Skip to main content
Erschienen in: Molecular Cancer 1/2020

Open Access 01.12.2020 | Review

Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy

verfasst von: Daixi Ren, Yuze Hua, Boyao Yu, Xin Ye, Ziheng He, Chunwei Li, Jie Wang, Yongzhen Mo, Xiaoxu Wei, Yunhua Chen, Yujuan Zhou, Qianjin Liao, Hui Wang, Bo Xiang, Ming Zhou, Xiaoling Li, Guiyuan Li, Yong Li, Zhaoyang Zeng, Wei Xiong

Erschienen in: Molecular Cancer | Ausgabe 1/2020

Abstract

Immune checkpoint blockade targeting PD-1/PD-L1 has promising therapeutic efficacy in a variety of tumors, but resistance during treatment is a major issue. In this review, we describe the utility of PD-L1 expression levels, mutation burden, immune cell infiltration, and immune cell function for predicting the efficacy of PD-1/PD-L1 blockade therapy. Furthermore, we explore the mechanisms underlying immunotherapy resistance caused by PD-L1 expression on tumor cells, T cell dysfunction, and T cell exhaustion. Based on these mechanisms, we propose combination therapeutic strategies. We emphasize the importance of patient-specific treatment plans to reduce the economic burden and prolong the life of patients. The predictive indicators, resistance mechanisms, and combination therapies described in this review provide a basis for improved precision medicine.
Hinweise
Daixi Ren, Yuze Hua and Boyao Yu contributed equally to this work.
A correction to this article is available online at https://​doi.​org/​10.​1186/​s12943-020-01148-y.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ANC
Absolute Neutrophil Counts
APC
Antigen-Presenting Cell
ATRA
All-Trans-Retinoic Acid
CCR2+ HSCs
Hematopoietic Stem Cells Expressing Type 2 C-C Chemokine Receptor
CRC
Colorectal Cancer
EGFR
Epidermal Growth Factor Receptor
G-CSF
Granulocyte Colony-Stimulating Factor
HDAC
Histone Deacetylase
ICD
Immunogenic Cell Death
MDSC
Myeloid-Derived Suppressor Cell
MHC
Major Histocompatibility Complex
MMR
Mismatch Repair
MMR-D
Mismatch Repair Defects
MSI-H
High Microsatellite Instability
NLR
Neutrophil-to-Lymphocyte Ratio
NSCLC
Non-Small-Cell Lung Cancer
OS
Overall Survival
RCC
Renal Cell Cancer
TCIR
T Cell Inhibitory Receptors
TIL
Tumor-Infiltrating Lymphocytes
TMB
Tumor Mutation Burden

Background

Immunotherapy for cancer has unique advantages, including its precision and minimal side effects [1]. Tumor immunotherapy aims to eliminate tumors by enhancing the body’s own immunity. Tumors, on the other hand, evade attack by the immune system through a series of mechanisms known as “immune escape” [2]. The B7 family member, B7-H1 (PD-L1), plays an important role in this process [35]. PD-1, an immune checkpoint protein on T cells, binds to PD-L1 on tumor cells, promoting immune escape [68]. PD-1/PD-L1 blockade was a major breakthrough in cancer therapy. However, in many tumors, including non-small-cell lung cancer (NSCLC), renal cell cancer (RCC), and melanoma, PD-1/PD-L1 blockade therapy is only effective in a small proportion of patients [9]. Most patients do not respond to anti-PD-1 therapy (primary resistance), exhibit some initial sensitivity (adaptive resistance), or acquire resistance after relapse [10]; for example, one-quarter to one-third of patients with melanoma exhibit relapse and do not respond well to treatment (Table 1) [11]. Accordingly, resistance is a major limitation of anti-PD-1 therapy in clinical practice. To facilitate precision medicine and burden reduction in patients, we provide examples of curative effect biomarkers and resistance mechanisms against anti-PD-1 therapy. We further discuss combined treatments with the potential to improve efficacy.
Table 1
Representative FDA-approved immunological checkpoint inhibitors
Generic name
Trade name
Target
Application
pembrolizumab
Keytruda
PD-1
melanoma, non-small cell lung cancer, head and neck squamous cell cancer, classical Hodgkin lymphoma, primary mediastinal large B-cell lymphoma, microsatellite instability-high cancer, gastric cancer, cervical cancer, hepatocellular carcinoma, Merkel cell carcinoma, renal cell carcinoma, urothelial carcinoma
nivolumab
Opdivo
PD-1
metastatic small cell lung cancer, metastatic melanoma, metastatic urothelial carcinoma, metastatic colorectal cancer, hepatocellular carcinoma, metastatic nonsmall cell lung cancer, advanced renal cell carcinoma, classical Hodgkin lymphoma, metastatic squamous cell carcinoma of the head and neck
ipilimumab
Yervoy
CTLA-4
advanced renal cell carcinoma, adult and pediatric microsatellite instability-high or mismatch repair-deficient metastatic colorectal cancer, cutaneous melanoma, unresectable or metastatic melanoma
atezolizumab
Tecentriq
PD-L1
urothelial carcinoma, non-small cell lung cancer, triple-negative breast cancer, small cell lung cancer
avelumab
Bavencio
PD-L1
metastatic Merkel cell carcinoma, locally advanced or metastatic urothelial carcinoma [10]

Predictive biomarkers of the efficacy of PD-1 blockade therapy

PD-1/PD-L1 expression

The combination of PD-1 and PD-L1 often leads to tumor immune escape [12]. Inhibiting immune suppression mediated by the PD-1 pathway is the basic principle of anti-PD-1/PD-L1 therapy. PD-L1 expression on tumor cells has high predictive value in melanoma and NSCLC and significance in angiosarcoma [13, 14]. In gastric cancer with high microsatellite instability (MSI-H), PD-L1 expression by immune cells is an important indicator of overall survival (OS) [15]. Decitabine improves the efficacy of anti-PD-1 therapy because PD-L1 in lung cancer cells is increased by IFN [16]. However, PD-L1 has the opposite effect when it exceeds a certain threshold; aromatic hydrocarbon receptor-induced PD-L1 overexpression in NSCLC reduces the efficacy of anti-PD-1 [17]. Valentinuzzi et al. found that patients with melanoma and moderate PD-L1 expression have the best response to anti-PD-1 therapy [18]. Furthermore, PD-1/PD-L1 levels may predict the efficacy of radiotherapy in head and neck cancers [19].
However, quantitative detection of PD-L1 as a prediction index requires antibodies and staining platforms [2022], which contribute to differences in the accuracy of PD-L1 levels and may affect predictive value.

Antigen recognition initiates the immune response

The activation of adaptive immunity requires antigen recognition. Therefore, increased antigen recognition indicates a more active immune response [23]. The main predictors are MSI and tumor mutation burden (TMB).
Defective DNA mismatch repair (MMR) can cause MSI [24]. High MSI is associated with increased neoantigen production by tumors, greater immunogenicity, and stronger immune response. MSI is an excellent predictive biomarker, and the FDA has approved pembrolizumab to treat unresectable solid tumors with MSI-H or MMR defects (MMR-D) [25]. MSI frequency can also be used for tumor typing [26].
In a clinical trial of recurrent or metastatic colorectal cancer (CRC), patients with high MMR/MSI had better responses to immune checkpoint blockade [27]. MMR-D induction can reverse immunotherapy resistance in patients with pancreatic ductal adenocarcinoma [28]. The difference in MSI and the mutation load caused by MMR-D may explain differences in immunotherapy response. Efficacy is also related to the insertion-deletion mutation burden [29].
TMB, the total number of mutations per megabase in coding regions of tumor cells, is another predictor of therapeutic efficacy [3032]. Patients with MSI-H tend to have a high TMB, and both parameters reflect instability in tumor cells. Whole exome sequencing can be used to measure exonic mutations in tumor cells comprehensively [33]. Keiichi et al. found that targeted genome sequencing can also be used to measure TMB [34]. TMB and other markers, including frameshifts and PD-L1 expression, are frequently used in clinical settings due to their strong correlation with anti-PD-L1/PD-1 drug effectiveness [3539]. In intrahepatic cholangiocarcinoma with poor prognosis, patients with high TMB can even achieve complete remission with anti-PD-1 [40]. High TMB may indicate that new neoantigens can be produced by tumor cells to activate T cells suppressed by immune checkpoints [41, 42].
Similar to MMR proteins, POLE can repair errors caused by DNA replication. Mutant POLE is more easily detected by the immune system. Patients with endometrial carcinoma and POLE mutations have improved responses to treatment, and the POLE mutant subtype has better predictive value than the MSI subtype [43, 44]. However, effective methods to predict POLE mutations are needed.

Functional status of immune cells is related to anti-tumor immunity

Cytokines play important roles in the differentiation, maturation, and migration of various immune cells. Cytokine detection has predictive value for PD-1/PD-L1 therapy efficacy. Interferons and other cytokines are involved in killing or inhibiting tumor cells. TGF-β can inhibit the anti-tumor immune response and promote tumor cell escape. The blocking of TGF-β signaling can reverse insensitivity to anti-PD-1 therapy in CRC and prevent metastasis [45]. Similar results have been seen in bladder cancer [46]. Additionally, IFN-γ up-regulates major histocompatibility complex (MHC) II in antigen-presenting cells (APCs), enhances the production of CTLs, and up-regulates PD-L1 expression in tumor cells [47]. Its effects may be achieved via the JAK-STAT pathway [48]. IFN-γ is indispensable for anti-PD-1 treatment due to its role in the fragility of Tregs [49, 50]. Increased IFN can improve the efficacy of anti- pd-1 therapy [51]. High IFN-γ levels predict improved response to anti-PD-1 therapy in NSCLC [52]. Moreover, deficiency of IFN- signaling may cause tumor cells to resist other immune checkpoints [53]. Accordingly, IFN-γ levels may be used to screen patients who are likely to benefit from anti-PD-1 inhibitors.
Immunotherapy affects various cell and protein levels in the blood. These changes indicate immune cell status, which can predict the efficacy of immunotherapy. Significant changes in the percentage of KI-67+ cells among peripheral blood PD-1+CD8+ T cells predict long-lasting clinical benefits and prolonged progression-free survival in patients with thymic epithelial tumors [54]. Patients with melanoma and high C-reactive protein and absolute neutrophil counts (ANC) have a good response to treatment, and both parameters decrease after treatment [55]. However, unlike C-reactive protein levels, high ANC levels are not associated with better outcomes based on a large-scale analysis of clinical samples; when it exceeds a certain value (> 8000), prognosis is poor [56]. However, another study showed that reduced ANC after treatment is associated with cancer control [57]. The neutrophil-to-lymphocyte ratio (NLR) is often used to predict immunotherapy efficacy, and a lower baseline NLR is associated with better prognosis in patients with NSCLC and melanoma treated with nivolumab [56, 57]. Additional clinical trials are needed to identify predictive biomarkers in the blood.

Infiltration of immune cells in the tumor microenvironment is a prerequisite for anti-tumor immunity

Activated T cell recruitment to tumor sites is necessary for their function in tumor cell killing. The efficacy of anti-PD-1 immunotherapy can be predicted according to the degree of immune cells infiltration, determined by two main factors: (1) chemokines (e.g., CCR5, CXCR3, CX3CR1, and CXCR6 are related to the migration of CTLs to tumor sites) and (2) entry through tumor blood vessels.
Tumor-infiltrating lymphocytes (TILs) differ from normal peripheral blood immune cells with respect to surface molecule expression, subtypes, and CD4+ and CD8+ T cell populations. PD-L1 expression differs significantly among tumors and is correlated with the distribution of invasive immune cells [5861]. PD-L1 expression is positively correlated with TIL density in esophageal squamous cell carcinoma [62]. Anti-PD-1 therapy may be related to the degree of tumor-invasive immune cell infiltration, and an increase in local T cells can enhance anti-cancer effects [63]. High-density invasive CD8+ T cells are associated with prolonged OS in GC and CRC with ovarian metastases [64]. Induced T cell proliferation can relieve non-response to anti-PD-1 or PD-L1 therapy in pancreatic ductal adenocarcinoma [65]. In heterotypic tumor-stroma spheroids, the effect of blocking PD-1 can be increased by increasing TILs [66]. In limited clear cell RCC, two infiltrating T cell subtypes may be used to screen patients who may benefit from immunotherapy [67]. Recently, 37 genes in tumor-associated macrophages that differed between breast cancer tissues and healthy controls were candidate loci for predicting survival [68]. Interestingly, Jin et al. found that CD3+ T cells exhibit greater infiltration in PD-1+ tumors with MSI in Signet ring cell carcinoma, suggesting that there is a positive correlation between MSI and TILs [69]. Furthermore, EC with POLE mutations and MSI has more neoantigen and T cell infiltration, further demonstrating the association between these indicators and their value in predicting PD-1/PD-L1 blockade efficacy [44, 70].
IDO1, another immune checkpoint protein, promotes the catabolism of tryptophan to inhibit T cells [71]. And IDO1 may be related to T cell infiltration [72]. Furthermore, anti-tumor T cells can be suppressed by Tregs and myeloid-derived suppressor cells (MDSCs) via IDO1, promoting tumor immune evasion [73]. In GIST and soft tissue sarcoma, activation of the IDO1 pathway causes immune suppression, decreasing the efficacy of anti-PD-1 therapy [74]. IDO1 has predictive value in some tumors and can be used to stratify and define some cancers [72, 75, 76]. These findings suggest that IDO1 is a good predictive biomarker and a new approach to cancer treatment (Fig. 1).

Intestinal microbial flora affects host immune function

The intestinal microbiome plays a role in PD-1 blockade therapy. Bactericides can alter the effectiveness of anti-CTLA-4 treatment for melanoma [77]. Jin et al. found a strong correlation between the diversity of the intestinal microbiome and anti-PD-1 in advanced NSCLC. The gut microbiome may improve prognosis by increasing peripheral T and NK cells. Patients with melanoma and particular intestinal microbiome components may respond well to anti-PD-1 therapy. Increased efficacy of anti-PD-1 therapy has also been detected in sterile mice receiving fecal transplants from responsive patients [78, 79]. The intestinal microbiome may induce dendritic cell secretion of IL-12, increase CD4+ and CD8+ T cells, and promote TIL infiltration to improve the efficacy of anti-PD-1 in patients with melanoma [78, 80]. Progression-free survival and OS in the antibiotic treatment group were significantly shortened in advanced NSCLC, RCC, and urothelium carcinoma treated with PD-1/PD-L1 monoclonal antibody-based biotherapeutics [80]. The intestinal microbiome regulates the response to anti-PD-1 therapy, but the expression of PD-1 also affects the composition of the intestinal microbiome [81, 82]. Gastrointestinal immune-related adverse events, a common complication of anti-PD-1 therapy, disrupt the intestinal microbiome, which can lead to drug resistance [83, 84]. Routy et al. found a positive correlation between Akkermansia muciniphila and the efficacy of PD-1/PD-L1 blockade in lung cancer and RCC, and a positive response to immunotherapy in mice given oral bacterial supplementation [80]. Further research should focus on the detection of microbial taxa in the gastrointestinal tract with predictive value for anti-PD-1 responses and the use of fecal transplantation as an adjunct therapy.

