Skip to main content
Erschienen in: Clinical Pharmacokinetics 5/2022

24.01.2022 | Original Research Article

Prediction of Maternal and Fetal Acyclovir, Emtricitabine, Lamivudine, and Metformin Concentrations during Pregnancy Using a Physiologically Based Pharmacokinetic Modeling Approach

verfasst von: Khaled Abduljalil, Amita Pansari, Jia Ning, Masoud Jamei

Erschienen in: Clinical Pharmacokinetics | Ausgabe 5/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

Concerns over maternal and fetal drug exposure during pregnancy highlight the need for improved understanding of drug distribution to the fetus through the placental barrier.

Objective

Our objective was to predict maternal and fetal drug disposition using a physiologically based pharmacokinetic (PBPK) modeling approach.

Methods

We used the detailed maternal–placental–fetal PBPK model within the Simcyp Simulator V20 to predict the maternal and fetal drug exposure of acyclovir, emtricitabine, lamivudine, and metformin during pregnancy and at delivery. The dynamic model includes gestational changes to the maternal, fetal, and placental physiological parameters. Placental kinetics were parameterized using published ex vivo data for these four compounds. Amniotic data were included where available. PBPK predictions were compared with the observed data using twofold criteria.

Results

Maternal–fetal PBPK models were developed completely from the bottom up without any parameter adjustments. The PBPK model-predicted exposures matched the observed maternal and umbilical exposure for acyclovir (six maternal studies, all of which all reported umbilical exposure), emtricitabine (six maternal studies, of which four reported umbilical exposure), lamivudine, (five maternal studies, of which four reported umbilical exposure), and metformin (seven studies, of which six reported umbilical exposure). Predicted pharmacokinetic parameters were within twofold of the observed values.

