Zitat Borggrefe T, Davis R, Erdjument-Bromage H, Tempst P, Kornberg RD. A complex of the Srb8,-9,-10, and-11 transcriptional regulatory proteins from yeast. J Biol Chem. 2002;277(46):44202–7.PubMed Borggrefe T, Davis R, Erdjument-Bromage H, Tempst P, Kornberg RD. A complex of the Srb8,-9,-10, and-11 transcriptional regulatory proteins from yeast. J Biol Chem. 2002;277(46):44202–7.PubMed
119.
Zurück zum Zitat Larschan E, Winston F. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol Cell Biol. 2005;25(1):114–23.PubMedPubMedCentral Larschan E, Winston F. The Saccharomyces cerevisiae Srb8-Srb11 complex functions with the SAGA complex during Gal4-activated transcription. Mol Cell Biol. 2005;25(1):114–23.PubMedPubMedCentral
120.
Zurück zum Zitat Samuelsen CO, Baraznenok V, Khorosjutina O, Spåhr H, Kieselbach T, Holmberg S et al. TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution. Proceedings of the National Academy of Sciences. 2003;100(11):6422-7. Samuelsen CO, Baraznenok V, Khorosjutina O, Spåhr H, Kieselbach T, Holmberg S et al. TRAP230/ARC240 and TRAP240/ARC250 Mediator subunits are functionally conserved through evolution. Proceedings of the National Academy of Sciences. 2003;100(11):6422-7.
121.
Zurück zum Zitat Xu W, Wang Z, Zhang W, Qian K, Li H, Kong D, et al. Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/β-catenin signaling pathway. Cancer Lett. 2015;356(2):613–27.PubMed Xu W, Wang Z, Zhang W, Qian K, Li H, Kong D, et al. Mutated K-ras activates CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer in part via the Wnt/β-catenin signaling pathway. Cancer Lett. 2015;356(2):613–27.PubMed
122.
Zurück zum Zitat Chan E, Gat U, McNiff JM, Fuchs E. A common human skin tumour is caused by activating mutations in β-catenin. Nat Genet. 1999;21(4):410–3.PubMed Chan E, Gat U, McNiff JM, Fuchs E. A common human skin tumour is caused by activating mutations in β-catenin. Nat Genet. 1999;21(4):410–3.PubMed
123.
Zurück zum Zitat Dominguez I, Itoh K, Sokol SY. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc Natl Acad Sci. 1995;92(18):8498–502.PubMedPubMedCentral Dominguez I, Itoh K, Sokol SY. Role of glycogen synthase kinase 3 beta as a negative regulator of dorsoventral axis formation in Xenopus embryos. Proc Natl Acad Sci. 1995;92(18):8498–502.PubMedPubMedCentral
124.
Zurück zum Zitat Atkins GB, Jain MK. Role of Kruppel-like transcription factors in endothelial biology. Circul Res. 2007;100(12):1686–95. Atkins GB, Jain MK. Role of Kruppel-like transcription factors in endothelial biology. Circul Res. 2007;100(12):1686–95.
125.
Zurück zum Zitat Dekker RJ, Boon RA, Rondaij MG, Kragt A, Volger OL, Elderkamp YW, et al. KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood. 2006;107(11):4354–63.PubMed Dekker RJ, Boon RA, Rondaij MG, Kragt A, Volger OL, Elderkamp YW, et al. KLF2 provokes a gene expression pattern that establishes functional quiescent differentiation of the endothelium. Blood. 2006;107(11):4354–63.PubMed
126.
Zurück zum Zitat Wei R, Kong L, Xiao Y, Yuan H, Song Y, Wang J, et al. CDK8 regulates the angiogenesis of pancreatic cancer cells in part via the CDK8-β-catenin-KLF2 signal axis. Exp Cell Res. 2018;369(2):304–15.PubMed Wei R, Kong L, Xiao Y, Yuan H, Song Y, Wang J, et al. CDK8 regulates the angiogenesis of pancreatic cancer cells in part via the CDK8-β-catenin-KLF2 signal axis. Exp Cell Res. 2018;369(2):304–15.PubMed
127.