Mechanism underlying resistance to PD-1/PD-L1 blockade

T cell dysfunction-mediated resistance

Various processes, including recognition, activation, differentiation, and chemotaxis, are needed for T cells immune function. The disruption of one or several of these processes leads to T cell dysfunction and tumor immune escape. First, initial T cells must successfully identify tumor antigens presented by APCs. Next, the activation of primary T cells requires the antigen-MHC complex and the binding of B7 and CD28 on the cell surface, providing an important second signal. Finally, differentiated T cells migrate to specific tissues to perform immune functions and contribute to PD-1 blockade therapy resistance.

Antigen recognition disorders

Mutations in beta-2-microglobulin (B2M) disrupt antigen presentation, leading to immune checkpoint blockade therapy resistance. The deletion of B2M in animal models results in the deletion of HLA1 molecules, and approximately 29.4% of patients with progressive drug-resistant diseases have B2M abnormalities in clinical practice. Various mutations can result in a lack of tumor-specific B2M, especially a loss of heterozygosity. The B2M protein is an irreplaceable HLA1 molecule, and a lack of B2M negatively affects tumor antigen presentation and contributes to resistance to anti-PD-1 therapy [8587]. Moreover, an increase in PD-1+ T cell infiltration is significantly correlated with an increase in B2M mutations, indicating that drug resistance caused by B2M mutation is associated with PD-1+ T cell infiltration [88]. In addition to B2M mutations, limited antigen presentation is related to the autonomous expression of MHCII. In MHCII+ tumor microenvironments, the infiltration of CD4+ T cells increases and LAG3 (an MHCII inhibitory receptor)-induced TIL expression increases, thereby limiting antigen presentation and promoting resistance to anti-PD-1 therapy (Fig. 2) [89, 90].

T cell activation disorders

Shayan et al. found that after blocking PD-1/PD-L1, TIM-3 expression, another immune checkpoint, is upregulated, inhibiting the activation of T cells by inhibiting the phosphorylation of AKT/S6, leading to a decreased immunotherapeutic response [91]. TNF is essential for the expression of TIM-3 in TILs, and its compensatory expression is upregulated after blocking PD-1, thereby inducing TIM-3 expression [92]. In melanoma, anti-PD-1 treatment also increases the inhibitory immune checkpoint, VISTA, that synergistically inhibits T cell activation with PD-L1, leading to adaptive resistance; its expression is higher than that of PD-L1 in CRC [93].
Furthermore, changes in specific genes can also cause T cell activation disorders. Up to one-third of melanomas are accompanied by PTEN deletion, for which the mechanisms include gene mutations and deletions, loss of chromatin, loss of heterozygosity, and epigenetic changes such as hypermethylation-induced transcriptional silencing [94100]. PTEN itself negatively regulates the PI3K/AKT pathway and down-regulates PD-L1 expression. In melanoma, PTEN deletion promotes AKT phosphorylation, thereby promoting PI3K/AKT pathway activation, and ultimately promotes PD-L1 expression, thereby inactivating T cells. Additionally, PTEN inhibits the expression of immunosuppressive factors IL-10, IL-16, and VEGF through the PI3K/AKT-dependent pathway, and its deletion promotes the activation of the PI3K/AKT pathway, thereby activating STAT3 and eventually increasing IL-10, IL -16, VEGF, and CCL2. Meanwhile, PTEN inhibits the production of the proinflammatory cytokine IL-12 by dendritic cells, forming a suppressive immune microenvironment that inhibits the activation of T cells [94, 101]. In glial tumors and glioblastomas, PTEN deletion activates the PI3K/AKT-mTOR pathway by promoting the activation of ribosomal protein S6 kinase β-1 (S6K1), thereby promoting PD-L1 translation. Thus, PTEN deletion also deactivates T cells [102].
When PTEN is silenced, PI3K pathway blockade can reduce the activation of AKT, thereby relieving resistance to anti-PD-1 therapy [94]. The blockade of PD-1/PD-L1 results in the adaptive reprogramming of genes in the tumor immune microenvironment, where the up-regulation of CD38 on T cell surfaces leads to resistance [103]. CD38 activation of adenosine receptors by all-trans-retinoic acid (ATRA) inhibits T cell function via adenosine expression [103]. Because adenosine is a strong immunosuppressive substance, it inhibits effector T cell immune function by cytokine secretion and inhibits T cell proliferation [104]. CD73 binding to adenosine receptor 2A on T cells produces adenosine, inhibiting the immune response to PD-1/PD-L1 blockade [105]. Some interleukins have a negative regulatory role in T cell function. IL-35 inhibits the expression of cytotoxic genes in CD8+ T cells and reduces cytolytic and noncytolytic functions [106]. Recent studies have shown that the Notch signaling pathway may inhibit FASL and perforin, resulting in decreased activity and dysfunction of CD8+ T cells (Fig. 3) [107].

Decrease in T cell infiltration

A decrease in effector T cells in the tumor microenvironment also contributes to resistance to anti-PD-1 therapy. Tumors are characterized by the upregulation of IL-6, granulocyte colony-stimulating factor (G-CSF), and CLCX1 by increasing IL-17A expression. IL-6 promotes tumor proliferation. G-CSF increases tumor-associated neutrophils and decreases CD4+ and CD8+ T cells in the tumor microenvironment. IL-17A+ tumor tissues are also significantly less reactive to PD-1 antibodies in clinical samples [108]. Additionally, the absence of PTEN increases VEGF expression. Elevated VEGF promotes abnormal tumor angiogenesis, which reduces perfusion in blood vessels, causing a hypoxic environment and inhibiting T cell infiltration [109112]. Therefore, the absence of PTEN may reduce the infiltration of CD8+ T cells by upregulating VEGF, leading to resistance to PD-1 therapy [94]. MDSCs are negatively correlated with CD4+ and CD8+ T cell infiltration and are an important factor in decreased T cell infiltration [113]. Additionally, the presence of immunosuppressive tumor stroma, especially in some solid tumors, makes it difficult for T cells to infiltrate, limiting the efficacy of PD-1 blockade immunotherapy. Irreversible electroporation of the tumor matrix can address this issue [114]. Therefore, immunosuppressive tumor stroma should be studied further (Fig. 4).

T cell depletion leads to resistance to PD-1 blockade therapy

T cells play a major role in tumor immunity but, in long-term diseases, the dysregulation of T cell subsets or decreases in mature T cells can occur, known as “T cell depletion” [115]. Many mechanisms explain this process, including increased co-inhibitory receptors on T cell surfaces and epigenetic changes in memory T cells. In anti-tumor immunity, chronic persistent type II interferon signaling enables STAT1 tumor-related epigenetic changes, resulting in increased expression of interferon-stimulated genes and inhibitory receptors (TCIRs) on multiple T cells, including LGALS9 (Galectin-9), MHCII ligands, and immune inhibitory checkpoints, including TIM3 and LAG3. Increased co-expression of multiple TCIRs aggravates T cell depletion. Blocking interferons can reverse resistance caused by T cell depletion [116]. Konen and others have found that NTRK is upregulated by anti-PD-1 therapy. NTRK abnormally activates the JAK-STAT signaling pathway, upregulates the expression of multiple inhibitory receptors on T cell surfaces, including PD-1, and promotes T cell depletion [117]. Tregs also promote the expression of CD8+ T cell depletion-related gene expression via IL-10 and IL-35. Sawant et al. found that IL-10 regulates the STAT pathway and IL-35 regulates the STAT1\4 pathway, further altering the expression of BLIMP1 and its target genes. BLIMP1 enhances the expression of inhibitory receptors in T cells and promotes T cell depletion (Fig. 5) [118].

Resistance caused by changes in PD-L1 expression

The response to PD-1/PD-L1 blockade therapy is better in tumors with PD-L1-positive expression [9]. Both membrane expression and secretion exosomes containing PD-L1 may contribute to resistance. PD-1 blockade therapy can result in the upregulation of PD-L1 expression, causing drug resistance. The insufficient antibodies do not completely block PD-1/PD-L1. Conversely, low PD-L1 expression reduces therapeutic efficacy; this may be explained by other immune escape mechanisms.
The JAK/STAT pathway is critical for PD-L1 expression and drug resistance [119121]. Because JAK/STAT up-regulates the expression of PD-L1, it also plays an important role in tumor antigen expression. JAK1 is essential for both IFN-γ-mediated immune responses and MHCI/II expression, whereas JAK2 contributes to IFN-γ-induced STAT5 phosphorylation and PD-L1 expression, and mutations disrupt antigen presentation [122]. In addition to the JAK/STAT pathway, other factors cause changes in PD-L1 expression. In large B lymphoma, miR155 binds to the 3′-UTR of PD-L1 to increase its expression and inhibits CD8+ T cell activity through the ERK and AKT pathways. Similar effects have been found with miR-142-5p in pancreatic cancer; however, miR-142-5p overexpression inhibits tumor cell PD-L1 expression and enhances tumor immunity [123].
In melanoma, resistance due to JAK1/JAK2 inactivation mutations, leading to recurrence, has been found in a small number of patients [87, 119]. Patients with JAK1/2 mutations can develop drug resistance, irrespective of TMB [124126]. JAK1/2 regulates the chemokines CXCL9, CXCL10, and CXCL11 [127]. Deletion of the tumor suppressor CDKN2A, one of the most frequently lost tumor suppressor genes in human cancers, increases the likelihood of JAK2 deletion and resistance to immunotherapy [128].
Many factors lead to the adaptive up-regulation of PD-1 and drug resistance. In a mouse model of KP mutant lung cancer, neurotrophic tyrosine receptor kinase 1 (NTRK1) expression increased significantly after treatment with a PD-1 inhibitor, and NTRK1 promoted abnormal JAK1 and STAT3 activation. Excessive JAK/STAT pathway activation leads to PD-L1 up-regulation [117]. In NKT cell lymphoma, after PD-1 blockade, the JAK/STAT pathway is activated via IFN-γ secreted by TILs, promoting PD-L1 expression [48]. In most patients with lung cancer and non-T790 M-mediated epidermal growth factor receptor (EGFR) mutations, the downstream JAK/STAT, AKT/mTOR, and mitogen-activated protein kinase (MAPK)1 pathways are not activated, resulting in unexpressed PD-L1 and resistance to PD-1 blockade therapy [129135]. However, the JAK pathway also promotes inflammation and other functions in the tumor microenvironment [136]. We cannot rule out the effects of the inflammatory response on PD-L1 and therapeutic efficacy. Mutations in the serine/threonine-protein kinase gene, BRAF, in tumors also increase PD-L1 expression and induce drug resistance involving tumor stromal cells. BRAF mutations also lead to constitutive activation of the MAPK pathway, enhance the oncogenic activity, increase invasiveness and metastasis, and cause resistance [137].
PD-L1 exosomes have been detected in a variety of cancers, including melanoma and head and neck cancer [119, 138]. High IFN-γ levels are associated with drug resistance [119]. Other studies have shown that the increase in PD-L1 is mainly due to exosomes, rather than membrane expression. Exosomes may even induce the expression of T cell depletion markers. Immunotherapy results in TNF-α production and T cell accumulation in tumors, promotes histone methylase EZH2 activity in melanoma, decreases immunogenicity, silences antigen-presentation, and up-regulates PD-L1 expression. After the inactivation of EZH2, resistance is reversed by the continuous aggregation of CD8+ T cells with low PD-1 and IFN-γ levels [139]. In lung adenocarcinoma, EZH2-positive patients show high PD-L1 expression [140]. In mice, TNF can promote EZH2 expression in tumor cells and trigger tumor recurrence [92, 141]. In patients with metastatic melanoma treated with PD-1, TNF expression is increased, and there is a strong positive correlation between TNF and PDCD1LG1 (encoding PD-L1). TNF-α increases PD-L1 stability by activating COP9 signal 5 [142].
PD-L1 also has a direct effect on tumors. It binds to the surfaces of tumor cells via integrin-binding β4 (ITGB4) and activates the protein kinase/GSK3β signaling pathway, thereby inducing the transcriptional repression of SNAI1. SNAI1 regulates SIRT3, epithelial-mesenchymal transition-related genes, and glucose metabolism and promotes lymphatic metastasis. That is, PD-L1 promotes tumor growth and metastasis via ITGB4/SNAI1/SIRT3 signaling, and this is one of the main causes of PD-L1 resistance [143]. This suggests that targeting PD-1/PD-L1 in combination with downstream factors, including ITGB4, can enhance the immunological efficacy of PD-1/PD-L1 (Fig. 6).

Combination therapy to improve the efficacy of PD-1/PD-L1 blockade

Based on the aforementioned mechanisms underlying resistance to PD-1 blockade therapy, we explore candidate targets for combined PD-1 immunotherapy, providing new hope for improving the therapeutic efficacy through increasing T cell proliferation and enhancing immune cell function.

Combination therapeutic strategies to enhance T cell activation

Two strategies can enhance T cell activation: enhancing tumor immunogenicity and enhancing the activation of co-stimulatory signals on primitive and memory T cells.
The induction of immunogenic cell death (ICD) has been proposed as an effective way to enhance tumor immunogenicity. Dying tumor cells can express or release extensive immunostimulation damage-associated molecular patterns. This process also releases high mobility box 1 (HMGB1) and ATP to attract and activate APCs. Calreticulin on the surface of dead cells transmits an ‘eat-me’ signal to phagocytic cells to activate macrophages, ultimately leading to enhanced tumor immunogenicity and immune responses. There is a significant synergistic effect between the induction of ICD and PD-1 blockade [144148]. In addition to ICD, Kim et al. suggested that the restoration of the function of the tumor suppressor p53 can also enhance tumor cell immunogenicity, thereby enhancing the innate and adaptive immune response and counteracting tumor-induced immunosuppression. Additionally, heterogeneous hypersensitivity reactions associated with PD-1 antibodies are alleviated, which can alleviate the side effects of PD-1 treatment [149153].
Various molecules that enhance co-stimulatory signaling for T cell activation have been identified. Chimeric antigen receptor T cells edited by the CRISPR/Cas9 gene directed against the B2M mutation proposed above can significantly increase anti-tumor activity [154].
Inhibitor of apoptosis protein (IAP) has extensive biological functions, including the regulation of migration, apoptosis, and signal transduction and the promotion of inflammation. IAP antagonists, including Smac mimetics, can enhance the activation and proliferation of effector T cells by enhancing CD3/CD28 co-stimulation [107]. Additionally, bone marrow-derived hematopoietic stem cells expressing type 2 C-C chemokine receptor (CCR2+ HSCs) preferentially migrate to tumor tissues and differentiate into APCs in the tumor microenvironment. The presentation of tumor-derived antigens to CD8+ T cells overcomes resistance to PD-1 checkpoint blockade [155]. Histone deacetylases (HDAC) are a therapeutic target for a variety of cancers. The inhibition of HDAC6 activates the AKT/mTOR/p65 pathway and up-regulates BCL-6, Eomes, HIF-1, and T-bet, thereby increasing the expression of co-stimulatory molecules (CD28, 41bb, CD40L, OX40, and CD38) and activation of antigen-specific memory T cells [156]. B-type TILs are good prognostic markers for most cancers [157]. Soldevilla et al. proposed that the injection of activated B lymphocytes in combination with anti-PD-1 agents could improve therapeutic efficacy. Combined with anti-PD-1 treatment, it is possible to provide multiple costimulatory ligands in the tumor and activate the systemic anti-tumor immune response, with superior anti-tumor effects (Fig. 7) [158].