Conclusion

Integration of fetal and maternal system parameters within PBPK models, together with experimental data from ex vivo placental perfusion studies, facilitated and extended the application of the pregnancy PBPK model. Such models can also be used inform clinical trials and maternal/fetal risk assessment following maternally administered drugs or unintended exposure to environmental toxicants.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Herring C, McManus A, Weeks A. Off-label prescribing during pregnancy in the UK: an analysis of 18,000 prescriptions in Liverpool Women’s Hospital. Int J Pharm Pract. 2010;18(4):226–9.PubMed Herring C, McManus A, Weeks A. Off-label prescribing during pregnancy in the UK: an analysis of 18,000 prescriptions in Liverpool Women’s Hospital. Int J Pharm Pract. 2010;18(4):226–9.PubMed
2.
Zurück zum Zitat Laroche ML, Blin A, Coubret A, Grau M, Roux B, Aubard Y. Off-label prescribing during pregnancy in France: the NeHaVi cohort. Int J Clin Pharmacol Ther. 2020;58(4):198–208.PubMedCrossRef Laroche ML, Blin A, Coubret A, Grau M, Roux B, Aubard Y. Off-label prescribing during pregnancy in France: the NeHaVi cohort. Int J Clin Pharmacol Ther. 2020;58(4):198–208.PubMedCrossRef
3.
Zurück zum Zitat Rayburn WF, Turnbull GL. Off-label drug prescribing on a state university obstetric service. J Reprod Med. 1995;40(3):186–8.PubMed Rayburn WF, Turnbull GL. Off-label drug prescribing on a state university obstetric service. J Reprod Med. 1995;40(3):186–8.PubMed
4.
Zurück zum Zitat Bouazza N, Foissac F, Hirt D, Urien S, Benaboud S, Lui G, et al. Methodological approaches to evaluate fetal drug exposure. Curr Pharm Des. 2019;25(5):496–504.PubMedCrossRef Bouazza N, Foissac F, Hirt D, Urien S, Benaboud S, Lui G, et al. Methodological approaches to evaluate fetal drug exposure. Curr Pharm Des. 2019;25(5):496–504.PubMedCrossRef
5.
Zurück zum Zitat Schmidt A, Morales-Prieto DM, Pastuschek J, Frohlich K, Markert UR. Only humans have human placentas: molecular differences between mice and humans. J Reprod Immunol. 2015;108:65–71.PubMedCrossRef Schmidt A, Morales-Prieto DM, Pastuschek J, Frohlich K, Markert UR. Only humans have human placentas: molecular differences between mice and humans. J Reprod Immunol. 2015;108:65–71.PubMedCrossRef
6.
Zurück zum Zitat De Sousa MM, Lui G, Zheng Y, Pressiat C, Hirt D, Valade E, et al. A physiologically-based pharmacokinetic model to predict human fetal exposure for a drug metabolized by several CYP450 pathways. Clin Pharmacokinet. 2017;56(5):537–50.CrossRef De Sousa MM, Lui G, Zheng Y, Pressiat C, Hirt D, Valade E, et al. A physiologically-based pharmacokinetic model to predict human fetal exposure for a drug metabolized by several CYP450 pathways. Clin Pharmacokinet. 2017;56(5):537–50.CrossRef
7.
Zurück zum Zitat Schalkwijk S, Buaben AO, Freriksen JJM, Colbers AP, Burger DM, Greupink R, et al. Prediction of fetal darunavir exposure by integrating human ex-vivo placental transfer and physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2018;57(6):705–16.PubMedCrossRef Schalkwijk S, Buaben AO, Freriksen JJM, Colbers AP, Burger DM, Greupink R, et al. Prediction of fetal darunavir exposure by integrating human ex-vivo placental transfer and physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2018;57(6):705–16.PubMedCrossRef
8.
Zurück zum Zitat Abduljalil K, Badhan RKS. Drug dosing during pregnancy-opportunities for physiologically based pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2020;47(4):319–40.PubMedCrossRef Abduljalil K, Badhan RKS. Drug dosing during pregnancy-opportunities for physiologically based pharmacokinetic models. J Pharmacokinet Pharmacodyn. 2020;47(4):319–40.PubMedCrossRef
9.
Zurück zum Zitat Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: a database for parameters required in physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2012;51(6):365–96.PubMedCrossRef Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: a database for parameters required in physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2012;51(6):365–96.PubMedCrossRef
10.
Zurück zum Zitat Abduljalil K, Johnson TN, Rostami-Hodjegan A. Fetal physiologically-based pharmacokinetic models: systems information on fetal biometry and gross composition. Clin Pharmacokinet. 2018;57(9):1149–71.PubMedCrossRef Abduljalil K, Johnson TN, Rostami-Hodjegan A. Fetal physiologically-based pharmacokinetic models: systems information on fetal biometry and gross composition. Clin Pharmacokinet. 2018;57(9):1149–71.PubMedCrossRef
11.
Zurück zum Zitat Abduljalil K, Jamei M, Johnson TN. Fetal physiologically based pharmacokinetic models: systems information on the growth and composition of fetal organs. Clin Pharmacokinet. 2019;58(2):235–62.PubMedCrossRef Abduljalil K, Jamei M, Johnson TN. Fetal physiologically based pharmacokinetic models: systems information on the growth and composition of fetal organs. Clin Pharmacokinet. 2019;58(2):235–62.PubMedCrossRef
12.
Zurück zum Zitat Abduljalil K, Pan X, Clayton R, Johnson TN, Jamei M. Fetal physiologically based pharmacokinetic models: systems information on fetal cardiac output and its distribution to different organs during development. Clin Pharmacokinet. 2021;60(6):741–57.PubMedCrossRef Abduljalil K, Pan X, Clayton R, Johnson TN, Jamei M. Fetal physiologically based pharmacokinetic models: systems information on fetal cardiac output and its distribution to different organs during development. Clin Pharmacokinet. 2021;60(6):741–57.PubMedCrossRef
13.