Zurück zum Zitat Zhang D, Dai Y, Cai Y, Suo T, Liu H, Wang Y, et al. KLF2 is downregulated in pancreatic ductal adenocarcinoma and inhibits the growth and migration of cancer cells. Tumor Biology. 2016;37(3):3425–31.PubMed Zhang D, Dai Y, Cai Y, Suo T, Liu H, Wang Y, et al. KLF2 is downregulated in pancreatic ductal adenocarcinoma and inhibits the growth and migration of cancer cells. Tumor Biology. 2016;37(3):3425–31.PubMed
128.
Zurück zum Zitat Lian Y, Wang J, Feng J, Ding J, Ma Z, Li J, et al. Long non-coding RNA IRAIN suppresses apoptosis and promotes proliferation by binding to LSD1 and EZH2 in pancreatic cancer. Tumor Biology. 2016;37(11):14929–37.PubMed Lian Y, Wang J, Feng J, Ding J, Ma Z, Li J, et al. Long non-coding RNA IRAIN suppresses apoptosis and promotes proliferation by binding to LSD1 and EZH2 in pancreatic cancer. Tumor Biology. 2016;37(11):14929–37.PubMed
129.
Zurück zum Zitat Ma Z, Huang H, Wang J, Zhou Y, Pu F, Zhao Q, et al. Long non-coding RNA SNHG15 inhibits P15 and KLF2 expression to promote pancreatic cancer proliferation through EZH2-mediated H3K27me3. Oncotarget. 2017;8(48):84153.PubMedPubMedCentral Ma Z, Huang H, Wang J, Zhou Y, Pu F, Zhao Q, et al. Long non-coding RNA SNHG15 inhibits P15 and KLF2 expression to promote pancreatic cancer proliferation through EZH2-mediated H3K27me3. Oncotarget. 2017;8(48):84153.PubMedPubMedCentral
130.
Zurück zum Zitat Lian Y, Yang J, Lian Y, Xiao C, Hu X, Xu H. DUXAP8, a pseudogene derived lncRNA, promotes growth of pancreatic carcinoma cells by epigenetically silencing CDKN1A and KLF2. Cancer Commun. 2018;38(1):1–11. Lian Y, Yang J, Lian Y, Xiao C, Hu X, Xu H. DUXAP8, a pseudogene derived lncRNA, promotes growth of pancreatic carcinoma cells by epigenetically silencing CDKN1A and KLF2. Cancer Commun. 2018;38(1):1–11.
131.
Zurück zum Zitat Yuedi D, Houbao L, Pinxiang L, Hui W, Min T, Dexiang Z. KLF2 induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21. Exp Cell Res. 2020;388(1):111784.PubMed Yuedi D, Houbao L, Pinxiang L, Hui W, Min T, Dexiang Z. KLF2 induces the senescence of pancreatic cancer cells by cooperating with FOXO4 to upregulate p21. Exp Cell Res. 2020;388(1):111784.PubMed
132.
Zurück zum Zitat Wang Y, Decker SJ, Sebolt-Leopold J. Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther. 2004;3(3):305–13.PubMed Wang Y, Decker SJ, Sebolt-Leopold J. Knockdown of Chk1, Wee1 and Myt1 by RNA interference abrogates G2 checkpoint and induces apoptosis. Cancer Biol Ther. 2004;3(3):305–13.PubMed
133.
Zurück zum Zitat Elder RT, Yu M, Chen M, Zhu X, Yanagida M, Zhao Y. HIV-1 vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a pathway involving regulatory and catalytic subunits of PP2A and acting on both Wee1 and Cdc25. Virology. 2001;287(2):359–70.PubMed Elder RT, Yu M, Chen M, Zhu X, Yanagida M, Zhao Y. HIV-1 vpr induces cell cycle G2 arrest in fission yeast (Schizosaccharomyces pombe) through a pathway involving regulatory and catalytic subunits of PP2A and acting on both Wee1 and Cdc25. Virology. 2001;287(2):359–70.PubMed
134.
Zurück zum Zitat Rowley R, Hudson J, Young PG. The wee1 protein kinase is required for radiation-induced mitotic delay. Nature. 1992;356(6367):353–5.PubMed Rowley R, Hudson J, Young PG. The wee1 protein kinase is required for radiation-induced mitotic delay. Nature. 1992;356(6367):353–5.PubMed
135.