Combination therapeutic strategy to enhance T immune cell function and infiltration

Activated T cells need to infiltrate the tumor tissue to exert anti-tumor effects, alone or in combination with other immune cells. We next discuss factors that increase the density of T cells in tumor tissues and enhance immune cell function.
The inflammatory response increases following IAP blockade, thereby stimulating CTLs and mononuclear/macrophage TNF production and enhancing tumor cell killing [107]. Blocking IAP acts synergistically with anti-PD-1 treatment to enhance anti-tumor immunity. In addition to IAP, IL-15, CD96, CD47, and CD137 affect immune cell activity and have potential therapeutic applications. When IL-15 is activated, the number and activity of CD8+ T and NK cells increase [159]. CD96 regulates the effects of NK cells and metastasis. CD96-deficient CD8+ T cells are superior to CD96-sufficient CD8+ T cells at suppressing tumors, and the co-expression of CD96 and PD-1 has been detected in both mouse and human TILs, suggesting an immune-inhibitory effect. Blocking CD96 can significantly enhance the interaction between NK and T cells and increase their anti-tumor effect [160]. Blocking CD47 also increases the reactivity of anti-tumor T and NK cells and increases the release of various cytokines, including IFN-γ and IL-6. Moreover, the simultaneous blocking of CD47 and PD-1 can further prevent the immune escape of circulating tumor cell subsets, thereby inhibiting metastasis [161, 162]. Rodríguez-Ruiz et al. proposed that combined anti-PD1 and anti-CD137 treatment increases granzyme-B secreted by CTLs, indicating an improved cytotoxic effect [163]. RANKL, which blocks NF-κB ligands, can increase the anti-metastatic activity of antibodies targeting PD1/PD-L1, and the combination of anti-PD1 and anti-RANKL agents can recruit NK cells to promote the synergy between NK cells and TILs. This increases the secretion of interferon and tumor killing factors [164]. Low PD-L1 expression is also a major cause of poor PD-1 blocking; accordingly, co-inhibitory receptors are a promising area of research. The newly discovered T cell B7 family immune checkpoint, HHLA2, is a co-therapeutic target for PD-L1, improving the number and activity of T cells in the tumor microenvironment [165]. Another co-inhibitory receptor, KLRG1, expressed on late-differentiated effector cells and CD8+ T and NK cells, is up-regulated in treated tumor samples, resulting in drug resistance; blocking both KLRG1 and PD-1 can improve outcomes [166]. However, more potent co-inhibitory receptor blockade may not result in a better therapeutic effect. Pai et al. found that combination therapy targeting PD-1 and CTLA-4 induces an excess of IFN-γ and leads to drug resistance. Excess IFN-γ increases IDO and PD-L1 expression. There is a threshold for co-inhibitory receptor blocking, beyond which the effects are reversed [167]. This deserves further exploration, and the dose range for combination therapy should be optimized.
MDSC proliferation is another cause of tumor immune escape. This limits the efficacy of PD-1/PD-L1 blockade. The generation and migration of MDSCs are regulated by multiple chemokines. It is essential to inhibit MDSC proliferation and migration to the tumor microenvironment while blocking PD-1. In children with metastatic sarcoma, the efficacy of PD-1 blockade therapy was significantly improved by treatment with an anti-CXCR2 monoclonal antibody [168]. CCL2 is positively correlated with MDSCs in tumor tissues, suggesting that it promotes MDSC migration to tumor tissues. In tumor-bearing mice, CCL2 expression is significantly increased in the blood and tumor tissues. Anti-CCL2 treatment inhibits the expression of arginase 1 and iNOS, thereby reducing G-MDSC and M-MDSC in and around the tumor. Combination therapy can increase CD4+ and CD8+ T cell infiltration and prolong the survival of tumor-bearing mice [169]. Furthermore, the inhibition of HDAC6 significantly reduces HLA-DR-Low/CD11b+CD33+ MDSCs in the tumor microenvironment [156]. The chemokine CXCL12, an immunosuppressive molecule, combined with clinical-stage I-RNA-aptamer NOX-A12, increases the infiltration of T and NK cells in solid tumors [66].
The inhibition of PIM kinase may address the T cell depletion issue. PIM kinases are a family of serine/threonine kinases that promote cell cycle transition, cell growth, mTORC1 activity, and the ability of T cells to inhibit tumors. PIM kinase inhibition upregulates the expression of genes involved in the inhibition of glycolysis and reduces CD38 expression in negatively regulated T cell metabolism. The inhibition of PIM can increase the tolerance and persistence of T cells in the tumor microenvironment, and the combined effect with blocking PD-1 can significantly improve efficacy (Fig. 7) [170].

Combination therapeutic strategy for combined chemoradiotherapy

In addition to the above-mentioned proposed strategies to enhance efficacy, we must also discuss chemoradiotherapy combined with anti-PD1 immunotherapy, which has been implemented in clinical practice. Clinical trials have shown that this strategy have achieved satisfactory results in NSCLC, gastric, (triple-negative) breast, recurrent nasopharyngeal, and rectal cancers, hematological malignancies, and other tumors [171178]. The combined effects of chemoradiotherapy are due to the enhanced immunogenicity of tumor cells, antigen presentation, and recognition of tumor cells by T cells. Chemoradiation increases the tumor mutation load amd exposes antigens [179]. Simultaneously, the tumor microenvironment becomes more conducive to anti-tumor immunity. On the one hand, there are changes in cellular components in the microenvironment, including increased inflammatory cells and decreased MDSCs [180]. On the other hand, radiotherapy can cause changes in gene expression in various cells in the tumor microenvironment. Some studies have found that radiation induces upregulation of MHCI, intercellular adhesion molecule 1 (ICAM-1), NKG2D ligand (NKG2DL), death receptor Fas, and costimulatory molecule CD80 on tumor cells, which enhances both antigen presentation and T cell recognition [181]. Other studies have found that in NSCLC, radiotherapy can adaptively increase the expression of PD-L in tumor cells. This may also be one of the mechanisms [171]. However, two clinical trials have shown that PD-1 immunotherapy after radiation therapy can cause an excessive immune response, as seen in the adverse effects of combination therapy in obesity-related malignancies, including esophageal adenocarcinoma [182, 183]. This may be because the relationship between radiation and the immune system is complex and multifactorial, and is related to the dose and type of radiation and the type of immune cells [181]. Furthermore, this process induces an inflammatory response, and different degrees of inflammatory response may lead to different outcomes. Therefore, it is essential to clarify the basic combination therapy mechanism further, and the specific scheme and dosage of the combination in the clinic need to be determined (Table 2).
Table 2
Combinations of immunological checkpoint inhibitors in US clinical trials
Immunological checkpoint inhibitor
Combined drug
Application
Number of volunteers
OS (months)
Rate of OS
(at 6 months)
ORR (%)
DOR (months)
PFS (months)
pembrolizumab
Epacadostat [168]
Unresectable or metastatic melanoma
354
84.1
34.2
4.70
Pomalidomide+Dexamethasone [169]
Refractory or relapsed and refractory multiple myeloma
126
21.0 (14.2-NA)
5.7
nivolumab
Ipilimumab [170, 171]
Previously untreated advanced melanoma
313
0.86
57.6
11.50
Previously untreated advanced or metastatic renal cell carcinoma
550
38.7
12.42
ipilimumab
Sargramostim [172]
stage III or stage IV melanoma untreatable by surgery
123
17.5 (14.9-NA)
3.10
Dacarbazine [173]
untreated unresectable stage III or IV melanoma
250
11.17
19.3
2.76
Paclitaxel/
Carboplatin [174]
Lung cancer—non small cell squamous
388
13.37
5.55
Nab-Paclitaxel + Carboplatin [175]
Non-squamous non-Small cell lung cancer
483
18.6
7.00
atezolizumab
Carboplatin + Etoposide [176]
Untreated extensive-stage small cell lung cancer
201
12.3
5.2
Cobimetinib [177]
Metastatic colorectal adenocarcinoma
183
8.87
1.97
1.91
Bevacizumab [178]
Renal cell carcinoma
178
8.90

Outlook

Despite the unique advantages of tumor immunotherapy demonstrated by recent research, this approach is still highly limited in clinical settings due to drug resistance and high costs. We review common bio-predictive markers and therapies and discuss the molecular mechanisms underlying resistance to PD1/PD-L1 blockade therapy. Based on these mechanisms, we describe promising drugs and potential molecular targets for combination therapy.
Although the biomarkers that can be used for prediction are described above, they still have significant uncertainties in the clinic. Error in predicting PD-L1 expression is mainly related to tumor heterogeneity and differences among the monoclonal antibodies used for detection [23, 184]. At present, IHC is primarily used to measure PD-1 expression; however, other antibodies, including E1L3N, SP142, and SP263, are also used [185]. There is no standard method for quantification, which is a problem that needs to be solved. Morales-Betanzos et al. established a targeted mass spectrometry platform that can quantify the expression of PD-L1. Regarding tumor heterogeneity, the minimum tumor area that can determine the PD-L1 prediction evaluation must be elucidated [186, 187]. The International TILs Working Group provides a standardized method for pre-treatment tumor TIL testing, comprising a visual assessment of H&E stained sections [188]. Although it has limitations in macrophage detection, it has been widely used in many clinical applications. Furthermore, more practical predictive indicators, such as microbial taxa in the intestines, should be identified in addition to the development of accurate detection methods.
Furthermore, the development of research and detection methods for molecular markers in the blood is of considerable significance because the extraction of peripheral blood for detection has the advantages of being simple and easy to perform and less invasive to the patient. This is an advantage that traditional pathological examinations do not have and should be focused on.
In general, the precise mechanisms underlying drug resistance to PD-1 treatment and appropriate therapeutic strategies are still unclear. Many studies have suggested that high PD-1/PD-L1 expression predicts a good prognosis, but tumors can also develop drug resistance by adaptively up-regulating PD-L1 expression during therapy. The level of PD-L1 is not proportional to the therapeutic effect, and optimal treatment strategies are still needed [167]. We believe that the detection of PD-L1 expression is critical for PD-1 blockade therapy. First, the expression of PD-L1 should be detected to identify whether the tumor is suitable for PD-1 blockade therapy. During treatment, dynamic changes in PD-L1 expression should be detected. Additionally, resistance to PD-1 blockade is caused by exosome PD-L1 secretion. This resistance is caused not only by promoting the expression of PD-L1, but also by the direct binding of PD-L1 exosomes to anti-PD-L1 antibodies. Tumor- and immune-cell-derived PD-L1 exosomes can inhibit tumor progression by promoting antigen presentation and regulating immune function. However, studies are currently focusing on its impact on tumor progression; therefore, the study of exosomes must be more comprehensive [2]. To detect changes in PD-L1 expression and guide precision medicine, more accurate detection methods are needed [189]. More generally, the membrane and exosome expression of PD-L1 should be dynamically monitored. In addition to the effects of PD-L1 expression on drug resistance mechanisms, it has recently been discovered that certain molecular targets already used in cancer treatment also affect the efficacy of immunotherapy, leading to the development of resistance to PD-1/PD-L1 blockade therapy. In addition to TNF-a and IFN-γ mentioned above, there are many inflammatory factors, including IL-6, IL-17, and EGF, that play an important role in the PD-1/PD-L1 signaling pathway, which is in line with the idea that inflammation promotes tumorigenesis as opposed to metastasis. These inflammatory factors have potential effects on tumor immune escape, providing new targets for combined immunotherapy [182]. As a research hotspot in immunotherapy, neoantigen vaccines have been used to screen and identify highly exogenous neoantigens by sequencing the entire exons of tumor cells to activate immune responses. These neoantigens have also been combined with PD-1/PD-L1 blockade therapy with good effects [172].
The combination of PD-1 and other immune checkpoint blockade is a potentially effective treatment strategy. Increased blockade does not predict a better effect; there is a threshold, after which the opposite effects are observed [189]. In short, the human immune system represents a precise balance among various molecules, immune cells, and effectors. The role of any single pathway cannot be considered in isolation.
In addition to immune checkpoints and immune system activity, synergistic treatment approaches, including strategies to activate tumor cell autophagy, inhibit tumor angiogenesis, and inhibit mesenchymal transition, can also improve the efficacy of PD-1/PD-L1 blockade therapy. We should broaden our thinking to the perspective of the tumor itself, e.g., inhibiting nutrient supply, growth, and metastasis, and consider combined approaches with immunotherapy to achieve better results.