Zurück zum Zitat Abduljalil K, Jamei M, Johnson TN. Fetal physiologically based pharmacokinetic models: systems information on fetal blood components and binding proteins. Clin Pharmacokinet. 2020;59(5):629–42.PubMedCrossRef Abduljalil K, Jamei M, Johnson TN. Fetal physiologically based pharmacokinetic models: systems information on fetal blood components and binding proteins. Clin Pharmacokinet. 2020;59(5):629–42.PubMedCrossRef
14.
Zurück zum Zitat Zhang Z, Imperial MZ, Patilea-Vrana GI, Wedagedera J, Gaohua L, Unadkat JD. Development of a novel maternal-fetal physiologically based pharmacokinetic model I: insights into factors that determine fetal drug exposure through simulations and sensitivity analyses. Drug Metab Dispos. 2017;45(8):920–38.PubMedPubMedCentralCrossRef Zhang Z, Imperial MZ, Patilea-Vrana GI, Wedagedera J, Gaohua L, Unadkat JD. Development of a novel maternal-fetal physiologically based pharmacokinetic model I: insights into factors that determine fetal drug exposure through simulations and sensitivity analyses. Drug Metab Dispos. 2017;45(8):920–38.PubMedPubMedCentralCrossRef
15.
Zurück zum Zitat Abduljalil K, Pan X, Pansari A, Jamei M, Johnson TN. A preterm physiologically based pharmacokinetic model part I: physiological parameters and model building. Clin Pharmacokinet. 2020;59(4):485–500.PubMedCrossRef Abduljalil K, Pan X, Pansari A, Jamei M, Johnson TN. A preterm physiologically based pharmacokinetic model part I: physiological parameters and model building. Clin Pharmacokinet. 2020;59(4):485–500.PubMedCrossRef
16.
Zurück zum Zitat Barker G, Boyd RD, D’Souza SW, Donnai P, Fox H, Sibley CP. Placental water content and distribution. Placenta. 1994;15(1):47–56.PubMedCrossRef Barker G, Boyd RD, D’Souza SW, Donnai P, Fox H, Sibley CP. Placental water content and distribution. Placenta. 1994;15(1):47–56.PubMedCrossRef
17.
Zurück zum Zitat Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.PubMedCrossRef Rodgers T, Rowland M. Physiologically based pharmacokinetic modelling 2: predicting the tissue distribution of acids, very weak bases, neutrals and zwitterions. J Pharm Sci. 2006;95(6):1238–57.PubMedCrossRef
18.
Zurück zum Zitat Neuhoff S, Gaohua L, Burt H, Jamei M, Li L, Tucker GT, et al. Accounting for transporters in renal clearance: towards a mechanistic kidney model (Mech KiM). In: Sugiyama Y, Steffansen B, editors. Transporters in drug development AAPS advances in the pharmaceutical sciences series. Springer, New York. 2013. Neuhoff S, Gaohua L, Burt H, Jamei M, Li L, Tucker GT, et al. Accounting for transporters in renal clearance: towards a mechanistic kidney model (Mech KiM). In: Sugiyama Y, Steffansen B, editors. Transporters in drug development AAPS advances in the pharmaceutical sciences series. Springer, New York. 2013.
19.
Zurück zum Zitat Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.PubMedCrossRef Rhodin MM, Anderson BJ, Peters AM, Coulthard MG, Wilkins B, Cole M, et al. Human renal function maturation: a quantitative description using weight and postmenstrual age. Pediatr Nephrol. 2009;24(1):67–76.PubMedCrossRef
20.
Zurück zum Zitat Blackburn S. Maternal, fetal and neonatal physiology: a clinical perspective. 3rd ed. Philadelphia: Saunders Elsevier; 2007. Blackburn S. Maternal, fetal and neonatal physiology: a clinical perspective. 3rd ed. Philadelphia: Saunders Elsevier; 2007.
21.
Zurück zum Zitat Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25(5):341–8.PubMedCrossRef Underwood MA, Gilbert WM, Sherman MP. Amniotic fluid: not just fetal urine anymore. J Perinatol. 2005;25(5):341–8.PubMedCrossRef
22.
Zurück zum Zitat Abduljalil K, Pansari A, Jamei M. Prediction of maternal pharmacokinetics using physiologically based pharmacokinetic models: assessing the impact of the longitudinal changes in the activity of CYP1A2, CYP2D6 and CYP3A4 enzymes during pregnancy. J Pharmacokinet Pharmacodyn. 2020;47(4):361–83.PubMedCrossRef Abduljalil K, Pansari A, Jamei M. Prediction of maternal pharmacokinetics using physiologically based pharmacokinetic models: assessing the impact of the longitudinal changes in the activity of CYP1A2, CYP2D6 and CYP3A4 enzymes during pregnancy. J Pharmacokinet Pharmacodyn. 2020;47(4):361–83.PubMedCrossRef
23.
Zurück zum Zitat Haddad J, Langer B, Astruc D, Messer J, Lokiec F. Oral acyclovir and recurrent genital herpes during late pregnancy. Obstet Gynecol. 1993;82(1):102–4.PubMed Haddad J, Langer B, Astruc D, Messer J, Lokiec F. Oral acyclovir and recurrent genital herpes during late pregnancy. Obstet Gynecol. 1993;82(1):102–4.PubMed
24.
Zurück zum Zitat Leung DT, Henning PA, Wagner EC, Blasig A, Wald A, Sacks SL, et al. Inadequacy of plasma acyclovir levels at delivery in patients with genital herpes receiving oral acyclovir suppressive therapy in late pregnancy. J Obstet Gynaecol Can. 2009;31(12):1137–43.PubMedPubMedCentralCrossRef Leung DT, Henning PA, Wagner EC, Blasig A, Wald A, Sacks SL, et al. Inadequacy of plasma acyclovir levels at delivery in patients with genital herpes receiving oral acyclovir suppressive therapy in late pregnancy. J Obstet Gynaecol Can. 2009;31(12):1137–43.PubMedPubMedCentralCrossRef
25.
Zurück zum Zitat Kimberlin DF, Weller S, Whitley RJ, Andrews WW, Hauth JC, Lakeman F, et al. Pharmacokinetics of oral valacyclovir and acyclovir in late pregnancy. Am J Obstet Gynecol. 1998;179(4):846–51.PubMedCrossRef Kimberlin DF, Weller S, Whitley RJ, Andrews WW, Hauth JC, Lakeman F, et al. Pharmacokinetics of oral valacyclovir and acyclovir in late pregnancy. Am J Obstet Gynecol. 1998;179(4):846–51.PubMedCrossRef
26.