Zurück zum Zitat Li R, Chen J, Gao X, Jiang G. Transcription factor KLF2 enhances the sensitivity of breast cancer cells to cisplatin by suppressing kinase WEE1. Cancer Biol Ther. 2021;22(7–9):465–77.PubMedPubMedCentral Li R, Chen J, Gao X, Jiang G. Transcription factor KLF2 enhances the sensitivity of breast cancer cells to cisplatin by suppressing kinase WEE1. Cancer Biol Ther. 2021;22(7–9):465–77.PubMedPubMedCentral
136.
Zurück zum Zitat Zhu K-Y, Tian Y, Li Y-X, Meng Q-X, Ge J, Cao X-C, et al. The functions and prognostic value of Krüppel-like factors in breast cancer. Cancer Cell Int. 2022;22(1):1–12. Zhu K-Y, Tian Y, Li Y-X, Meng Q-X, Ge J, Cao X-C, et al. The functions and prognostic value of Krüppel-like factors in breast cancer. Cancer Cell Int. 2022;22(1):1–12.
137.
Zurück zum Zitat Wang L, Ye T, Wu H, Chen S, Weng J, Xi X. LINC00702 accelerates the progression of ovarian cancer through interacting with EZH2 to inhibit the transcription of KLF2. Eur Rev Med Pharmacol Sci. 2019;23(3 Suppl):201–8.PubMed Wang L, Ye T, Wu H, Chen S, Weng J, Xi X. LINC00702 accelerates the progression of ovarian cancer through interacting with EZH2 to inhibit the transcription of KLF2. Eur Rev Med Pharmacol Sci. 2019;23(3 Suppl):201–8.PubMed
138.
Zurück zum Zitat Bai Z, Wu Y, Bai S, Yan Y, Kang H, Ma W, et al. Long non-coding RNA SNGH7 is activated by SP1 and exerts oncogenic properties by interacting with EZH2 in ovarian cancer. J Cell Mol Med. 2020;24(13):7479–89.PubMedPubMedCentral Bai Z, Wu Y, Bai S, Yan Y, Kang H, Ma W, et al. Long non-coding RNA SNGH7 is activated by SP1 and exerts oncogenic properties by interacting with EZH2 in ovarian cancer. J Cell Mol Med. 2020;24(13):7479–89.PubMedPubMedCentral
139.
Zurück zum Zitat Chen L, Yang H, Xiao Y, Tang X, Li Y, Han Q, et al. Lentiviral-mediated overexpression of long non-coding RNA GAS5 reduces invasion by mediating MMP2 expression and activity in human melanoma cells. Int J Oncol. 2016;48(4):1509–18.PubMed Chen L, Yang H, Xiao Y, Tang X, Li Y, Han Q, et al. Lentiviral-mediated overexpression of long non-coding RNA GAS5 reduces invasion by mediating MMP2 expression and activity in human melanoma cells. Int J Oncol. 2016;48(4):1509–18.PubMed
140.
Zurück zum Zitat Huang D, Du X, Yuan R, Chen L, Liu T, Wen C, et al. Rock2 promotes the invasion and metastasis of hepatocellular carcinoma by modifying MMP2 ubiquitination and degradation. Biochem Biophys Res Commun. 2014;453(1):49–56.PubMed Huang D, Du X, Yuan R, Chen L, Liu T, Wen C, et al. Rock2 promotes the invasion and metastasis of hepatocellular carcinoma by modifying MMP2 ubiquitination and degradation. Biochem Biophys Res Commun. 2014;453(1):49–56.PubMed
141.
Zurück zum Zitat Lu L, Xue X, Lan J, Gao Y, Xiong Z, Zhang H, et al. MicroRNA-29a upregulates MMP2 in oral squamous cell carcinoma to promote cancer invasion and anti-apoptosis. Biomed Pharmacother. 2014;68(1):13–9.PubMed Lu L, Xue X, Lan J, Gao Y, Xiong Z, Zhang H, et al. MicroRNA-29a upregulates MMP2 in oral squamous cell carcinoma to promote cancer invasion and anti-apoptosis. Biomed Pharmacother. 2014;68(1):13–9.PubMed
142.