Conclusions

Despite the success of PD-1/PD-L1 treatment, its practical application is still limited. To determine whether a patient may benefit from anti-PD-1 treatment and reduce the burden on patients, PD-1/PD-L1 expression and predictive indicators should be dynamically monitored throughout the treatment process. Established prediction molecules are still insufficient, and improved prediction methods are needed. To address drug resistance, a more systematic research approach should be adopted, beyond studies of particular target molecules. The limits of various drugs and the potential for excessive doses should be considered. Finally, we should actively search for joint treatment strategies to expand the scope and effectiveness of immunotherapy.
Not applicable.
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373:2425–37.PubMedPubMedCentral Burger JA, Tedeschi A, Barr PM, Robak T, Owen C, Ghia P, et al. Ibrutinib as initial therapy for patients with chronic lymphocytic leukemia. N Engl J Med. 2015;373:2425–37.PubMedPubMedCentral
2.
Zurück zum Zitat Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175:313–26.PubMedPubMedCentral Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: from enhancement to normalization. Cell. 2018;175:313–26.PubMedPubMedCentral
3.
Zurück zum Zitat Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.PubMed Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med. 2002;8:793–800.PubMed
4.
Zurück zum Zitat Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–9.PubMed Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–9.PubMed
5.
Zurück zum Zitat Jiang XJ, Wang J, Deng XY, Li XL, Li XY, Zeng ZY, et al. Immunotherapy targeted to immune checkpoint: a revolutionary breakthrough in cancer therapy. Prog Biochem Biophys. 2018;45:1178–86. Jiang XJ, Wang J, Deng XY, Li XL, Li XY, Zeng ZY, et al. Immunotherapy targeted to immune checkpoint: a revolutionary breakthrough in cancer therapy. Prog Biochem Biophys. 2018;45:1178–86.
6.
Zurück zum Zitat Chen DS, Irving BA, Hodi FS. Molecular pathways: next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res. 2012;18:6580–7.PubMed Chen DS, Irving BA, Hodi FS. Molecular pathways: next-generation immunotherapy--inhibiting programmed death-ligand 1 and programmed death-1. Clin Cancer Res. 2012;18:6580–7.PubMed
7.
Zurück zum Zitat Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61.PubMedPubMedCentral Topalian SL, Drake CG, Pardoll DM. Immune checkpoint blockade: a common denominator approach to cancer therapy. Cancer Cell. 2015;27:450–61.PubMedPubMedCentral
8.
Zurück zum Zitat Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18:10.PubMedPubMedCentral Jiang X, Wang J, Deng X, Xiong F, Ge J, Xiang B, et al. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol Cancer. 2019;18:10.PubMedPubMedCentral
9.
Zurück zum Zitat Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.PubMedPubMedCentral Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.PubMedPubMedCentral
10.
Zurück zum Zitat Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.PubMedPubMedCentral Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell. 2017;168:707–23.PubMedPubMedCentral
11.
Zurück zum Zitat Schachter J, Ribas A, Long GV, Arance A, Grob J-J, Mortier L, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390:1853–62.PubMed Schachter J, Ribas A, Long GV, Arance A, Grob J-J, Mortier L, et al. Pembrolizumab versus ipilimumab for advanced melanoma: final overall survival results of a multicentre, randomised, open-label phase 3 study (KEYNOTE-006). Lancet. 2017;390:1853–62.PubMed
12.
Zurück zum Zitat Zhang J, Fang W, Qin T, Yang Y, Hong S, Liang W, et al. Co-expression of PD-1 and PD-L1 predicts poor outcome in nasopharyngeal carcinoma. Med Oncol. 2015;32:86.PubMed Zhang J, Fang W, Qin T, Yang Y, Hong S, Liang W, et al. Co-expression of PD-1 and PD-L1 predicts poor outcome in nasopharyngeal carcinoma. Med Oncol. 2015;32:86.PubMed
13.
Zurück zum Zitat Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Calio A, et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One. 2015;10:e0130142.PubMedPubMedCentral Carbognin L, Pilotto S, Milella M, Vaccaro V, Brunelli M, Calio A, et al. Differential activity of nivolumab, pembrolizumab and MPDL3280A according to the tumor expression of programmed death-ligand-1 (PD-L1): sensitivity analysis of trials in melanoma, lung and genitourinary cancers. PLoS One. 2015;10:e0130142.PubMedPubMedCentral
14.
Zurück zum Zitat Shimizu A, Kaira K, Okubo Y, Utsumi D, Yasuda M, Asao T, et al. Positive PD-L1 expression predicts worse outcome in cutaneous Angiosarcoma. J Glob Oncol. 2017;3:360–9.PubMed Shimizu A, Kaira K, Okubo Y, Utsumi D, Yasuda M, Asao T, et al. Positive PD-L1 expression predicts worse outcome in cutaneous Angiosarcoma. J Glob Oncol. 2017;3:360–9.PubMed
15.
Zurück zum Zitat Cho J, Lee J, Bang H, Kim ST, Park SH, An JY, et al. Programmed cell death-ligand 1 expression predicts survival in patients with gastric carcinoma with microsatellite instability. Oncotarget. 2017;8:13320–8.PubMedPubMedCentral Cho J, Lee J, Bang H, Kim ST, Park SH, An JY, et al. Programmed cell death-ligand 1 expression predicts survival in patients with gastric carcinoma with microsatellite instability. Oncotarget. 2017;8:13320–8.PubMedPubMedCentral
16.
Zurück zum Zitat Lai Q, Wang H, Li A, Xu Y, Tang L, Chen Q, et al. Decitibine improve the efficiency of anti-PD-1 therapy via activating the response to IFN/PD-L1 signal of lung cancer cells. Oncogene. 2018;37:2302–12.PubMed Lai Q, Wang H, Li A, Xu Y, Tang L, Chen Q, et al. Decitibine improve the efficiency of anti-PD-1 therapy via activating the response to IFN/PD-L1 signal of lung cancer cells. Oncogene. 2018;37:2302–12.PubMed
17.
Zurück zum Zitat Wang GZ, Zhang L, Zhao XC, Gao SH, Qu LW, Yu H, et al. The aryl hydrocarbon receptor mediates tobacco-induced PD-L1 expression and is associated with response to immunotherapy. Nat Commun. 2019;10:1125.PubMedPubMedCentral Wang GZ, Zhang L, Zhao XC, Gao SH, Qu LW, Yu H, et al. The aryl hydrocarbon receptor mediates tobacco-induced PD-L1 expression and is associated with response to immunotherapy. Nat Commun. 2019;10:1125.PubMedPubMedCentral
18.
Zurück zum Zitat Valentinuzzi D, Simoncic U, Ursic K, Vrankar M, Turk M, Jeraj R. Predicting tumour response to anti-PD-1 immunotherapy with computational modelling. Phys Med Biol. 2019;64:025017.PubMed Valentinuzzi D, Simoncic U, Ursic K, Vrankar M, Turk M, Jeraj R. Predicting tumour response to anti-PD-1 immunotherapy with computational modelling. Phys Med Biol. 2019;64:025017.PubMed
19.
Zurück zum Zitat Lyu X, Zhang M, Li G, Jiang Y, Qiao Q. PD-1 and PD-L1 expression predicts radiosensitivity and clinical outcomes in head and neck Cancer and is associated with HPV infection. J Cancer. 2019;10:937–48.PubMedPubMedCentral Lyu X, Zhang M, Li G, Jiang Y, Qiao Q. PD-1 and PD-L1 expression predicts radiosensitivity and clinical outcomes in head and neck Cancer and is associated with HPV infection. J Cancer. 2019;10:937–48.PubMedPubMedCentral
20.
Zurück zum Zitat McLaughlin J, Han G, Schalper KA, Carvajal-Hausdorf D, Pelekanou V, Rehman J, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol. 2016;2:46–54.PubMedPubMedCentral McLaughlin J, Han G, Schalper KA, Carvajal-Hausdorf D, Pelekanou V, Rehman J, et al. Quantitative assessment of the heterogeneity of PD-L1 expression in non-small-cell lung cancer. JAMA Oncol. 2016;2:46–54.PubMedPubMedCentral
21.
Zurück zum Zitat Rimm DL, Han G, Taube JM, Yi ES, Bridge JA, Flieder DB, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 2017;3:1051–8.PubMedPubMedCentral Rimm DL, Han G, Taube JM, Yi ES, Bridge JA, Flieder DB, et al. A prospective, multi-institutional, pathologist-based assessment of 4 immunohistochemistry assays for PD-L1 expression in non-small cell lung cancer. JAMA Oncol. 2017;3:1051–8.PubMedPubMedCentral
22.
Zurück zum Zitat Tang Y, He Y, Shi L, Yang L, Wang J, Lian Y, et al. Co-expression of AFAP1-AS1 and PD-1 predicts poor prognosis in nasopharyngeal carcinoma. Oncotarget. 2017;8:39001–11.PubMedPubMedCentral Tang Y, He Y, Shi L, Yang L, Wang J, Lian Y, et al. Co-expression of AFAP1-AS1 and PD-1 predicts poor prognosis in nasopharyngeal carcinoma. Oncotarget. 2017;8:39001–11.PubMedPubMedCentral
23.
Zurück zum Zitat Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019;18:128.PubMedPubMedCentral Peng M, Mo Y, Wang Y, Wu P, Zhang Y, Xiong F, et al. Neoantigen vaccine: an emerging tumor immunotherapy. Mol Cancer. 2019;18:128.PubMedPubMedCentral
24.
Zurück zum Zitat Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–61.PubMed Ionov Y, Peinado MA, Malkhosyan S, Shibata D, Perucho M. Ubiquitous somatic mutations in simple repeated sequences reveal a new mechanism for colonic carcinogenesis. Nature. 1993;363:558–61.PubMed
25.
Zurück zum Zitat Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019;25:3753–8.PubMed Marcus L, Lemery SJ, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of microsatellite instability-high solid tumors. Clin Cancer Res. 2019;25:3753–8.PubMed
26.
Zurück zum Zitat Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22:813–20.PubMed Dudley JC, Lin MT, Le DT, Eshleman JR. Microsatellite instability as a biomarker for PD-1 blockade. Clin Cancer Res. 2016;22:813–20.PubMed
27.
Zurück zum Zitat Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–91.PubMedPubMedCentral Overman MJ, McDermott R, Leach JL, Lonardi S, Lenz HJ, Morse MA, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18:1182–91.PubMedPubMedCentral
28.
Zurück zum Zitat Hu ZI, Hellmann MD, Wolchok JD, Vyas M, Shia J, Stadler ZK, et al. Acquired resistance to immunotherapy in MMR-D pancreatic cancer. J Immunother Cancer. 2018;6:127.PubMedPubMedCentral Hu ZI, Hellmann MD, Wolchok JD, Vyas M, Shia J, Stadler ZK, et al. Acquired resistance to immunotherapy in MMR-D pancreatic cancer. J Immunother Cancer. 2018;6:127.PubMedPubMedCentral
29.
Zurück zum Zitat Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019;364:485–91.PubMedPubMedCentral Mandal R, Samstein RM, Lee KW, Havel JJ, Wang H, Krishna C, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019;364:485–91.PubMedPubMedCentral
30.
Zurück zum Zitat Tu C, Zeng Z, Qi P, Li X, Guo C, Xiong F, et al. Identification of genomic alterations in nasopharyngeal carcinoma and nasopharyngeal carcinoma-derived Epstein-Barr virus by whole-genome sequencing. Carcinogenesis. 2018;39:1517–28.PubMed Tu C, Zeng Z, Qi P, Li X, Guo C, Xiong F, et al. Identification of genomic alterations in nasopharyngeal carcinoma and nasopharyngeal carcinoma-derived Epstein-Barr virus by whole-genome sequencing. Carcinogenesis. 2018;39:1517–28.PubMed
32.
Zurück zum Zitat Xiao L, Wei F, Liang F, Li Q, Deng H, Tan S, et al. TSC22D2 identified as a candidate susceptibility gene of multi-cancer pedigree using genome-wide linkage analysis and whole-exome sequencing. Carcinogenesis. 2019;40:819–27.PubMed Xiao L, Wei F, Liang F, Li Q, Deng H, Tan S, et al. TSC22D2 identified as a candidate susceptibility gene of multi-cancer pedigree using genome-wide linkage analysis and whole-exome sequencing. Carcinogenesis. 2019;40:819–27.PubMed
33.
Zurück zum Zitat Watson IR, Takahashi K, Futreal PA, Chin L. Emerging patterns of somatic mutations in cancer. Nat Rev Genet. 2013;14:703–18.PubMedPubMedCentral Watson IR, Takahashi K, Futreal PA, Chin L. Emerging patterns of somatic mutations in cancer. Nat Rev Genet. 2013;14:703–18.PubMedPubMedCentral
34.
Zurück zum Zitat Hatakeyama K, Nagashima T, Urakami K, Ohshima K, Serizawa M, Ohnami S, et al. Tumor mutational burden analysis of 2,000 Japanese cancer genomes using whole exome and targeted gene panel sequencing. Biomed Res. 2018;39:159–67.PubMed Hatakeyama K, Nagashima T, Urakami K, Ohshima K, Serizawa M, Ohnami S, et al. Tumor mutational burden analysis of 2,000 Japanese cancer genomes using whole exome and targeted gene panel sequencing. Biomed Res. 2018;39:159–67.PubMed
35.
Zurück zum Zitat Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362:eaar3593.PubMedPubMedCentral Cristescu R, Mogg R, Ayers M, Albright A, Murphy E, Yearley J, et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science. 2018;362:eaar3593.PubMedPubMedCentral
36.
Zurück zum Zitat Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598–608.PubMedPubMedCentral Goodman AM, Kato S, Bazhenova L, Patel SP, Frampton GM, Miller V, et al. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol Cancer Ther. 2017;16:2598–608.PubMedPubMedCentral
37.
Zurück zum Zitat Hanna GJ, Lizotte P, Cavanaugh M, Kuo FC, Shivdasani P, Frieden A, et al. Frameshift events predict anti-PD-1/L1 response in head and neck cancer. JCI Insight. 2018;3:98811.PubMed Hanna GJ, Lizotte P, Cavanaugh M, Kuo FC, Shivdasani P, Frieden A, et al. Frameshift events predict anti-PD-1/L1 response in head and neck cancer. JCI Insight. 2018;3:98811.PubMed
38.
Zurück zum Zitat Shrestha R, Prithviraj P, Anaka M, Bridle KR, Crawford DHG, Dhungel B, et al. Monitoring immune checkpoint regulators as predictive biomarkers in hepatocellular carcinoma. Front Oncol. 2018;8:269.PubMedPubMedCentral Shrestha R, Prithviraj P, Anaka M, Bridle KR, Crawford DHG, Dhungel B, et al. Monitoring immune checkpoint regulators as predictive biomarkers in hepatocellular carcinoma. Front Oncol. 2018;8:269.PubMedPubMedCentral
39.
Zurück zum Zitat Yarchoan M, Albacker LA, Hopkins AC, Montesion M, Murugesan K, Vithayathil TT, et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight. 2019;4:e126908.PubMedCentral Yarchoan M, Albacker LA, Hopkins AC, Montesion M, Murugesan K, Vithayathil TT, et al. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight. 2019;4:e126908.PubMedCentral
40.