Zurück zum Zitat Frenkel LM, Brown ZA, Bryson YJ, Corey L, Unadkat JD, Hensleigh PA, et al. Pharmacokinetics of acyclovir in the term human pregnancy and neonate. Am J Obstet Gynecol. 1991;164(2):569–76.PubMedCrossRef Frenkel LM, Brown ZA, Bryson YJ, Corey L, Unadkat JD, Hensleigh PA, et al. Pharmacokinetics of acyclovir in the term human pregnancy and neonate. Am J Obstet Gynecol. 1991;164(2):569–76.PubMedCrossRef
27.
Zurück zum Zitat Matsuzaki T, Scotcher D, Darwich AS, Galetin A, Rostami-Hodjegan A. Towards further verification of physiologically-based kidney models: predictability of the effects of urine-flow and urine-ph on renal clearance. J Pharmacol Exp Ther. 2019;368(2):157–68.PubMedCrossRef Matsuzaki T, Scotcher D, Darwich AS, Galetin A, Rostami-Hodjegan A. Towards further verification of physiologically-based kidney models: predictability of the effects of urine-flow and urine-ph on renal clearance. J Pharmacol Exp Ther. 2019;368(2):157–68.PubMedCrossRef
28.
Zurück zum Zitat Laskin OL, Longstreth JA, Saral R, de Miranda P, Keeney R, Lietman PS. Pharmacokinetics and tolerance of acyclovir, a new anti-herpesvirus agent, in humans. Antimicrob Agents Chemother. 1982;21(3):393–8.PubMedPubMedCentralCrossRef Laskin OL, Longstreth JA, Saral R, de Miranda P, Keeney R, Lietman PS. Pharmacokinetics and tolerance of acyclovir, a new anti-herpesvirus agent, in humans. Antimicrob Agents Chemother. 1982;21(3):393–8.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Vergin H, Kikuta C, Mascher H, Metz R. Pharmacokinetics and bioavailability of different formulations of aciclovir. Arzneimittelforschung. 1995;45(4):508–15.PubMed Vergin H, Kikuta C, Mascher H, Metz R. Pharmacokinetics and bioavailability of different formulations of aciclovir. Arzneimittelforschung. 1995;45(4):508–15.PubMed
30.
Zurück zum Zitat Liao MZ, Flood Nichols SK, Ahmed M, Clark S, Hankins GD, Caritis S, et al. Effects of Pregnancy on the Pharmacokinetics of Metformin. Drug Metab Dispos. 2020;48(4):264–71.PubMedPubMedCentralCrossRef Liao MZ, Flood Nichols SK, Ahmed M, Clark S, Hankins GD, Caritis S, et al. Effects of Pregnancy on the Pharmacokinetics of Metformin. Drug Metab Dispos. 2020;48(4):264–71.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Eyal S, Easterling TR, Carr D, Umans JG, Miodovnik M, Hankins GD, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos. 2010;38(5):833–40.PubMedPubMedCentralCrossRef Eyal S, Easterling TR, Carr D, Umans JG, Miodovnik M, Hankins GD, et al. Pharmacokinetics of metformin during pregnancy. Drug Metab Dispos. 2010;38(5):833–40.PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Bergagnini-Kolev MC, Hebert MF, Easterling TR, Lin YS. Pregnancy Increases the renal secretion of N(1)-methylnicotinamide, an endogenous probe for renal cation transporters, in patients prescribed metformin. Drug Metab Dispos. 2017;45(3):325–9.PubMedPubMedCentralCrossRef Bergagnini-Kolev MC, Hebert MF, Easterling TR, Lin YS. Pregnancy Increases the renal secretion of N(1)-methylnicotinamide, an endogenous probe for renal cation transporters, in patients prescribed metformin. Drug Metab Dispos. 2017;45(3):325–9.PubMedPubMedCentralCrossRef
33.
Zurück zum Zitat Henderson GI, Hu ZQ, Johnson RF, Perez AB, Yang Y, Schenker S. Acyclovir transport by the human placenta. J Lab Clin Med. 1992;120(6):885–92.PubMed Henderson GI, Hu ZQ, Johnson RF, Perez AB, Yang Y, Schenker S. Acyclovir transport by the human placenta. J Lab Clin Med. 1992;120(6):885–92.PubMed
34.
Zurück zum Zitat Gilstrap LC, Bawdon RE, Roberts SW, Sobhi S. The transfer of the nucleoside analog ganciclovir across the perfused human placenta. Am J Obstet Gynecol. 1994;170(4):967–72.PubMedCrossRef Gilstrap LC, Bawdon RE, Roberts SW, Sobhi S. The transfer of the nucleoside analog ganciclovir across the perfused human placenta. Am J Obstet Gynecol. 1994;170(4):967–72.PubMedCrossRef
35.
Zurück zum Zitat Soul-Lawton J, Seaber E, On N, Wootton R, Rolan P, Posner J. Absolute bioavailability and metabolic disposition of valaciclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob Agents Chemother. 1995;39(12):2759–64.PubMedPubMedCentralCrossRef Soul-Lawton J, Seaber E, On N, Wootton R, Rolan P, Posner J. Absolute bioavailability and metabolic disposition of valaciclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob Agents Chemother. 1995;39(12):2759–64.PubMedPubMedCentralCrossRef
36.
Zurück zum Zitat Lewis LD, Fowle AS, Bittiner SB, Bye A, Isaacs PE. Human gastrointestinal absorption of acyclovir from tablet duodenal infusion and sipped solution. Br J Clin Pharmacol. 1986;21(4):459–62.PubMedPubMedCentralCrossRef Lewis LD, Fowle AS, Bittiner SB, Bye A, Isaacs PE. Human gastrointestinal absorption of acyclovir from tablet duodenal infusion and sipped solution. Br J Clin Pharmacol. 1986;21(4):459–62.PubMedPubMedCentralCrossRef
37.
Zurück zum Zitat Amini H, Javan M, Gazerani P, Ghaffari A, Ahmadiani A. Lack of bioequivalence between two aciclovir tablets in healthy subjects. Clin Drug Investig. 2008;28(1):47–53.PubMedCrossRef Amini H, Javan M, Gazerani P, Ghaffari A, Ahmadiani A. Lack of bioequivalence between two aciclovir tablets in healthy subjects. Clin Drug Investig. 2008;28(1):47–53.PubMedCrossRef
39.
Zurück zum Zitat Hirt D, Urien S, Rey E, Arrive E, Ekouevi DK, Coffie P, et al. Population pharmacokinetics of emtricitabine in human immunodeficiency virus type 1-infected pregnant women and their neonates. Antimicrob Agents Chemother. 2009;53(3):1067–73.PubMedCrossRef Hirt D, Urien S, Rey E, Arrive E, Ekouevi DK, Coffie P, et al. Population pharmacokinetics of emtricitabine in human immunodeficiency virus type 1-infected pregnant women and their neonates. Antimicrob Agents Chemother. 2009;53(3):1067–73.PubMedCrossRef
40.