Zurück zum Zitat Wang B, Liu M, Song Y, Li C, Zhang S, Ma L. KLF2 inhibits the migration and invasion of prostate cancer cells by downregulating MMP2. Am J Men’s Health. 2019;13(1):1557988318816907. Wang B, Liu M, Song Y, Li C, Zhang S, Ma L. KLF2 inhibits the migration and invasion of prostate cancer cells by downregulating MMP2. Am J Men’s Health. 2019;13(1):1557988318816907.
143.
Zurück zum Zitat Zhu Y, Tong Y, Wu J, Liu Y, Zhao M. Knockdown of LncRNA GHET1 suppresses prostate cancer cell proliferation by inhibiting HIF-1α/Notch‐1 signaling pathway via KLF2. BioFactors. 2019;45(3):364–73.PubMed Zhu Y, Tong Y, Wu J, Liu Y, Zhao M. Knockdown of LncRNA GHET1 suppresses prostate cancer cell proliferation by inhibiting HIF-1α/Notch‐1 signaling pathway via KLF2. BioFactors. 2019;45(3):364–73.PubMed
144.
Zurück zum Zitat Xue P, Yan M, Wang K, Gu J, Zhong B, Tu C. Up-regulation of LINC00665 facilitates the malignant progression of prostate cancer by epigenetically silencing KLF2 through EZH2 and LSD1. Front Oncol. 2021:1165. Xue P, Yan M, Wang K, Gu J, Zhong B, Tu C. Up-regulation of LINC00665 facilitates the malignant progression of prostate cancer by epigenetically silencing KLF2 through EZH2 and LSD1. Front Oncol. 2021:1165.
145.
Zurück zum Zitat Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–57.PubMedPubMedCentral Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–57.PubMedPubMedCentral
146.
Zurück zum Zitat Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48(4):491–507.PubMed Black JC, Van Rechem C, Whetstine JR. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell. 2012;48(4):491–507.PubMed
147.
Zurück zum Zitat Yamane K, Toumazou C, Tsukada Y-i, Erdjument-Bromage H, Tempst P, Wong J, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell. 2006;125(3):483–95.PubMed Yamane K, Toumazou C, Tsukada Y-i, Erdjument-Bromage H, Tempst P, Wong J, et al. JHDM2A, a JmjC-containing H3K9 demethylase, facilitates transcription activation by androgen receptor. Cell. 2006;125(3):483–95.PubMed
148.
Zurück zum Zitat Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature. 2007;450(7166):119–23.PubMed Okada Y, Scott G, Ray MK, Mishina Y, Zhang Y. Histone demethylase JHDM2A is critical for Tnp1 and Prm1 transcription and spermatogenesis. Nature. 2007;450(7166):119–23.PubMed
149.
Zurück zum Zitat Loh Y-H, Zhang W, Chen X, George J, Ng H-H. Jmjd1a and Jmjd2c histone H3 lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 2007;21(20):2545–57.PubMedPubMedCentral Loh Y-H, Zhang W, Chen X, George J, Ng H-H. Jmjd1a and Jmjd2c histone H3 lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev. 2007;21(20):2545–57.PubMedPubMedCentral
150.
Zurück zum Zitat Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N, et al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science. 2013;341(6150):1106–9.PubMed Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N, et al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science. 2013;341(6150):1106–9.PubMed
151.
Zurück zum Zitat Mittrücker H-W, Matsuyama T, Grossman A, Kündig TM, Potter J, Shahinian A, et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science. 1997;275(5299):540–3.PubMed Mittrücker H-W, Matsuyama T, Grossman A, Kündig TM, Potter J, Shahinian A, et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science. 1997;275(5299):540–3.PubMed
152.
Zurück zum Zitat Sciammas R, Shaffer A, Schatz JH, Zhao H, Staudt LM, Singh H. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity. 2006;25(2):225–36.PubMed Sciammas R, Shaffer A, Schatz JH, Zhao H, Staudt LM, Singh H. Graded expression of interferon regulatory factor-4 coordinates isotype switching with plasma cell differentiation. Immunity. 2006;25(2):225–36.PubMed
153.