Zurück zum Zitat Mou H, Yu L, Liao Q, Hou X, Wu Y, Cui Q, et al. Successful response to the combination of immunotherapy and chemotherapy in cholangiocarcinoma with high tumour mutational burden and PD-L1 expression: a case report. BMC Cancer. 2018;18:1105.PubMedPubMedCentral Mou H, Yu L, Liao Q, Hou X, Wu Y, Cui Q, et al. Successful response to the combination of immunotherapy and chemotherapy in cholangiocarcinoma with high tumour mutational burden and PD-L1 expression: a case report. BMC Cancer. 2018;18:1105.PubMedPubMedCentral
41.
Zurück zum Zitat Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.PubMedPubMedCentral Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science. 2015;348:124–8.PubMedPubMedCentral
42.
Zurück zum Zitat Ge J, Wang J, Wang H, Jiang X, Liao Q, Gong Q, et al. The BRAF V600E mutation is a predictor of the effect of radioiodine therapy in papillary thyroid cancer. J Cancer. 2020;11:932–9.PubMedPubMedCentral Ge J, Wang J, Wang H, Jiang X, Liao Q, Gong Q, et al. The BRAF V600E mutation is a predictor of the effect of radioiodine therapy in papillary thyroid cancer. J Cancer. 2020;11:932–9.PubMedPubMedCentral
43.
Zurück zum Zitat Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K, et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Invest. 2016;126:2334–40.PubMedPubMedCentral Mehnert JM, Panda A, Zhong H, Hirshfield K, Damare S, Lane K, et al. Immune activation and response to pembrolizumab in POLE-mutant endometrial cancer. J Clin Invest. 2016;126:2334–40.PubMedPubMedCentral
44.
Zurück zum Zitat Eggink FA, Van Gool IC, Leary A, Pollock PM, Crosbie EJ, Mileshkin L, et al. Immunological profiling of molecularly classified high-risk endometrial cancers identifies POLE-mutant and microsatellite unstable carcinomas as candidates for checkpoint inhibition. Oncoimmunology. 2017;6:e1264565.PubMed Eggink FA, Van Gool IC, Leary A, Pollock PM, Crosbie EJ, Mileshkin L, et al. Immunological profiling of molecularly classified high-risk endometrial cancers identifies POLE-mutant and microsatellite unstable carcinomas as candidates for checkpoint inhibition. Oncoimmunology. 2017;6:e1264565.PubMed
45.
Zurück zum Zitat Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554:538–43.PubMed Tauriello DVF, Palomo-Ponce S, Stork D, Berenguer-Llergo A, Badia-Ramentol J, Iglesias M, et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature. 2018;554:538–43.PubMed
46.
Zurück zum Zitat Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.PubMedPubMedCentral Mariathasan S, Turley SJ, Nickles D, Castiglioni A, Yuen K, Wang Y, et al. TGFbeta attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature. 2018;554:544–8.PubMedPubMedCentral
47.
Zurück zum Zitat Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, et al. IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer. 2015;112:1501–9.PubMedPubMedCentral Abiko K, Matsumura N, Hamanishi J, Horikawa N, Murakami R, Yamaguchi K, et al. IFN-gamma from lymphocytes induces PD-L1 expression and promotes progression of ovarian cancer. Br J Cancer. 2015;112:1501–9.PubMedPubMedCentral
48.
Zurück zum Zitat Xue W, Li W, Zhang T, Li Z, Wang Y, Qiu Y, et al. Anti-PD1 up-regulates PD-L1 expression and inhibits T-cell lymphoma progression: possible involvement of an IFN-gamma-associated JAK-STAT pathway. Onco Targets Ther. 2019;12:2079–88.PubMedPubMedCentral Xue W, Li W, Zhang T, Li Z, Wang Y, Qiu Y, et al. Anti-PD1 up-regulates PD-L1 expression and inhibits T-cell lymphoma progression: possible involvement of an IFN-gamma-associated JAK-STAT pathway. Onco Targets Ther. 2019;12:2079–88.PubMedPubMedCentral
49.
Zurück zum Zitat Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, et al. Interferon-gamma drives Treg fragility to promote anti-tumor immunity. Cell. 2017;169:1130–41 e1111.PubMedPubMedCentral Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, et al. Interferon-gamma drives Treg fragility to promote anti-tumor immunity. Cell. 2017;169:1130–41 e1111.PubMedPubMedCentral
50.
Zurück zum Zitat Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, et al. Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer. 2018;17:168.PubMedPubMedCentral Wang YA, Li XL, Mo YZ, Fan CM, Tang L, Xiong F, et al. Effects of tumor metabolic microenvironment on regulatory T cells. Mol Cancer. 2018;17:168.PubMedPubMedCentral
51.
Zurück zum Zitat Jiang X, Wu H, Zhao W, Ding X, You Q, Zhu F, et al. Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells. Cancer Cell Int. 2019;19:68.PubMedPubMedCentral Jiang X, Wu H, Zhao W, Ding X, You Q, Zhu F, et al. Lycopene improves the efficiency of anti-PD-1 therapy via activating IFN signaling of lung cancer cells. Cancer Cell Int. 2019;19:68.PubMedPubMedCentral
52.
Zurück zum Zitat Boutsikou E, Domvri K, Hardavella G, Tsiouda D, Zarogoulidis K, Kontakiotis T. Tumour necrosis factor, interferon-gamma and interleukins as predictive markers of antiprogrammed cell-death protein-1 treatment in advanced non-small cell lung cancer: a pragmatic approach in clinical practice. Ther Adv Med Oncol. 2018;10:1758835918768238.PubMedPubMedCentral Boutsikou E, Domvri K, Hardavella G, Tsiouda D, Zarogoulidis K, Kontakiotis T. Tumour necrosis factor, interferon-gamma and interleukins as predictive markers of antiprogrammed cell-death protein-1 treatment in advanced non-small cell lung cancer: a pragmatic approach in clinical practice. Ther Adv Med Oncol. 2018;10:1758835918768238.PubMedPubMedCentral
53.
Zurück zum Zitat Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma pathway genes in Tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397–404 e399.PubMedPubMedCentral Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, et al. Loss of IFN-gamma pathway genes in Tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397–404 e399.PubMedPubMedCentral
54.
Zurück zum Zitat Kim KH, Cho J, Ku BM, Koh J, Sun JM, Lee SH, et al. The first-week proliferative response of peripheral blood PD-1(+)CD8(+) T cells predicts the response to anti-PD-1 therapy in solid tumors. Clin Cancer Res. 2019;25:2144–54.PubMed Kim KH, Cho J, Ku BM, Koh J, Sun JM, Lee SH, et al. The first-week proliferative response of peripheral blood PD-1(+)CD8(+) T cells predicts the response to anti-PD-1 therapy in solid tumors. Clin Cancer Res. 2019;25:2144–54.PubMed
55.
Zurück zum Zitat Okuhira H, Yamamoto Y, Inaba Y, Kunimoto K, Mikita N, Ikeda T, et al. Prognostic factors of daily blood examination for advanced melanoma patients treated with nivolumab. Biosci Trends. 2018;12:412–8.PubMed Okuhira H, Yamamoto Y, Inaba Y, Kunimoto K, Mikita N, Ikeda T, et al. Prognostic factors of daily blood examination for advanced melanoma patients treated with nivolumab. Biosci Trends. 2018;12:412–8.PubMed
56.
Zurück zum Zitat Capone M, Giannarelli D, Mallardo D, Madonna G, Festino L, Grimaldi AM, et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J Immunother Cancer. 2018;6:74.PubMedPubMedCentral Capone M, Giannarelli D, Mallardo D, Madonna G, Festino L, Grimaldi AM, et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J Immunother Cancer. 2018;6:74.PubMedPubMedCentral
57.
Zurück zum Zitat Zer A, Sung MR, Walia P, Khoja L, Maganti M, Labbe C, et al. Correlation of neutrophil to lymphocyte ratio and absolute neutrophil count with outcomes with PD-1 Axis inhibitors in patients with advanced non-small-cell lung Cancer. Clin Lung Cancer. 2018;19:426–34 e421.PubMed Zer A, Sung MR, Walia P, Khoja L, Maganti M, Labbe C, et al. Correlation of neutrophil to lymphocyte ratio and absolute neutrophil count with outcomes with PD-1 Axis inhibitors in patients with advanced non-small-cell lung Cancer. Clin Lung Cancer. 2018;19:426–34 e421.PubMed
58.
Zurück zum Zitat Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.PubMedPubMedCentral Taube JM, Klein A, Brahmer JR, Xu H, Pan X, Kim JH, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20:5064–74.PubMedPubMedCentral
59.
Zurück zum Zitat Xiong F, Deng S, Huang HB, Li XY, Zhang WL, Liao QJ, et al. Effects and mechanisms of innate immune molecules on inhibiting nasopharyngeal carcinoma. Chin Med J (Engl). 2019;132:749–52. Xiong F, Deng S, Huang HB, Li XY, Zhang WL, Liao QJ, et al. Effects and mechanisms of innate immune molecules on inhibiting nasopharyngeal carcinoma. Chin Med J (Engl). 2019;132:749–52.
60.
Zurück zum Zitat Wu Y, Wei F, Tang L, Liao Q, Wang H, Shi L, et al. Herpesvirus acts with the cytoskeleton and promotes cancer progression. J Cancer. 2019;10:2185–93.PubMedPubMedCentral Wu Y, Wei F, Tang L, Liao Q, Wang H, Shi L, et al. Herpesvirus acts with the cytoskeleton and promotes cancer progression. J Cancer. 2019;10:2185–93.PubMedPubMedCentral
61.
Zurück zum Zitat Jin K, Wang S, Zhang Y, Xia M, Mo Y, Li X, et al. Long non-coding RNA PVT1 interacts with MYC and its downstream molecules to synergistically promote tumorigenesis. Cell Mol Life Sci. 2019;76:4275–89.PubMedPubMedCentral Jin K, Wang S, Zhang Y, Xia M, Mo Y, Li X, et al. Long non-coding RNA PVT1 interacts with MYC and its downstream molecules to synergistically promote tumorigenesis. Cell Mol Life Sci. 2019;76:4275–89.PubMedPubMedCentral
62.
Zurück zum Zitat Jiang Y, Lo AWI, Wong A, Chen W, Wang Y, Lin L, et al. Prognostic significance of tumor-infiltrating immune cells and PD-L1 expression in esophageal squamous cell carcinoma. Oncotarget. 2017;8:30175–89.PubMedPubMedCentral Jiang Y, Lo AWI, Wong A, Chen W, Wang Y, Lin L, et al. Prognostic significance of tumor-infiltrating immune cells and PD-L1 expression in esophageal squamous cell carcinoma. Oncotarget. 2017;8:30175–89.PubMedPubMedCentral
63.
Zurück zum Zitat Dovedi SJ, Cheadle EJ, Popple AL, Poon E, Morrow M, Stewart R, et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and Infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin Cancer Res. 2017;23:5514–26.PubMed Dovedi SJ, Cheadle EJ, Popple AL, Poon E, Morrow M, Stewart R, et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and Infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin Cancer Res. 2017;23:5514–26.PubMed
64.
Zurück zum Zitat Tai H, Yang Q, Wu Z, Sun S, Cao R, Xi Y, et al. PD-L1 expression predicts a distinct prognosis in Krukenberg tumor with corresponding origins. J Immunol Res. 2018;2018:9485285.PubMedPubMedCentral Tai H, Yang Q, Wu Z, Sun S, Cao R, Xi Y, et al. PD-L1 expression predicts a distinct prognosis in Krukenberg tumor with corresponding origins. J Immunol Res. 2018;2018:9485285.PubMedPubMedCentral
65.
Zurück zum Zitat Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother. 2015;38:1–11.PubMedPubMedCentral Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y, et al. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother. 2015;38:1–11.PubMedPubMedCentral
66.
Zurück zum Zitat Zboralski D, Hoehlig K, Eulberg D, Fromming A, Vater A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res. 2017;5:950–6.PubMed Zboralski D, Hoehlig K, Eulberg D, Fromming A, Vater A. Increasing tumor-infiltrating T cells through inhibition of CXCL12 with NOX-A12 synergizes with PD-1 blockade. Cancer Immunol Res. 2017;5:950–6.PubMed
67.
Zurück zum Zitat Giraldo NA, Becht E, Vano Y, Petitprez F, Lacroix L, Validire P, et al. Tumor-Infiltrating and peripheral blood T-cell Immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin Cancer Res. 2017;23:4416–28.PubMed Giraldo NA, Becht E, Vano Y, Petitprez F, Lacroix L, Validire P, et al. Tumor-Infiltrating and peripheral blood T-cell Immunophenotypes predict early relapse in localized clear cell renal cell carcinoma. Clin Cancer Res. 2017;23:4416–28.PubMed
68.
Zurück zum Zitat Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 2019;35:588–602 e510.PubMedPubMedCentral Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM, Zhang H, et al. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell. 2019;35:588–602 e510.PubMedPubMedCentral
69.
Zurück zum Zitat Jin S, Xu B, Yu L, Fu Y, Wu H, Fan X, et al. The PD-1, PD-L1 expression and CD3+ T cell infiltration in relation to outcome in advanced gastric signet-ring cell carcinoma, representing a potential biomarker for immunotherapy. Oncotarget. 2017;8:38850–62.PubMedPubMedCentral Jin S, Xu B, Yu L, Fu Y, Wu H, Fan X, et al. The PD-1, PD-L1 expression and CD3+ T cell infiltration in relation to outcome in advanced gastric signet-ring cell carcinoma, representing a potential biomarker for immunotherapy. Oncotarget. 2017;8:38850–62.PubMedPubMedCentral
70.
Zurück zum Zitat Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with Neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 2015;1:1319–23.PubMed Howitt BE, Shukla SA, Sholl LM, Ritterhouse LL, Watkins JC, Rodig S, et al. Association of polymerase e-mutated and microsatellite-instable endometrial cancers with Neoantigen load, number of tumor-infiltrating lymphocytes, and expression of PD-1 and PD-L1. JAMA Oncol. 2015;1:1319–23.PubMed
71.
Zurück zum Zitat Mondal A, Smith C, DuHadaway JB, Sutanto-Ward E, Prendergast GC, Bravo-Nuevo A, et al. IDO1 is an integral mediator of inflammatory neovascularization. EBioMedicine. 2016;14:74–82.PubMedPubMedCentral Mondal A, Smith C, DuHadaway JB, Sutanto-Ward E, Prendergast GC, Bravo-Nuevo A, et al. IDO1 is an integral mediator of inflammatory neovascularization. EBioMedicine. 2016;14:74–82.PubMedPubMedCentral
72.
Zurück zum Zitat Heeren AM, van Dijk I, Berry D, Khelil M, Ferns D, Kole J, et al. Indoleamine 2,3-dioxygenase expression pattern in the tumor microenvironment predicts clinical outcome in early stage cervical Cancer. Front Immunol. 2018;9:1598.PubMedPubMedCentral Heeren AM, van Dijk I, Berry D, Khelil M, Ferns D, Kole J, et al. Indoleamine 2,3-dioxygenase expression pattern in the tumor microenvironment predicts clinical outcome in early stage cervical Cancer. Front Immunol. 2018;9:1598.PubMedPubMedCentral
73.