Zurück zum Zitat De Sousa MM, Chetty M. Are standard doses of renally-excreted antiretrovirals in older patients appropriate: a PBPK study comparing exposures in the elderly population with those in renal impairment. Drugs R D. 2019;19(4):339–50.CrossRef De Sousa MM, Chetty M. Are standard doses of renally-excreted antiretrovirals in older patients appropriate: a PBPK study comparing exposures in the elderly population with those in renal impairment. Drugs R D. 2019;19(4):339–50.CrossRef
41.
Zurück zum Zitat De Sousa MM, Hirt D, Vinot C, Valade E, Lui G, Pressiat C, et al. Prediction of human fetal pharmacokinetics using ex vivo human placenta perfusion studies and physiologically based models. Br J Clin Pharmacol. 2016;81(4):646–57.CrossRef De Sousa MM, Hirt D, Vinot C, Valade E, Lui G, Pressiat C, et al. Prediction of human fetal pharmacokinetics using ex vivo human placenta perfusion studies and physiologically based models. Br J Clin Pharmacol. 2016;81(4):646–57.CrossRef
42.
Zurück zum Zitat Zong J, Chittick GE, Wang LH, Hui J, Begley JA, Blum MR. Pharmacokinetic evaluation of emtricitabine in combination with other nucleoside antivirals in healthy volunteers. J Clin Pharmacol. 2007;47(7):877–89.PubMedCrossRef Zong J, Chittick GE, Wang LH, Hui J, Begley JA, Blum MR. Pharmacokinetic evaluation of emtricitabine in combination with other nucleoside antivirals in healthy volunteers. J Clin Pharmacol. 2007;47(7):877–89.PubMedCrossRef
43.
Zurück zum Zitat Blum MR, Chittick GE, Begley JA, Zong J. Steady-state pharmacokinetics of emtricitabine and tenofovir disoproxil fumarate administered alone and in combination in healthy volunteers. J Clin Pharmacol. 2007;47(6):751–9.PubMedCrossRef Blum MR, Chittick GE, Begley JA, Zong J. Steady-state pharmacokinetics of emtricitabine and tenofovir disoproxil fumarate administered alone and in combination in healthy volunteers. J Clin Pharmacol. 2007;47(6):751–9.PubMedCrossRef
44.
Zurück zum Zitat Wang LH, Begley J, St Claire RL, Harris J, Wakeford C, Rousseau FS. Pharmacokinetic and pharmacodynamic characteristics of emtricitabine support its once daily dosing for the treatment of HIV infection. AIDS Res Hum Retroviruses. 2004;20(11):1173–82.PubMedCrossRef Wang LH, Begley J, St Claire RL, Harris J, Wakeford C, Rousseau FS. Pharmacokinetic and pharmacodynamic characteristics of emtricitabine support its once daily dosing for the treatment of HIV infection. AIDS Res Hum Retroviruses. 2004;20(11):1173–82.PubMedCrossRef
45.
Zurück zum Zitat Rousseau FS, Kahn JO, Thompson M, Mildvan D, Shepp D, Sommadossi JP, et al. Prototype trial design for rapid dose selection of antiretroviral drugs: an example using emtricitabine (Coviracil). J Antimicrob Chemother. 2001;48(4):507–13.PubMedCrossRef Rousseau FS, Kahn JO, Thompson M, Mildvan D, Shepp D, Sommadossi JP, et al. Prototype trial design for rapid dose selection of antiretroviral drugs: an example using emtricitabine (Coviracil). J Antimicrob Chemother. 2001;48(4):507–13.PubMedCrossRef
46.
Zurück zum Zitat Valade E, Treluyer JM, Bouazza N, Ghosn J, Foissac F, Benaboud S, et al. Population pharmacokinetics of emtricitabine in HIV-1-infected adult patients. Antimicrob Agents Chemother. 2014;58(4):2256–61.PubMedPubMedCentralCrossRef Valade E, Treluyer JM, Bouazza N, Ghosn J, Foissac F, Benaboud S, et al. Population pharmacokinetics of emtricitabine in HIV-1-infected adult patients. Antimicrob Agents Chemother. 2014;58(4):2256–61.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Stek AM, Best BM, Luo W, Capparelli E, Burchett S, Hu C, et al. Effect of pregnancy on emtricitabine pharmacokinetics. HIV Med. 2012;13(4):226–35.PubMed Stek AM, Best BM, Luo W, Capparelli E, Burchett S, Hu C, et al. Effect of pregnancy on emtricitabine pharmacokinetics. HIV Med. 2012;13(4):226–35.PubMed
48.
Zurück zum Zitat Colbers AP, Hawkins DA, Gingelmaier A, Kabeya K, Rockstroh JK, Wyen C, et al. The pharmacokinetics, safety and efficacy of tenofovir and emtricitabine in HIV-1-infected pregnant women. AIDS. 2013;27(5):739–48.PubMedCrossRef Colbers AP, Hawkins DA, Gingelmaier A, Kabeya K, Rockstroh JK, Wyen C, et al. The pharmacokinetics, safety and efficacy of tenofovir and emtricitabine in HIV-1-infected pregnant women. AIDS. 2013;27(5):739–48.PubMedCrossRef
49.
Zurück zum Zitat Liu XI, Momper JD, Rakhmanina N, van den Anker JN, Green DJ, Burckart GJ, et al. Physiologically based pharmacokinetic models to predict maternal pharmacokinetics and fetal exposure to emtricitabine and acyclovir. J Clin Pharmacol. 2020;60(2):240–55.PubMedCrossRef Liu XI, Momper JD, Rakhmanina N, van den Anker JN, Green DJ, Burckart GJ, et al. Physiologically based pharmacokinetic models to predict maternal pharmacokinetics and fetal exposure to emtricitabine and acyclovir. J Clin Pharmacol. 2020;60(2):240–55.PubMedCrossRef
50.
Zurück zum Zitat Valade E, Treluyer JM, Dabis F, Arrive E, Pannier E, Benaboud S, et al. Modified renal function in pregnancy: impact on emtricitabine pharmacokinetics. Br J Clin Pharmacol. 2014;78(6):1378–86.PubMedPubMedCentralCrossRef Valade E, Treluyer JM, Dabis F, Arrive E, Pannier E, Benaboud S, et al. Modified renal function in pregnancy: impact on emtricitabine pharmacokinetics. Br J Clin Pharmacol. 2014;78(6):1378–86.PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Johnson MA, Moore KH, Yuen GJ, Bye A, Pakes GE. Clinical pharmacokinetics of lamivudine. Clin Pharmacokinet. 1999;36(1):41–66.PubMedCrossRef Johnson MA, Moore KH, Yuen GJ, Bye A, Pakes GE. Clinical pharmacokinetics of lamivudine. Clin Pharmacokinet. 1999;36(1):41–66.PubMedCrossRef
53.