Zurück zum Zitat Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7(7):773–82.PubMed Klein U, Casola S, Cattoretti G, Shen Q, Lia M, Mo T, et al. Transcription factor IRF4 controls plasma cell differentiation and class-switch recombination. Nat Immunol. 2006;7(7):773–82.PubMed
154.
Zurück zum Zitat Ohguchi H, Hideshima T, Bhasin MK, Gorgun GT, Santo L, Cea M, et al. The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival. Nat Commun. 2016;7(1):1–15. Ohguchi H, Hideshima T, Bhasin MK, Gorgun GT, Santo L, Cea M, et al. The KDM3A–KLF2–IRF4 axis maintains myeloma cell survival. Nat Commun. 2016;7(1):1–15.
155.
Zurück zum Zitat Schmidt M, De Mazière A, Smyczek T, Gray A, Parker L, Filvaroff E, et al. editors. The role of Egfl7 in vascular morphogenesis. Novartis Foundation Symposium; 2007: Chichester; New York; John Wiley; 1999. Schmidt M, De Mazière A, Smyczek T, Gray A, Parker L, Filvaroff E, et al. editors. The role of Egfl7 in vascular morphogenesis. Novartis Foundation Symposium; 2007: Chichester; New York; John Wiley; 1999.
156.
Zurück zum Zitat Nikolić I, Stanković ND, Bicker F, Meister J, Braun H, Awwad K, et al. EGFL7 ligates αvβ3 integrin to enhance vessel formation. Blood the Journal of the American Society of Hematology. 2013;121(15):3041–50. Nikolić I, Stanković ND, Bicker F, Meister J, Braun H, Awwad K, et al. EGFL7 ligates αvβ3 integrin to enhance vessel formation. Blood the Journal of the American Society of Hematology. 2013;121(15):3041–50.
157.
Zurück zum Zitat Hong G, Kuek V, Shi J, Zhou L, Han X, He W, et al. EGFL7: Master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J Cell Physiol. 2018;233(11):8526–37.PubMed Hong G, Kuek V, Shi J, Zhou L, Han X, He W, et al. EGFL7: Master regulator of cancer pathogenesis, angiogenesis and an emerging mediator of bone homeostasis. J Cell Physiol. 2018;233(11):8526–37.PubMed
158.
Zurück zum Zitat Papaioannou D, Shen C, Nicolet D, McNeil B, Bill M, Karunasiri M, et al. Prognostic and biological significance of the proangiogenic factor EGFL7 in acute myeloid leukemia. Proc Natl Acad Sci. 2017;114(23):E4641–E7.PubMedPubMedCentral Papaioannou D, Shen C, Nicolet D, McNeil B, Bill M, Karunasiri M, et al. Prognostic and biological significance of the proangiogenic factor EGFL7 in acute myeloid leukemia. Proc Natl Acad Sci. 2017;114(23):E4641–E7.PubMedPubMedCentral
159.
Zurück zum Zitat Ria R, Vacca A, Ribatti D, Di Raimondo F, Merchionne F, Dammacco F. Alpha (v) beta (3) integrin engagement enhances cell invasiveness in human multiple myeloma. Haematologica. 2002;87(8):836–45.PubMed Ria R, Vacca A, Ribatti D, Di Raimondo F, Merchionne F, Dammacco F. Alpha (v) beta (3) integrin engagement enhances cell invasiveness in human multiple myeloma. Haematologica. 2002;87(8):836–45.PubMed
160.
Zurück zum Zitat Vacca A, Ria R, Presta M, Ribatti D, Iurlaro M, Merchionne F, et al. αvβ3 integrin engagement modulates cell adhesion, proliferation, and protease secretion in human lymphoid tumor cells. Exp Hematol. 2001;29(8):993–1003.PubMed Vacca A, Ria R, Presta M, Ribatti D, Iurlaro M, Merchionne F, et al. αvβ3 integrin engagement modulates cell adhesion, proliferation, and protease secretion in human lymphoid tumor cells. Exp Hematol. 2001;29(8):993–1003.PubMed
161.