Zurück zum Zitat Ladomersky E, Zhai L, Lenzen A, Lauing KL, Qian J, Scholtens DM, et al. IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. Clin Cancer Res. 2018;24:2559–73.PubMedPubMedCentral Ladomersky E, Zhai L, Lenzen A, Lauing KL, Qian J, Scholtens DM, et al. IDO1 inhibition synergizes with radiation and PD-1 blockade to durably increase survival against advanced glioblastoma. Clin Cancer Res. 2018;24:2559–73.PubMedPubMedCentral
74.
Zurück zum Zitat Toulmonde M, Penel N, Adam J, Chevreau C, Blay JY, Le Cesne A, et al. Use of PD-1 targeting, macrophage infiltration, and IDO pathway activation in sarcomas: a phase 2 clinical trial. JAMA Oncol. 2018;4:93–7.PubMed Toulmonde M, Penel N, Adam J, Chevreau C, Blay JY, Le Cesne A, et al. Use of PD-1 targeting, macrophage infiltration, and IDO pathway activation in sarcomas: a phase 2 clinical trial. JAMA Oncol. 2018;4:93–7.PubMed
75.
Zurück zum Zitat Duan J, Xie Y, Qu L, Wang L, Zhou S, Wang Y, et al. A nomogram-based immunoprofile predicts overall survival for previously untreated patients with esophageal squamous cell carcinoma after esophagectomy. J Immunother Cancer. 2018;6:100.PubMedPubMedCentral Duan J, Xie Y, Qu L, Wang L, Zhou S, Wang Y, et al. A nomogram-based immunoprofile predicts overall survival for previously untreated patients with esophageal squamous cell carcinoma after esophagectomy. J Immunother Cancer. 2018;6:100.PubMedPubMedCentral
76.
Zurück zum Zitat Zhou S, Zhao L, Liang Z, Liu S, Li Y, Liu S, et al. Indoleamine 2,3-dioxygenase 1 and programmed cell death-ligand 1 co-expression predicts poor pathologic response and recurrence in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy. Cancers (Basel). 2019;11:E169. Zhou S, Zhao L, Liang Z, Liu S, Li Y, Liu S, et al. Indoleamine 2,3-dioxygenase 1 and programmed cell death-ligand 1 co-expression predicts poor pathologic response and recurrence in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy. Cancers (Basel). 2019;11:E169.
77.
Zurück zum Zitat Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–84.PubMedPubMedCentral Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350:1079–84.PubMedPubMedCentral
78.
Zurück zum Zitat Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103.PubMed Gopalakrishnan V, Spencer CN, Nezi L, Reuben A, Andrews MC, Karpinets TV, et al. Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science. 2018;359:97–103.PubMed
79.
Zurück zum Zitat Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–8.PubMedPubMedCentral Matson V, Fessler J, Bao R, Chongsuwat T, Zha Y, Alegre ML, et al. The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients. Science. 2018;359:104–8.PubMedPubMedCentral
80.
Zurück zum Zitat Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–7.PubMed Routy B, Le Chatelier E, Derosa L, Duong CPM, Alou MT, Daillere R, et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science. 2018;359:91–7.PubMed
81.
Zurück zum Zitat Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, Tsutsui Y, et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science. 2012;336:485–9.PubMed Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, Tsutsui Y, et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science. 2012;336:485–9.PubMed
82.
Zurück zum Zitat Park SJ, Kim JH, Song MY, Sung YC, Lee SW, Park Y. PD-1 deficiency protects experimental colitis via alteration of gut microbiota. BMB Rep. 2017;50:578–83.PubMedPubMedCentral Park SJ, Kim JH, Song MY, Sung YC, Lee SW, Park Y. PD-1 deficiency protects experimental colitis via alteration of gut microbiota. BMB Rep. 2017;50:578–83.PubMedPubMedCentral
83.
Zurück zum Zitat Gonzalez RS, Salaria SN, Bohannon CD, Huber AR, Feely MM, Shi C. PD-1 inhibitor gastroenterocolitis: case series and appraisal of ‘immunomodulatory gastroenterocolitis’. Histopathology. 2017;70:558–67.PubMed Gonzalez RS, Salaria SN, Bohannon CD, Huber AR, Feely MM, Shi C. PD-1 inhibitor gastroenterocolitis: case series and appraisal of ‘immunomodulatory gastroenterocolitis’. Histopathology. 2017;70:558–67.PubMed
84.
Zurück zum Zitat Hofmann L, Forschner A, Loquai C, Goldinger SM, Zimmer L, Ugurel S, et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer. 2016;60:190–209.PubMed Hofmann L, Forschner A, Loquai C, Goldinger SM, Zimmer L, Ugurel S, et al. Cutaneous, gastrointestinal, hepatic, endocrine, and renal side-effects of anti-PD-1 therapy. Eur J Cancer. 2016;60:190–209.PubMed
85.
Zurück zum Zitat Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7:1420–35.PubMedPubMedCentral Gettinger S, Choi J, Hastings K, Truini A, Datar I, Sowell R, et al. Impaired HLA class I antigen processing and presentation as a mechanism of acquired resistance to immune checkpoint inhibitors in lung cancer. Cancer Discov. 2017;7:1420–35.PubMedPubMedCentral
86.
Zurück zum Zitat Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8:1136.PubMedPubMedCentral Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8:1136.PubMedPubMedCentral
87.
Zurück zum Zitat Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.PubMedPubMedCentral Zaretsky JM, Garcia-Diaz A, Shin DS, Escuin-Ordinas H, Hugo W, Hu-Lieskovan S, et al. Mutations associated with acquired resistance to PD-1 blockade in melanoma. N Engl J Med. 2016;375:819–29.PubMedPubMedCentral
88.
Zurück zum Zitat Janikovits J, Muller M, Krzykalla J, Korner S, Echterdiek F, Lahrmann B, et al. High numbers of PDCD1 (PD-1)-positive T cells and B2M mutations in microsatellite-unstable colorectal cancer. Oncoimmunology. 2018;7:e1390640.PubMed Janikovits J, Muller M, Krzykalla J, Korner S, Echterdiek F, Lahrmann B, et al. High numbers of PDCD1 (PD-1)-positive T cells and B2M mutations in microsatellite-unstable colorectal cancer. Oncoimmunology. 2018;7:e1390640.PubMed
89.
Zurück zum Zitat Johnson DB, Nixon MJ, Wang Y, Wang DY, Castellanos E, Estrada MV, et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight. 2018;3:120360.PubMed Johnson DB, Nixon MJ, Wang Y, Wang DY, Castellanos E, Estrada MV, et al. Tumor-specific MHC-II expression drives a unique pattern of resistance to immunotherapy via LAG-3/FCRL6 engagement. JCI Insight. 2018;3:120360.PubMed
90.
Zurück zum Zitat Zhou H, Liu T, Wang Z. Analysis of non-small cell lung cancer microenvironment indicates preponderance of T cell exhaustion marker expression. Exp Cell Res. 2017;360:205–9.PubMed Zhou H, Liu T, Wang Z. Analysis of non-small cell lung cancer microenvironment indicates preponderance of T cell exhaustion marker expression. Exp Cell Res. 2017;360:205–9.PubMed
91.
Zurück zum Zitat Shayan G, Srivastava R, Li J, Schmitt N, Kane LP, Ferris RL. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology. 2017;6:e1261779.PubMed Shayan G, Srivastava R, Li J, Schmitt N, Kane LP, Ferris RL. Adaptive resistance to anti-PD1 therapy by Tim-3 upregulation is mediated by the PI3K-Akt pathway in head and neck cancer. Oncoimmunology. 2017;6:e1261779.PubMed
92.
Zurück zum Zitat Bertrand F, Montfort A, Marcheteau E, Imbert C, Gilhodes J, Filleron T, et al. TNFalpha blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat Commun. 2017;8:2256.PubMedPubMedCentral Bertrand F, Montfort A, Marcheteau E, Imbert C, Gilhodes J, Filleron T, et al. TNFalpha blockade overcomes resistance to anti-PD-1 in experimental melanoma. Nat Commun. 2017;8:2256.PubMedPubMedCentral
93.
Zurück zum Zitat Xie S, Huang J, Qiao Q, Zang W, Hong S, Tan H, et al. Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol Immunother. 2018;67:1685–94.PubMed Xie S, Huang J, Qiao Q, Zang W, Hong S, Tan H, et al. Expression of the inhibitory B7 family molecule VISTA in human colorectal carcinoma tumors. Cancer Immunol Immunother. 2018;67:1685–94.PubMed
94.
Zurück zum Zitat Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 2016;6:202–16.PubMed Peng W, Chen JQ, Liu C, Malu S, Creasy C, Tetzlaff MT, et al. Loss of PTEN promotes resistance to T cell-mediated immunotherapy. Cancer Discov. 2016;6:202–16.PubMed
95.
Zurück zum Zitat Vredeveld LC, Possik PA, Smit MA, Meissl K, Michaloglou C, Horlings HM, et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 2012;26:1055–69.PubMedPubMedCentral Vredeveld LC, Possik PA, Smit MA, Meissl K, Michaloglou C, Horlings HM, et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev. 2012;26:1055–69.PubMedPubMedCentral
96.
Zurück zum Zitat Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr, et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41:544–52.PubMedPubMedCentral Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky WE Jr, et al. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009;41:544–52.PubMedPubMedCentral
97.
Zurück zum Zitat Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene. 2003;22:3113–22.PubMed Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene. 2003;22:3113–22.PubMed
98.
Zurück zum Zitat Birck A, Ahrenkiel V, Zeuthen J, Hou-Jensen K, Guldberg P. Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies. J Invest Dermatol. 2000;114:277–80.PubMed Birck A, Ahrenkiel V, Zeuthen J, Hou-Jensen K, Guldberg P. Mutation and allelic loss of the PTEN/MMAC1 gene in primary and metastatic melanoma biopsies. J Invest Dermatol. 2000;114:277–80.PubMed
99.
Zurück zum Zitat Zhou XP, Gimm O, Hampel H, Niemann T, Walker MJ, Eng C. Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am J Pathol. 2000;157:1123–8.PubMedPubMedCentral Zhou XP, Gimm O, Hampel H, Niemann T, Walker MJ, Eng C. Epigenetic PTEN silencing in malignant melanomas without PTEN mutation. Am J Pathol. 2000;157:1123–8.PubMedPubMedCentral
100.
Zurück zum Zitat Mirmohammadsadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Ruzicka T, et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res. 2006;66:6546–52.PubMed Mirmohammadsadegh A, Marini A, Nambiar S, Hassan M, Tannapfel A, Ruzicka T, et al. Epigenetic silencing of the PTEN gene in melanoma. Cancer Res. 2006;66:6546–52.PubMed
101.
Zurück zum Zitat Dong Y, Richards JA, Gupta R, Aung PP, Emley A, Kluger Y, et al. PTEN functions as a melanoma tumor suppressor by promoting host immune response. Oncogene. 2014;33:4632–42.PubMed Dong Y, Richards JA, Gupta R, Aung PP, Emley A, Kluger Y, et al. PTEN functions as a melanoma tumor suppressor by promoting host immune response. Oncogene. 2014;33:4632–42.PubMed
102.
Zurück zum Zitat Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13:84–8.PubMed Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med. 2007;13:84–8.PubMed
103.
Zurück zum Zitat Chen L, Diao L, Yang Y, Yi X, Rodriguez BL, Li Y, et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. 2018;8:1156–75.PubMedPubMedCentral Chen L, Diao L, Yang Y, Yi X, Rodriguez BL, Li Y, et al. CD38-mediated immunosuppression as a mechanism of tumor cell escape from PD-1/PD-L1 blockade. Cancer Discov. 2018;8:1156–75.PubMedPubMedCentral
104.
Zurück zum Zitat Sepulveda C, Palomo I, Fuentes E. Role of adenosine A2b receptor overexpression in tumor progression. Life Sci. 2016;166:92–9.PubMed Sepulveda C, Palomo I, Fuentes E. Role of adenosine A2b receptor overexpression in tumor progression. Life Sci. 2016;166:92–9.PubMed
105.
Zurück zum Zitat Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S, et al. Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res. 2015;3:506–17.PubMed Beavis PA, Milenkovski N, Henderson MA, John LB, Allard B, Loi S, et al. Adenosine receptor 2A blockade increases the efficacy of anti-PD-1 through enhanced antitumor T-cell responses. Cancer Immunol Res. 2015;3:506–17.PubMed
106.
Zurück zum Zitat Wang HM, Zhang XH, Feng MM, Qiao YJ, Ye LQ, Chen J, et al. Interleukin-35 suppresses the antitumor activity of T cells in patients with non-small cell lung cancer. Cell Physiol Biochem. 2018;47:2407–19.PubMed Wang HM, Zhang XH, Feng MM, Qiao YJ, Ye LQ, Chen J, et al. Interleukin-35 suppresses the antitumor activity of T cells in patients with non-small cell lung cancer. Cell Physiol Biochem. 2018;47:2407–19.PubMed
107.
Zurück zum Zitat Li S, Wang Z, Li XJ. Notch signaling pathway suppresses CD8(+) T cells activity in patients with lung adenocarcinoma. Int Immunopharmacol. 2018;63:129–36.PubMed Li S, Wang Z, Li XJ. Notch signaling pathway suppresses CD8(+) T cells activity in patients with lung adenocarcinoma. Int Immunopharmacol. 2018;63:129–36.PubMed
108.
Zurück zum Zitat Akbay EA, Koyama S, Liu Y, Dries R, Bufe LE, Silkes M, et al. Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J Thorac Oncol. 2017;12:1268–79.PubMedPubMedCentral Akbay EA, Koyama S, Liu Y, Dries R, Bufe LE, Silkes M, et al. Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade. J Thorac Oncol. 2017;12:1268–79.PubMedPubMedCentral
109.
Zurück zum Zitat George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity. 2017;46:197–204.PubMedPubMedCentral George S, Miao D, Demetri GD, Adeegbe D, Rodig SJ, Shukla S, et al. Loss of PTEN is associated with resistance to anti-PD-1 checkpoint blockade therapy in metastatic uterine leiomyosarcoma. Immunity. 2017;46:197–204.PubMedPubMedCentral
110.
Zurück zum Zitat Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15:325–40.PubMedPubMedCentral Fukumura D, Kloepper J, Amoozgar Z, Duda DG, Jain RK. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat Rev Clin Oncol. 2018;15:325–40.PubMedPubMedCentral
111.
Zurück zum Zitat Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–22.PubMedPubMedCentral Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell. 2014;26:605–22.PubMedPubMedCentral
112.
Zurück zum Zitat Liang CT, Guo WH, Tan L, He YB, Xiong F, Zhang SS, et al. Hypoxia-inducible factor-1: a key protein for cells adapting to changes in oxygen supply. Prog Biochem Biophys. 2019;46:1041–9. Liang CT, Guo WH, Tan L, He YB, Xiong F, Zhang SS, et al. Hypoxia-inducible factor-1: a key protein for cells adapting to changes in oxygen supply. Prog Biochem Biophys. 2019;46:1041–9.
113.