Zurück zum Zitat Benaboud S, Treluyer JM, Urien S, Blanche S, Bouazza N, Chappuy H, et al. Pregnancy-related effects on lamivudine pharmacokinetics in a population study with 228 women. Antimicrob Agents Chemother. 2012;56(2):776–82.PubMedPubMedCentralCrossRef Benaboud S, Treluyer JM, Urien S, Blanche S, Bouazza N, Chappuy H, et al. Pregnancy-related effects on lamivudine pharmacokinetics in a population study with 228 women. Antimicrob Agents Chemother. 2012;56(2):776–82.PubMedPubMedCentralCrossRef
54.
Zurück zum Zitat Chappuy H, Treluyer JM, Jullien V, Dimet J, Rey E, Fouche M, et al. Maternal-fetal transfer and amniotic fluid accumulation of nucleoside analogue reverse transcriptase inhibitors in human immunodeficiency virus-infected pregnant women. Antimicrob Agents Chemother. 2004;48(11):4332–6.PubMedPubMedCentralCrossRef Chappuy H, Treluyer JM, Jullien V, Dimet J, Rey E, Fouche M, et al. Maternal-fetal transfer and amniotic fluid accumulation of nucleoside analogue reverse transcriptase inhibitors in human immunodeficiency virus-infected pregnant women. Antimicrob Agents Chemother. 2004;48(11):4332–6.PubMedPubMedCentralCrossRef
55.
Zurück zum Zitat Mandelbrot L, Peytavin G, Firtion G, Farinotti R. Maternal-fetal transfer and amniotic fluid accumulation of lamivudine in human immunodeficiency virus-infected pregnant women. Am J Obstet Gynecol. 2001;184(2):153–8.PubMedCrossRef Mandelbrot L, Peytavin G, Firtion G, Farinotti R. Maternal-fetal transfer and amniotic fluid accumulation of lamivudine in human immunodeficiency virus-infected pregnant women. Am J Obstet Gynecol. 2001;184(2):153–8.PubMedCrossRef
56.
Zurück zum Zitat Moodley J, Moodley D, Pillay K, Coovadia H, Saba J, van Leeuwen R, et al. Pharmacokinetics and antiretroviral activity of lamivudine alone or when coadministered with zidovudine in human immunodeficiency virus type 1-infected pregnant women and their offspring. J Infect Dis. 1998;178(5):1327–33.PubMedCrossRef Moodley J, Moodley D, Pillay K, Coovadia H, Saba J, van Leeuwen R, et al. Pharmacokinetics and antiretroviral activity of lamivudine alone or when coadministered with zidovudine in human immunodeficiency virus type 1-infected pregnant women and their offspring. J Infect Dis. 1998;178(5):1327–33.PubMedCrossRef
57.
Zurück zum Zitat Yeh RF, Rezk NL, Kashuba AD, Dumond JB, Tappouni HL, Tien HC, et al. Genital tract, cord blood, and amniotic fluid exposures of seven antiretroviral drugs during and after pregnancy in human immunodeficiency virus type 1-infected women. Antimicrob Agents Chemother. 2009;53(6):2367–74.PubMedPubMedCentralCrossRef Yeh RF, Rezk NL, Kashuba AD, Dumond JB, Tappouni HL, Tien HC, et al. Genital tract, cord blood, and amniotic fluid exposures of seven antiretroviral drugs during and after pregnancy in human immunodeficiency virus type 1-infected women. Antimicrob Agents Chemother. 2009;53(6):2367–74.PubMedPubMedCentralCrossRef
58.
Zurück zum Zitat Bloom SL, Dias KM, Bawdon RE, Gilstrap LC 3rd. The maternal-fetal transfer of lamivudine in the ex vivo human placenta. Am J Obstet Gynecol. 1997;176(2):291–3.PubMedCrossRef Bloom SL, Dias KM, Bawdon RE, Gilstrap LC 3rd. The maternal-fetal transfer of lamivudine in the ex vivo human placenta. Am J Obstet Gynecol. 1997;176(2):291–3.PubMedCrossRef
59.
Zurück zum Zitat Challier JC. Criteria for evaluating perfusion experiments and presentation of results. Contrib Gynecol Obstet. 1985;13:32–9.PubMedCrossRef Challier JC. Criteria for evaluating perfusion experiments and presentation of results. Contrib Gynecol Obstet. 1985;13:32–9.PubMedCrossRef
60.
Zurück zum Zitat Yuen GJ, Morris DM, Mydlow PK, Haidar S, Hall ST, Hussey EK. Pharmacokinetics, absolute bioavailability, and absorption characteristics of lamivudine. J Clin Pharmacol. 1995;35(12):1174–80.PubMedCrossRef Yuen GJ, Morris DM, Mydlow PK, Haidar S, Hall ST, Hussey EK. Pharmacokinetics, absolute bioavailability, and absorption characteristics of lamivudine. J Clin Pharmacol. 1995;35(12):1174–80.PubMedCrossRef
61.
Zurück zum Zitat van Leeuwen R, Lange JM, Hussey EK, Donn KH, Hall ST, Harker AJ, et al. The safety and pharmacokinetics of a reverse transcriptase inhibitor, 3TC, in patients with HIV infection: a phase I study. AIDS. 1992;6(12):1471–5.PubMedCrossRef van Leeuwen R, Lange JM, Hussey EK, Donn KH, Hall ST, Harker AJ, et al. The safety and pharmacokinetics of a reverse transcriptase inhibitor, 3TC, in patients with HIV infection: a phase I study. AIDS. 1992;6(12):1471–5.PubMedCrossRef
62.
Zurück zum Zitat Heald AE, Hsyu PH, Yuen GJ, Robinson P, Mydlow P, Bartlett JA. Pharmacokinetics of lamivudine in human immunodeficiency virus-infected patients with renal dysfunction. Antimicrob Agents Chemother. 1996;40(6):1514–9.PubMedPubMedCentralCrossRef Heald AE, Hsyu PH, Yuen GJ, Robinson P, Mydlow P, Bartlett JA. Pharmacokinetics of lamivudine in human immunodeficiency virus-infected patients with renal dysfunction. Antimicrob Agents Chemother. 1996;40(6):1514–9.PubMedPubMedCentralCrossRef
63.
Zurück zum Zitat Yuen GJ, Lou Y, Bumgarner NF, Bishop JP, Smith GA, Otto VR, et al. Equivalent steady-state pharmacokinetics of lamivudine in plasma and lamivudine triphosphate within cells following administration of lamivudine at 300 milligrams once daily and 150 milligrams twice daily. Antimicrob Agents Chemother. 2004;48(1):176–82.PubMedPubMedCentralCrossRef Yuen GJ, Lou Y, Bumgarner NF, Bishop JP, Smith GA, Otto VR, et al. Equivalent steady-state pharmacokinetics of lamivudine in plasma and lamivudine triphosphate within cells following administration of lamivudine at 300 milligrams once daily and 150 milligrams twice daily. Antimicrob Agents Chemother. 2004;48(1):176–82.PubMedPubMedCentralCrossRef