Zurück zum Zitat Tucci M, De Palma R, Lombardi L, Rodolico G, Berrino L, Dammacco F, et al. β3 integrin subunit mediates the bone-resorbing function exerted by cultured myeloma plasma cells. Cancer Res. 2009;69(16):6738–46.PubMed Tucci M, De Palma R, Lombardi L, Rodolico G, Berrino L, Dammacco F, et al. β3 integrin subunit mediates the bone-resorbing function exerted by cultured myeloma plasma cells. Cancer Res. 2009;69(16):6738–46.PubMed
162.
Zurück zum Zitat Nichol D, Shawber C, Fitch MJ, Bambino K, Sharma A, Kitajewski J, et al. Impaired angiogenesis and altered notch signaling in mice overexpressing endothelial Egfl7. Blood. J Am Soc Hematol. 2010;116(26):6133–43. Nichol D, Shawber C, Fitch MJ, Bambino K, Sharma A, Kitajewski J, et al. Impaired angiogenesis and altered notch signaling in mice overexpressing endothelial Egfl7. Blood. J Am Soc Hematol. 2010;116(26):6133–43.
163.
Zurück zum Zitat Salama Y, Heida AH, Yokoyama K, Takahashi S, Hattori K, Heissig B. The EGFL7-ITGB3-KLF2 axis enhances survival of multiple myeloma in preclinical models. Blood Adv. 2020;4(6):1021–37.PubMedPubMedCentral Salama Y, Heida AH, Yokoyama K, Takahashi S, Hattori K, Heissig B. The EGFL7-ITGB3-KLF2 axis enhances survival of multiple myeloma in preclinical models. Blood Adv. 2020;4(6):1021–37.PubMedPubMedCentral
164.
Zurück zum Zitat Wu N, Chen S, Luo Q, Jiang Z, Wang X, Li Y, et al. Kruppel-like factor 2 acts as a tumor suppressor in human retinoblastoma. Exp Eye Res. 2022;216:108955.PubMed Wu N, Chen S, Luo Q, Jiang Z, Wang X, Li Y, et al. Kruppel-like factor 2 acts as a tumor suppressor in human retinoblastoma. Exp Eye Res. 2022;216:108955.PubMed
165.
Zurück zum Zitat Ruan J, Zheng L, Hu N, Guan G, Chen J, Zhou X, et al. Long noncoding RNA SNHG6 promotes osteosarcoma cell proliferation through regulating p21 and KLF2. Arch Biochem Biophys. 2018;646:128–36.PubMed Ruan J, Zheng L, Hu N, Guan G, Chen J, Zhou X, et al. Long noncoding RNA SNHG6 promotes osteosarcoma cell proliferation through regulating p21 and KLF2. Arch Biochem Biophys. 2018;646:128–36.PubMed
Metadaten
Titel
PRC2 mediated KLF2 down regulation: a therapeutic and diagnostic axis during tumor progression
verfasst von
Negin Taghehchian
Amirhosein Maharati
Iman Akhlaghipour
Amir Sadra Zangouei
Meysam Moghbeli
Publikationsdatum
01.12.2023
Verlag
BioMed Central
Erschienen in
Cancer Cell International / Ausgabe 1/2023
Elektronische ISSN: 1475-2867
DOI
https://doi.org/10.1186/s12935-023-03086-3

Weitere Artikel der Ausgabe 1/2023

Cancer Cell International 1/2023 Zur Ausgabe

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Viel pflanzliche Nahrung, seltener Prostata-Ca.-Progression

12.05.2024 Prostatakarzinom Nachrichten

Ein hoher Anteil pflanzlicher Nahrung trägt möglicherweise dazu bei, das Progressionsrisiko von Männern mit Prostatakarzinomen zu senken. In einer US-Studie war das Risiko bei ausgeprägter pflanzlicher Ernährung in etwa halbiert.

Alter verschlechtert Prognose bei Endometriumkarzinom

11.05.2024 Endometriumkarzinom Nachrichten

Ein höheres Alter bei der Diagnose eines Endometriumkarzinoms ist mit aggressiveren Tumorcharakteristika assoziiert, scheint aber auch unabhängig von bekannten Risikofaktoren die Prognose der Erkrankung zu verschlimmern.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.