Zurück zum Zitat Zhu H, Gu Y, Xue Y, Yuan M, Cao X, Liu Q. CXCR2(+) MDSCs promote breast cancer progression by inducing EMT and activated T cell exhaustion. Oncotarget. 2017;8:114554–67.PubMedPubMedCentral Zhu H, Gu Y, Xue Y, Yuan M, Cao X, Liu Q. CXCR2(+) MDSCs promote breast cancer progression by inducing EMT and activated T cell exhaustion. Oncotarget. 2017;8:114554–67.PubMedPubMedCentral
114.
Zurück zum Zitat Zhao J, Wen X, Tian L, Li T, Xu C, Wen X, et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat Commun. 2019;10:899.PubMedPubMedCentral Zhao J, Wen X, Tian L, Li T, Xu C, Wen X, et al. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat Commun. 2019;10:899.PubMedPubMedCentral
115.
116.
Zurück zum Zitat Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167:1540–54 e1512.PubMedPubMedCentral Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint Victor C, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167:1540–54 e1512.PubMedPubMedCentral
117.
Zurück zum Zitat Konen JM, Rodriguez BL, Fradette JJ, Gibson L, Davis D, Minelli R, et al. Ntrk1 promotes resistance to PD-1 checkpoint blockade in mesenchymal Kras/p53 mutant lung cancer. Cancers (Basel). 2019;11:462. Konen JM, Rodriguez BL, Fradette JJ, Gibson L, Davis D, Minelli R, et al. Ntrk1 promotes resistance to PD-1 checkpoint blockade in mesenchymal Kras/p53 mutant lung cancer. Cancers (Basel). 2019;11:462.
118.
Zurück zum Zitat Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, et al. Adaptive plasticity of IL-10(+) and IL-35(+) Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 2019;20:724–35.PubMedPubMedCentral Sawant DV, Yano H, Chikina M, Zhang Q, Liao M, Liu C, et al. Adaptive plasticity of IL-10(+) and IL-35(+) Treg cells cooperatively promotes tumor T cell exhaustion. Nat Immunol. 2019;20:724–35.PubMedPubMedCentral
119.
Zurück zum Zitat Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6.PubMedPubMedCentral Chen G, Huang AC, Zhang W, Zhang G, Wu M, Xu W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response. Nature. 2018;560:382–6.PubMedPubMedCentral
120.
Zurück zum Zitat Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–201.PubMedPubMedCentral Garcia-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, et al. Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 2017;19:1189–201.PubMedPubMedCentral
121.
Zurück zum Zitat Kowanetz M, Zou W, Gettinger SN, Koeppen H, Kockx M, Schmid P, et al. Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with atezolizumab (anti-PD-L1). Proc Natl Acad Sci U S A. 2018;115:E10119–26.PubMedPubMedCentral Kowanetz M, Zou W, Gettinger SN, Koeppen H, Kockx M, Schmid P, et al. Differential regulation of PD-L1 expression by immune and tumor cells in NSCLC and the response to treatment with atezolizumab (anti-PD-L1). Proc Natl Acad Sci U S A. 2018;115:E10119–26.PubMedPubMedCentral
122.
Zurück zum Zitat Luo N, Formisano L, Gonzalez-Ericsson PI, Sanchez V, Dean PT, Opalenik SR, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106.PubMedPubMedCentral Luo N, Formisano L, Gonzalez-Ericsson PI, Sanchez V, Dean PT, Opalenik SR, et al. Melanoma response to anti-PD-L1 immunotherapy requires JAK1 signaling, but not JAK2. Oncoimmunology. 2018;7:e1438106.PubMedPubMedCentral
123.
Zurück zum Zitat Jia L, Xi Q, Wang H, Zhang Z, Liu H, Cheng Y, et al. miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity. Biochem Biophys Res Commun. 2017;488:425–31.PubMed Jia L, Xi Q, Wang H, Zhang Z, Liu H, Cheng Y, et al. miR-142-5p regulates tumor cell PD-L1 expression and enhances anti-tumor immunity. Biochem Biophys Res Commun. 2017;488:425–31.PubMed
124.
Zurück zum Zitat Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188–201.PubMed Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, et al. Primary resistance to PD-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7:188–201.PubMed
125.
Zurück zum Zitat Sucker A, Zhao F, Pieper N, Heeke C, Maltaner R, Stadtler N, et al. Acquired IFNgamma resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun. 2017;8:15440.PubMedPubMedCentral Sucker A, Zhao F, Pieper N, Heeke C, Maltaner R, Stadtler N, et al. Acquired IFNgamma resistance impairs anti-tumor immunity and gives rise to T-cell-resistant melanoma lesions. Nat Commun. 2017;8:15440.PubMedPubMedCentral
126.
Zurück zum Zitat Deng X, Xiong F, Li X, Xiang B, Li Z, Wu X, et al. Application of atomic force microscopy in cancer research. J Nanobiotechnol. 2018;16:102. Deng X, Xiong F, Li X, Xiang B, Li Z, Wu X, et al. Application of atomic force microscopy in cancer research. J Nanobiotechnol. 2018;16:102.
127.
Zurück zum Zitat Fish EN, Platanias LC. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res. 2014;12:1691–703.PubMedPubMedCentral Fish EN, Platanias LC. Interferon receptor signaling in malignancy: a network of cellular pathways defining biological outcomes. Mol Cancer Res. 2014;12:1691–703.PubMedPubMedCentral
128.
Zurück zum Zitat Horn S, Leonardelli S, Sucker A, Schadendorf D, Griewank KG, Paschen A. Tumor CDKN2A-associated JAK2 loss and susceptibility to immunotherapy resistance. J Natl Cancer Inst. 2018;110:677–81.PubMed Horn S, Leonardelli S, Sucker A, Schadendorf D, Griewank KG, Paschen A. Tumor CDKN2A-associated JAK2 loss and susceptibility to immunotherapy resistance. J Natl Cancer Inst. 2018;110:677–81.PubMed
129.
Zurück zum Zitat Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015;10:910–23.PubMed Chen N, Fang W, Zhan J, Hong S, Tang Y, Kang S, et al. Upregulation of PD-L1 by EGFR activation mediates the immune escape in EGFR-driven NSCLC: implication for optional immune targeted therapy for NSCLC patients with EGFR mutation. J Thorac Oncol. 2015;10:910–23.PubMed
130.
Zurück zum Zitat Ikeda S, Okamoto T, Okano S, Umemoto Y, Tagawa T, Morodomi Y, et al. PD-L1 is upregulated by simultaneous amplification of the PD-L1 and JAK2 genes in non-small cell lung cancer. J Thorac Oncol. 2016;11:62–71.PubMed Ikeda S, Okamoto T, Okano S, Umemoto Y, Tagawa T, Morodomi Y, et al. PD-L1 is upregulated by simultaneous amplification of the PD-L1 and JAK2 genes in non-small cell lung cancer. J Thorac Oncol. 2016;11:62–71.PubMed
131.
Zurück zum Zitat Lastwika KJ, Wilson W 3rd, Li QK, Norris J, Xu H, Ghazarian SR, et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 2016;76:227–38.PubMed Lastwika KJ, Wilson W 3rd, Li QK, Norris J, Xu H, Ghazarian SR, et al. Control of PD-L1 expression by oncogenic activation of the AKT-mTOR pathway in non-small cell lung cancer. Cancer Res. 2016;76:227–38.PubMed
132.
Zurück zum Zitat Wang W, Zhou R, Wu Y, Liu Y, Su W, Xiong W, et al. PVT1 promotes cancer progression via MicroRNAs. Front Oncol. 2019;9:609.PubMedPubMedCentral Wang W, Zhou R, Wu Y, Liu Y, Su W, Xiong W, et al. PVT1 promotes cancer progression via MicroRNAs. Front Oncol. 2019;9:609.PubMedPubMedCentral
133.
Zurück zum Zitat Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, et al. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer. 2019;18:29.PubMedPubMedCentral Duan S, Guo W, Xu Z, He Y, Liang C, Mo Y, et al. Natural killer group 2D receptor and its ligands in cancer immune escape. Mol Cancer. 2019;18:29.PubMedPubMedCentral
134.
Zurück zum Zitat Fan C, Tu C, Qi P, Guo C, Xiang B, Zhou M, et al. GPC6 promotes cell proliferation, migration, and invasion in nasopharyngeal carcinoma. J Cancer. 2019;10:3926–32.PubMedPubMedCentral Fan C, Tu C, Qi P, Guo C, Xiang B, Zhou M, et al. GPC6 promotes cell proliferation, migration, and invasion in nasopharyngeal carcinoma. J Cancer. 2019;10:3926–32.PubMedPubMedCentral
135.
Zurück zum Zitat Mo Y, Wang Y, Xiong F, Ge X, Li Z, Li X, et al. Proteomic analysis of the molecular mechanism of lovastatin inhibiting the growth of nasopharyngeal carcinoma cells. J Cancer. 2019;10:2342–9.PubMedPubMedCentral Mo Y, Wang Y, Xiong F, Ge X, Li Z, Li X, et al. Proteomic analysis of the molecular mechanism of lovastatin inhibiting the growth of nasopharyngeal carcinoma cells. J Cancer. 2019;10:2342–9.PubMedPubMedCentral
136.
Zurück zum Zitat Mo Y, Wang Y, Zhang L, Yang L, Zhou M, Li X, et al. The role of Wnt signaling pathway in tumor metabolic reprogramming. J Cancer. 2019;10:3789–97.PubMedPubMedCentral Mo Y, Wang Y, Zhang L, Yang L, Zhou M, Li X, et al. The role of Wnt signaling pathway in tumor metabolic reprogramming. J Cancer. 2019;10:3789–97.PubMedPubMedCentral
137.
Zurück zum Zitat Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for Cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.PubMedPubMedCentral Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for Cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.PubMedPubMedCentral
138.
Zurück zum Zitat Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin Cancer Res. 2018;24:896–905.PubMed Theodoraki MN, Yerneni SS, Hoffmann TK, Gooding WE, Whiteside TL. Clinical significance of PD-L1(+) exosomes in plasma of head and neck cancer patients. Clin Cancer Res. 2018;24:896–905.PubMed
139.
Zurück zum Zitat Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, et al. The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 2017;20:854–67.PubMed Zingg D, Arenas-Ramirez N, Sahin D, Rosalia RA, Antunes AT, Haeusel J, et al. The histone methyltransferase Ezh2 controls mechanisms of adaptive resistance to tumor immunotherapy. Cell Rep. 2017;20:854–67.PubMed
140.
Zurück zum Zitat Toyokawa G, Takada K, Tagawa T, Hamamoto R, Yamada Y, Shimokawa M, et al. A positive correlation between the EZH2 and PD-L1 expression in resected lung adenocarcinomas. Ann Thorac Surg. 2019;107:393–400.PubMed Toyokawa G, Takada K, Tagawa T, Hamamoto R, Yamada Y, Shimokawa M, et al. A positive correlation between the EZH2 and PD-L1 expression in resected lung adenocarcinomas. Ann Thorac Surg. 2019;107:393–400.PubMed
141.
Zurück zum Zitat Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6:827–37.PubMedPubMedCentral Chen PL, Roh W, Reuben A, Cooper ZA, Spencer CN, Prieto PA, et al. Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade. Cancer Discov. 2016;6:827–37.PubMedPubMedCentral
142.
Zurück zum Zitat Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30:925–39.PubMedPubMedCentral Lim SO, Li CW, Xia W, Cha JH, Chan LC, Wu Y, et al. Deubiquitination and stabilization of PD-L1 by CSN5. Cancer Cell. 2016;30:925–39.PubMedPubMedCentral
143.
Zurück zum Zitat Wang S, Li J, Xie J, Liu F, Duan Y, Wu Y, et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin beta4/SNAI1/SIRT3 signaling pathway. Oncogene. 2018;37:4164–80.PubMed Wang S, Li J, Xie J, Liu F, Duan Y, Wu Y, et al. Programmed death ligand 1 promotes lymph node metastasis and glucose metabolism in cervical cancer by activating integrin beta4/SNAI1/SIRT3 signaling pathway. Oncogene. 2018;37:4164–80.PubMed
144.
Zurück zum Zitat Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202:1691–701.PubMedPubMedCentral Casares N, Pequignot MO, Tesniere A, Ghiringhelli F, Roux S, Chaput N, et al. Caspase-dependent immunogenicity of doxorubicin-induced tumor cell death. J Exp Med. 2005;202:1691–701.PubMedPubMedCentral
145.
Zurück zum Zitat Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.PubMed Kroemer G, Galluzzi L, Kepp O, Zitvogel L. Immunogenic cell death in cancer therapy. Annu Rev Immunol. 2013;31:51–72.PubMed
146.
Zurück zum Zitat Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12:860–75.PubMed Krysko DV, Garg AD, Kaczmarek A, Krysko O, Agostinis P, Vandenabeele P. Immunogenic cell death and DAMPs in cancer therapy. Nat Rev Cancer. 2012;12:860–75.PubMed
147.
Zurück zum Zitat Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61.PubMed Obeid M, Tesniere A, Ghiringhelli F, Fimia GM, Apetoh L, Perfettini JL, et al. Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med. 2007;13:54–61.PubMed
148.
Zurück zum Zitat Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29:482–91.PubMed Tesniere A, Schlemmer F, Boige V, Kepp O, Martins I, Ghiringhelli F, et al. Immunogenic death of colon cancer cells treated with oxaliplatin. Oncogene. 2010;29:482–91.PubMed
149.
Zurück zum Zitat Kim SS, Harford JB, Moghe M, Rait A, Chang EH. Combination with SGT-53 overcomes tumor resistance to a checkpoint inhibitor. Oncoimmunology. 2018;7:e1484982.PubMedPubMedCentral Kim SS, Harford JB, Moghe M, Rait A, Chang EH. Combination with SGT-53 overcomes tumor resistance to a checkpoint inhibitor. Oncoimmunology. 2018;7:e1484982.PubMedPubMedCentral
150.
Zurück zum Zitat Kim SS, Rait A, Kim E, Pirollo KF, Chang EH. A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine. 2015;11:301–11.PubMed Kim SS, Rait A, Kim E, Pirollo KF, Chang EH. A tumor-targeting p53 nanodelivery system limits chemoresistance to temozolomide prolonging survival in a mouse model of glioblastoma multiforme. Nanomedicine. 2015;11:301–11.PubMed
151.
Zurück zum Zitat Kim SS, Rait A, Kim E, Pirollo KF, Nishida M, Farkas N, et al. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano. 2014;8:5494–514.PubMedPubMedCentral Kim SS, Rait A, Kim E, Pirollo KF, Nishida M, Farkas N, et al. A nanoparticle carrying the p53 gene targets tumors including cancer stem cells, sensitizes glioblastoma to chemotherapy and improves survival. ACS Nano. 2014;8:5494–514.PubMedPubMedCentral
152.
Zurück zum Zitat Munoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol. 2016;16:741–50.PubMedPubMedCentral Munoz-Fontela C, Mandinova A, Aaronson SA, Lee SW. Emerging roles of p53 and other tumour-suppressor genes in immune regulation. Nat Rev Immunol. 2016;16:741–50.PubMedPubMedCentral
153.
Zurück zum Zitat Zhou H, Forveille S, Sauvat A, Yamazaki T, Senovilla L, Ma Y, et al. The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis. 2016;7:e2134.PubMedPubMedCentral Zhou H, Forveille S, Sauvat A, Yamazaki T, Senovilla L, Ma Y, et al. The oncolytic peptide LTX-315 triggers immunogenic cell death. Cell Death Dis. 2016;7:e2134.PubMedPubMedCentral
154.
Zurück zum Zitat Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23:2255–66.PubMed Ren J, Liu X, Fang C, Jiang S, June CH, Zhao Y. Multiplex genome editing to generate universal CAR T cells resistant to PD1 inhibition. Clin Cancer Res. 2017;23:2255–66.PubMed