64.
Zurück zum Zitat Charles B, Norris R, Xiao X, Hague W. Population pharmacokinetics of metformin in late pregnancy. Ther Drug Monit. 2006;28(1):67–72.PubMedCrossRef Charles B, Norris R, Xiao X, Hague W. Population pharmacokinetics of metformin in late pregnancy. Ther Drug Monit. 2006;28(1):67–72.PubMedCrossRef
65.
Zurück zum Zitat Hughes RC, Gardiner SJ, Begg EJ, Zhang M. Effect of pregnancy on the pharmacokinetics of metformin. Diabet Med. 2006;23(3):323–6.PubMedCrossRef Hughes RC, Gardiner SJ, Begg EJ, Zhang M. Effect of pregnancy on the pharmacokinetics of metformin. Diabet Med. 2006;23(3):323–6.PubMedCrossRef
66.
Zurück zum Zitat Tertti K, Laine K, Ekblad U, Rinne V, Ronnemaa T. The degree of fetal metformin exposure does not influence fetal outcome in gestational diabetes mellitus. Acta Diabetol. 2014;51(5):731–8.PubMedCrossRef Tertti K, Laine K, Ekblad U, Rinne V, Ronnemaa T. The degree of fetal metformin exposure does not influence fetal outcome in gestational diabetes mellitus. Acta Diabetol. 2014;51(5):731–8.PubMedCrossRef
67.
Zurück zum Zitat Kovo M, Haroutiunian S, Feldman N, Hoffman A, Glezerman M. Determination of metformin transfer across the human placenta using a dually perfused ex vivo placental cotyledon model. Eur J Obstet Gynecol Reprod Biol. 2008;136(1):29–33.PubMedCrossRef Kovo M, Haroutiunian S, Feldman N, Hoffman A, Glezerman M. Determination of metformin transfer across the human placenta using a dually perfused ex vivo placental cotyledon model. Eur J Obstet Gynecol Reprod Biol. 2008;136(1):29–33.PubMedCrossRef
68.
Zurück zum Zitat de Oliveira Baraldi C, Lanchote VL, de Jesus Antunes N, de Jesus Ponte Carvalho TM, Dantas Moises EC, Duarte G, et al. Metformin pharmacokinetics in nondiabetic pregnant women with polycystic ovary syndrome. Eur J Clin Pharmacol. 2011;67(10):1027–33.PubMedCrossRef de Oliveira Baraldi C, Lanchote VL, de Jesus Antunes N, de Jesus Ponte Carvalho TM, Dantas Moises EC, Duarte G, et al. Metformin pharmacokinetics in nondiabetic pregnant women with polycystic ovary syndrome. Eur J Clin Pharmacol. 2011;67(10):1027–33.PubMedCrossRef
69.
Zurück zum Zitat Christensen T, Klebe JG, Bertelsen V, Hansen HE. Changes in renal volume during normal pregnancy. Acta Obstet Gynecol Scand. 1989;68(6):541–3.PubMedCrossRef Christensen T, Klebe JG, Bertelsen V, Hansen HE. Changes in renal volume during normal pregnancy. Acta Obstet Gynecol Scand. 1989;68(6):541–3.PubMedCrossRef
70.
Zurück zum Zitat Bailey RR, Rolleston GL. Kidney length and ureteric dilatation in the puerperium. J Obstet Gynaecol Br Commonw. 1971;78(1):55–61.PubMedCrossRef Bailey RR, Rolleston GL. Kidney length and ureteric dilatation in the puerperium. J Obstet Gynaecol Br Commonw. 1971;78(1):55–61.PubMedCrossRef
71.
Zurück zum Zitat Reznicek J, Ceckova M, Cerveny L, Müller F, Staud F. Emtricitabine is a substrate of MATE1 but not of OCT1, OCT2, P-gp, BCRP or MRP2 transporters. Xenobiotica. 2017;47(1):77–85.PubMedCrossRef Reznicek J, Ceckova M, Cerveny L, Müller F, Staud F. Emtricitabine is a substrate of MATE1 but not of OCT1, OCT2, P-gp, BCRP or MRP2 transporters. Xenobiotica. 2017;47(1):77–85.PubMedCrossRef
72.
Zurück zum Zitat Bousquet L, Pruvost A, Didier N, Farinotti R, Mabondzo A. Emtricitabine: Inhibitor and substrate of multidrug resistance associated protein. Eur J Pharm Sci. 2008;35(4):247–56.PubMedCrossRef Bousquet L, Pruvost A, Didier N, Farinotti R, Mabondzo A. Emtricitabine: Inhibitor and substrate of multidrug resistance associated protein. Eur J Pharm Sci. 2008;35(4):247–56.PubMedCrossRef
73.
Zurück zum Zitat De Sousa MM, Hirt D, Urien S, Valade E, Bouazza N, Foissac F, et al. Physiologically-based pharmacokinetic modeling of renally excreted antiretroviral drugs in pregnant women. Br J Clin Pharmacol. 2015;80(5):1031–41.CrossRef De Sousa MM, Hirt D, Urien S, Valade E, Bouazza N, Foissac F, et al. Physiologically-based pharmacokinetic modeling of renally excreted antiretroviral drugs in pregnant women. Br J Clin Pharmacol. 2015;80(5):1031–41.CrossRef
74.
Zurück zum Zitat Ceckova M, Reznicek J, Ptackova Z, Cerveny L, Muller F, Kacerovsky M, et al. Role of ABC and solute carrier transporters in the placental transport of lamivudine. Antimicrob Agents Chemother. 2016;60(9):5563–72.PubMedPubMedCentralCrossRef Ceckova M, Reznicek J, Ptackova Z, Cerveny L, Muller F, Kacerovsky M, et al. Role of ABC and solute carrier transporters in the placental transport of lamivudine. Antimicrob Agents Chemother. 2016;60(9):5563–72.PubMedPubMedCentralCrossRef
75.
Zurück zum Zitat Choi MK, Jin QR, Jin HE, Shim CK, Cho DY, Shin JG, et al. Effects of tetraalkylammonium compounds with different affinities for organic cation transporters on the pharmacokinetics of metformin. Biopharm Drug Dispos. 2007;28(9):501–10.PubMedCrossRef Choi MK, Jin QR, Jin HE, Shim CK, Cho DY, Shin JG, et al. Effects of tetraalkylammonium compounds with different affinities for organic cation transporters on the pharmacokinetics of metformin. Biopharm Drug Dispos. 2007;28(9):501–10.PubMedCrossRef
76.
Zurück zum Zitat Sata R, Ohtani H, Tsujimoto M, Murakami H, Koyabu N, Nakamura T, et al. Functional analysis of organic cation transporter 3 expressed in human placenta. J Pharmacol Exp Ther. 2005;315(2):888–95.PubMedCrossRef Sata R, Ohtani H, Tsujimoto M, Murakami H, Koyabu N, Nakamura T, et al. Functional analysis of organic cation transporter 3 expressed in human placenta. J Pharmacol Exp Ther. 2005;315(2):888–95.PubMedCrossRef
77.
Zurück zum Zitat Anoshchenko O, Prasad B, Neradugomma NK, Wang J, Mao Q, Unadkat JD. Gestational age-dependent abundance of human placental transporters as determined by quantitative targeted proteomics. Drug Metab Dispos. 2020;48(9):735–41.PubMedPubMedCentralCrossRef Anoshchenko O, Prasad B, Neradugomma NK, Wang J, Mao Q, Unadkat JD. Gestational age-dependent abundance of human placental transporters as determined by quantitative targeted proteomics. Drug Metab Dispos. 2020;48(9):735–41.PubMedPubMedCentralCrossRef
78.
Zurück zum Zitat Kovo M, Kogman N, Ovadia O, Nakash I, Golan A, Hoffman A. Carrier-mediated transport of metformin across the human placenta determined by using the ex vivo perfusion of the placental cotyledon model. Prenat Diagn. 2008;28(6):544–8.PubMedCrossRef Kovo M, Kogman N, Ovadia O, Nakash I, Golan A, Hoffman A. Carrier-mediated transport of metformin across the human placenta determined by using the ex vivo perfusion of the placental cotyledon model. Prenat Diagn. 2008;28(6):544–8.PubMedCrossRef
79.
Zurück zum Zitat Tertti K, Ekblad U, Heikkinen T, Rahi M, Ronnemaa T, Laine K. The role of organic cation transporters (OCTs) in the transfer of metformin in the dually perfused human placenta. Eur J Pharm Sci. 2010;39(1–3):76–81.PubMedCrossRef Tertti K, Ekblad U, Heikkinen T, Rahi M, Ronnemaa T, Laine K. The role of organic cation transporters (OCTs) in the transfer of metformin in the dually perfused human placenta. Eur J Pharm Sci. 2010;39(1–3):76–81.PubMedCrossRef
80.
Zurück zum Zitat Muller F, Weitz D, Mertsch K, Konig J, Fromm MF. Importance of OCT2 and MATE1 for the cimetidine-metformin interaction: insights from investigations of polarized transport in single- and double-transfected MDCK cells with a focus on perpetrator disposition. Mol Pharm. 2018;15(8):3425–33.PubMedCrossRef Muller F, Weitz D, Mertsch K, Konig J, Fromm MF. Importance of OCT2 and MATE1 for the cimetidine-metformin interaction: insights from investigations of polarized transport in single- and double-transfected MDCK cells with a focus on perpetrator disposition. Mol Pharm. 2018;15(8):3425–33.PubMedCrossRef
81.
Zurück zum Zitat Dallmann A, Ince I, Solodenko J, Meyer M, Willmann S, Eissing T, et al. Physiologically based pharmacokinetic modeling of renally cleared drugs in pregnant women. Clin Pharmacokinet. 2017;56(12):1525–41.PubMedCrossRef Dallmann A, Ince I, Solodenko J, Meyer M, Willmann S, Eissing T, et al. Physiologically based pharmacokinetic modeling of renally cleared drugs in pregnant women. Clin Pharmacokinet. 2017;56(12):1525–41.PubMedCrossRef
82.
Zurück zum Zitat Jogiraju VK, Avvari S, Gollen R, Taft DR. Application of physiologically based pharmacokinetic modeling to predict drug disposition in pregnant populations. Biopharm Drug Dispos. 2017;38(7):426–38.PubMedCrossRef Jogiraju VK, Avvari S, Gollen R, Taft DR. Application of physiologically based pharmacokinetic modeling to predict drug disposition in pregnant populations. Biopharm Drug Dispos. 2017;38(7):426–38.PubMedCrossRef
83.
Zurück zum Zitat Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J. 2013;15(4):1012–24.PubMedPubMedCentralCrossRef Xia B, Heimbach T, Gollen R, Nanavati C, He H. A simplified PBPK modeling approach for prediction of pharmacokinetics of four primarily renally excreted and CYP3A metabolized compounds during pregnancy. AAPS J. 2013;15(4):1012–24.PubMedPubMedCentralCrossRef
85.
Zurück zum Zitat Mian P, Allegaert K, Conings S, Annaert P, Tibboel D, Pfister M, et al. Integration of placental transfer in a fetal-maternal physiologically based pharmacokinetic model to characterize acetaminophen exposure and metabolic clearance in the fetus. Clin Pharmacokinet. 2020;59(7):911–25.PubMedPubMedCentralCrossRef Mian P, Allegaert K, Conings S, Annaert P, Tibboel D, Pfister M, et al. Integration of placental transfer in a fetal-maternal physiologically based pharmacokinetic model to characterize acetaminophen exposure and metabolic clearance in the fetus. Clin Pharmacokinet. 2020;59(7):911–25.PubMedPubMedCentralCrossRef
86.
Zurück zum Zitat Freriksen JJM, Schalkwijk S, Colbers AP, Abduljalil K, Russel FGM, Burger DM, et al. Assessment of maternal and fetal dolutegravir exposure by integrating ex vivo placental perfusion data and physiologically-based pharmacokinetic modeling. Clin Pharmacol Ther. 2020;107(6):1352–61.PubMedPubMedCentralCrossRef Freriksen JJM, Schalkwijk S, Colbers AP, Abduljalil K, Russel FGM, Burger DM, et al. Assessment of maternal and fetal dolutegravir exposure by integrating ex vivo placental perfusion data and physiologically-based pharmacokinetic modeling. Clin Pharmacol Ther. 2020;107(6):1352–61.PubMedPubMedCentralCrossRef
87.
Zurück zum Zitat Modena AB, Fieni S. Amniotic fluid dynamics. Acta Biomed. 2004;75(Suppl 1):11–3.PubMed Modena AB, Fieni S. Amniotic fluid dynamics. Acta Biomed. 2004;75(Suppl 1):11–3.PubMed
88.
Zurück zum Zitat Hague WM, Davoren PM, McIntyre D, Norris R, Xiaonian XCB. Metformin crosses the placenta: a modulator for fetal insulin resistance? BMJ. 2003;327:880.CrossRef Hague WM, Davoren PM, McIntyre D, Norris R, Xiaonian XCB. Metformin crosses the placenta: a modulator for fetal insulin resistance? BMJ. 2003;327:880.CrossRef
Metadaten
Titel
Prediction of Maternal and Fetal Acyclovir, Emtricitabine, Lamivudine, and Metformin Concentrations during Pregnancy Using a Physiologically Based Pharmacokinetic Modeling Approach
verfasst von
Khaled Abduljalil
Amita Pansari
Jia Ning
Masoud Jamei
Publikationsdatum
24.01.2022
Verlag
Springer International Publishing
Erschienen in
Clinical Pharmacokinetics / Ausgabe 5/2022
Print ISSN: 0312-5963
Elektronische ISSN: 1179-1926
DOI
https://doi.org/10.1007/s40262-021-01103-0

Weitere Artikel der Ausgabe 5/2022

Clinical Pharmacokinetics 5/2022 Zur Ausgabe