155.
Zurück zum Zitat Flores CT, Wildes TJ, Drake JA, Moore GL, Dean BD, Abraham RS, et al. Lin(−)CCR2(+) hematopoietic stem and progenitor cells overcome resistance to PD-1 blockade. Nat Commun. 2018;9:4313.PubMedPubMedCentral Flores CT, Wildes TJ, Drake JA, Moore GL, Dean BD, Abraham RS, et al. Lin(−)CCR2(+) hematopoietic stem and progenitor cells overcome resistance to PD-1 blockade. Nat Commun. 2018;9:4313.PubMedPubMedCentral
156.
Zurück zum Zitat Bae J, Hideshima T, Tai YT, Song Y, Richardson P, Raje N, et al. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia. 2018;32:1932–47.PubMedPubMedCentral Bae J, Hideshima T, Tai YT, Song Y, Richardson P, Raje N, et al. Histone deacetylase (HDAC) inhibitor ACY241 enhances anti-tumor activities of antigen-specific central memory cytotoxic T lymphocytes against multiple myeloma and solid tumors. Leukemia. 2018;32:1932–47.PubMedPubMedCentral
157.
Zurück zum Zitat Iglesia MD, Vincent BG, Parker JS, Hoadley KA, Carey LA, Perou CM, et al. Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin Cancer Res. 2014;20:3818–29.PubMedPubMedCentral Iglesia MD, Vincent BG, Parker JS, Hoadley KA, Carey LA, Perou CM, et al. Prognostic B-cell signatures using mRNA-seq in patients with subtype-specific breast and ovarian cancer. Clin Cancer Res. 2014;20:3818–29.PubMedPubMedCentral
158.
Zurück zum Zitat Soldevilla MM, Villanueva H, Martinez-Velez N, Meraviglia-Crivelli D, Alonso MM, Cebollero J, et al. Intratumoral injection of activated B lymphoblast in combination with PD-1 blockade induces systemic antitumor immunity with reduction of local and distal tumors. Oncoimmunology. 2018;7:e1450711.PubMedPubMedCentral Soldevilla MM, Villanueva H, Martinez-Velez N, Meraviglia-Crivelli D, Alonso MM, Cebollero J, et al. Intratumoral injection of activated B lymphoblast in combination with PD-1 blockade induces systemic antitumor immunity with reduction of local and distal tumors. Oncoimmunology. 2018;7:e1450711.PubMedPubMedCentral
159.
Zurück zum Zitat Knudson KM, Hicks KC, Alter S, Schlom J, Gameiro SR. Mechanisms involved in IL-15 superagonist enhancement of anti-PD-L1 therapy. J Immunother Cancer. 2019;7:82.PubMedPubMedCentral Knudson KM, Hicks KC, Alter S, Schlom J, Gameiro SR. Mechanisms involved in IL-15 superagonist enhancement of anti-PD-L1 therapy. J Immunother Cancer. 2019;7:82.PubMedPubMedCentral
160.
Zurück zum Zitat Mittal D, Lepletier A, Madore J, Aguilera AR, Stannard K, Blake SJ, et al. CD96 is an immune checkpoint that regulates CD8(+) T-cell antitumor function. Cancer Immunol Res. 2019;7:559–71.PubMedPubMedCentral Mittal D, Lepletier A, Madore J, Aguilera AR, Stannard K, Blake SJ, et al. CD96 is an immune checkpoint that regulates CD8(+) T-cell antitumor function. Cancer Immunol Res. 2019;7:559–71.PubMedPubMedCentral
161.
Zurück zum Zitat Lian S, Xie R, Ye Y, Lu Y, Cheng Y, Xie X, et al. Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells. Sci Rep. 2019;9:4532.PubMedPubMedCentral Lian S, Xie R, Ye Y, Lu Y, Cheng Y, Xie X, et al. Dual blockage of both PD-L1 and CD47 enhances immunotherapy against circulating tumor cells. Sci Rep. 2019;9:4532.PubMedPubMedCentral
162.
Zurück zum Zitat Lian S, Xie R, Ye Y, Xie X, Li S, Lu Y, et al. Simultaneous blocking of CD47 and PD-L1 increases innate and adaptive cancer immune responses and cytokine release. EBioMedicine. 2019;42:281–95.PubMedPubMedCentral Lian S, Xie R, Ye Y, Xie X, Li S, Lu Y, et al. Simultaneous blocking of CD47 and PD-L1 increases innate and adaptive cancer immune responses and cytokine release. EBioMedicine. 2019;42:281–95.PubMedPubMedCentral
163.
Zurück zum Zitat Rodriguez-Ruiz ME, Rodriguez I, Mayorga L, Labiano T, Barbes B, Etxeberria I, et al. TGFbeta blockade enhances radiotherapy Abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol Cancer Ther. 2019;18:621–31.PubMed Rodriguez-Ruiz ME, Rodriguez I, Mayorga L, Labiano T, Barbes B, Etxeberria I, et al. TGFbeta blockade enhances radiotherapy Abscopal efficacy effects in combination with anti-PD1 and anti-CD137 immunostimulatory monoclonal antibodies. Mol Cancer Ther. 2019;18:621–31.PubMed
164.
Zurück zum Zitat Ahern E, Harjunpaa H, O'Donnell JS, Allen S, Dougall WC, Teng MWL, et al. RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer. Oncoimmunology. 2018;7:e1431088.PubMedPubMedCentral Ahern E, Harjunpaa H, O'Donnell JS, Allen S, Dougall WC, Teng MWL, et al. RANKL blockade improves efficacy of PD1-PD-L1 blockade or dual PD1-PD-L1 and CTLA4 blockade in mouse models of cancer. Oncoimmunology. 2018;7:e1431088.PubMedPubMedCentral
165.
Zurück zum Zitat Jing CY, Fu YP, Yi Y, Zhang MX, Zheng SS, Huang JL, et al. HHLA2 in intrahepatic cholangiocarcinoma: an immune checkpoint with prognostic significance and wider expression compared with PD-L1. J Immunother Cancer. 2019;7:77.PubMedPubMedCentral Jing CY, Fu YP, Yi Y, Zhang MX, Zheng SS, Huang JL, et al. HHLA2 in intrahepatic cholangiocarcinoma: an immune checkpoint with prognostic significance and wider expression compared with PD-L1. J Immunother Cancer. 2019;7:77.PubMedPubMedCentral
166.
Zurück zum Zitat Greenberg SA, Kong SW, Thompson E, Gulla SV. Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models. Oncotarget. 2019;10:1399–406.PubMedPubMedCentral Greenberg SA, Kong SW, Thompson E, Gulla SV. Co-inhibitory T cell receptor KLRG1: human cancer expression and efficacy of neutralization in murine cancer models. Oncotarget. 2019;10:1399–406.PubMedPubMedCentral
167.
Zurück zum Zitat Pai CS, Huang JT, Lu X, Simons DM, Park C, Chang A, et al. Clonal deletion of tumor-specific T cells by interferon-gamma confers therapeutic resistance to combination immune checkpoint blockade. Immunity. 2019;50:477–92 e478.PubMedPubMedCentral Pai CS, Huang JT, Lu X, Simons DM, Park C, Chang A, et al. Clonal deletion of tumor-specific T cells by interferon-gamma confers therapeutic resistance to combination immune checkpoint blockade. Immunity. 2019;50:477–92 e478.PubMedPubMedCentral
168.
Zurück zum Zitat Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med. 2014;6:237ra267. Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, et al. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med. 2014;6:237ra267.
169.
Zurück zum Zitat Wang Y, Zhang X, Yang L, Xue J, Hu G. Blockade of CCL2 enhances immunotherapeutic effect of anti-PD1 in lung cancer. J Bone Oncol. 2018;11:27–32.PubMedPubMedCentral Wang Y, Zhang X, Yang L, Xue J, Hu G. Blockade of CCL2 enhances immunotherapeutic effect of anti-PD1 in lung cancer. J Bone Oncol. 2018;11:27–32.PubMedPubMedCentral
170.
Zurück zum Zitat Chatterjee S, Chakraborty P, Daenthanasanmak A, Iamsawat S, Andrejeva G, Luevano LA, et al. Targeting PIM kinase with PD1 inhibition improves immunotherapeutic antitumor T-cell response. Clin Cancer Res. 2019;25:1036–49.PubMed Chatterjee S, Chakraborty P, Daenthanasanmak A, Iamsawat S, Andrejeva G, Luevano LA, et al. Targeting PIM kinase with PD1 inhibition improves immunotherapeutic antitumor T-cell response. Clin Cancer Res. 2019;25:1036–49.PubMed
171.
Zurück zum Zitat Kordbacheh T, Honeychurch J, Blackhall F, Faivre-Finn C, Illidge T. Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms. Ann Oncol. 2018;29:301–10.PubMed Kordbacheh T, Honeychurch J, Blackhall F, Faivre-Finn C, Illidge T. Radiotherapy and anti-PD-1/PD-L1 combinations in lung cancer: building better translational research platforms. Ann Oncol. 2018;29:301–10.PubMed
172.
Zurück zum Zitat Yu S, Cai L, Lin F, Wu X, Zhang C, Liu X, et al. Durable response after combination of concurrent chemoradiotherapy and anti-PD-1 therapy in HER2-negative advanced gastric adenocarcinoma: a case report. Onco Targets Ther. 2019;12:7691–8.PubMedPubMedCentral Yu S, Cai L, Lin F, Wu X, Zhang C, Liu X, et al. Durable response after combination of concurrent chemoradiotherapy and anti-PD-1 therapy in HER2-negative advanced gastric adenocarcinoma: a case report. Onco Targets Ther. 2019;12:7691–8.PubMedPubMedCentral
173.
Zurück zum Zitat La Rocca E, Dispinzieri M, Lozza L, Mariani G, Di Cosimo S, Gennaro M, et al. Radiotherapy with the anti-programmed cell death ligand-1 immune checkpoint blocker avelumab: acute toxicities in triple-negative breast cancer. Med Oncol. 2018;36:4.PubMed La Rocca E, Dispinzieri M, Lozza L, Mariani G, Di Cosimo S, Gennaro M, et al. Radiotherapy with the anti-programmed cell death ligand-1 immune checkpoint blocker avelumab: acute toxicities in triple-negative breast cancer. Med Oncol. 2018;36:4.PubMed
174.
Zurück zum Zitat Finazzi T, Rordorf T, Ikenberg K, Huber GF, Guckenberger M, Garcia Schueler HI. Radiotherapy-induced anti-tumor immune response and immune-related adverse events in a case of recurrent nasopharyngeal carcinoma undergoing anti-PD-1 immunotherapy. BMC Cancer. 2018;18:395.PubMedPubMedCentral Finazzi T, Rordorf T, Ikenberg K, Huber GF, Guckenberger M, Garcia Schueler HI. Radiotherapy-induced anti-tumor immune response and immune-related adverse events in a case of recurrent nasopharyngeal carcinoma undergoing anti-PD-1 immunotherapy. BMC Cancer. 2018;18:395.PubMedPubMedCentral
175.
Zurück zum Zitat Ji D, Yi H, Zhang D, Zhan T, Li Z, Li M, et al. Somatic mutations and immune alternation in rectal cancer following neoadjuvant chemoradiotherapy. Cancer Immunol Res. 2018;6:1401–16.PubMed Ji D, Yi H, Zhang D, Zhan T, Li Z, Li M, et al. Somatic mutations and immune alternation in rectal cancer following neoadjuvant chemoradiotherapy. Cancer Immunol Res. 2018;6:1401–16.PubMed
176.
Zurück zum Zitat Hettich M, Lahoti J, Prasad S, Niedermann G. Checkpoint antibodies but not T cell-recruiting diabodies effectively synergize with TIL-inducing gamma-irradiation. Cancer Res. 2016;76:4673–83.PubMed Hettich M, Lahoti J, Prasad S, Niedermann G. Checkpoint antibodies but not T cell-recruiting diabodies effectively synergize with TIL-inducing gamma-irradiation. Cancer Res. 2016;76:4673–83.PubMed
177.
Zurück zum Zitat Xie G, Gu D, Zhang L, Chen S, Wu D. A rapid and systemic complete response to stereotactic body radiation therapy and pembrolizumab in a patient with metastatic renal cell carcinoma. Cancer Biol Ther. 2017;18:547–51.PubMedPubMedCentral Xie G, Gu D, Zhang L, Chen S, Wu D. A rapid and systemic complete response to stereotactic body radiation therapy and pembrolizumab in a patient with metastatic renal cell carcinoma. Cancer Biol Ther. 2017;18:547–51.PubMedPubMedCentral
178.
Zurück zum Zitat Schvartsman G, Peng SA, Bis G, Lee JJ, Benveniste MFK, Zhang J, et al. Response rates to single-agent chemotherapy after exposure to immune checkpoint inhibitors in advanced non-small cell lung cancer. Lung Cancer. 2017;112:90–5.PubMed Schvartsman G, Peng SA, Bis G, Lee JJ, Benveniste MFK, Zhang J, et al. Response rates to single-agent chemotherapy after exposure to immune checkpoint inhibitors in advanced non-small cell lung cancer. Lung Cancer. 2017;112:90–5.PubMed
179.
Zurück zum Zitat Teng F, Kong L, Meng X, Yang J, Yu J. Radiotherapy combined with immune checkpoint blockade immunotherapy: achievements and challenges. Cancer Lett. 2015;365:23–9.PubMed Teng F, Kong L, Meng X, Yang J, Yu J. Radiotherapy combined with immune checkpoint blockade immunotherapy: achievements and challenges. Cancer Lett. 2015;365:23–9.PubMed
180.
Zurück zum Zitat Hanoteau A, Newton JM, Krupar R, Huang C, Liu HC, Gaspero A, et al. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J Immunother Cancer. 2019;7:10.PubMedPubMedCentral Hanoteau A, Newton JM, Krupar R, Huang C, Liu HC, Gaspero A, et al. Tumor microenvironment modulation enhances immunologic benefit of chemoradiotherapy. J Immunother Cancer. 2019;7:10.PubMedPubMedCentral
181.
Zurück zum Zitat Rodel F, Frey B, Gaipl U, Keilholz L, Fournier C, Manda K, et al. Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem. 2012;19:1741–50.PubMed Rodel F, Frey B, Gaipl U, Keilholz L, Fournier C, Manda K, et al. Modulation of inflammatory immune reactions by low-dose ionizing radiation: molecular mechanisms and clinical application. Curr Med Chem. 2012;19:1741–50.PubMed
182.
Zurück zum Zitat Lu CS, Liu JH. Pneumonitis in cancer patients receiving anti-PD-1 and radiotherapies: three case reports. Medicine (Baltimore). 2017;96:e5747. Lu CS, Liu JH. Pneumonitis in cancer patients receiving anti-PD-1 and radiotherapies: three case reports. Medicine (Baltimore). 2017;96:e5747.
183.
Zurück zum Zitat Galvin KC, Conroy MJ, Doyle SL, Dunne MR, Fahey R, Foley E, et al. Extratumoral PD-1 blockade does not perpetuate obesity-associated inflammation in esophageal adenocarcinoma. Cancer Lett. 2018;418:230–8.PubMed Galvin KC, Conroy MJ, Doyle SL, Dunne MR, Fahey R, Foley E, et al. Extratumoral PD-1 blockade does not perpetuate obesity-associated inflammation in esophageal adenocarcinoma. Cancer Lett. 2018;418:230–8.PubMed
184.
Zurück zum Zitat Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant Pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378:1789–801.PubMed Eggermont AMM, Blank CU, Mandala M, Long GV, Atkinson V, Dalle S, et al. Adjuvant Pembrolizumab versus placebo in resected stage III melanoma. N Engl J Med. 2018;378:1789–801.PubMed
185.
Zurück zum Zitat Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Ann Oncol. 2015;26:259–71.PubMed Salgado R, Denkert C, Demaria S, Sirtaine N, Klauschen F, Pruneri G, et al. The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an international TILs working group 2014. Ann Oncol. 2015;26:259–71.PubMed
186.
Zurück zum Zitat Rehman JA, Han G, Carvajal-Hausdorf DE, Wasserman BE, Pelekanou V, Mani NL, et al. Quantitative and pathologist-read comparison of the heterogeneity of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer. Mod Pathol. 2017;30:340–9.PubMed Rehman JA, Han G, Carvajal-Hausdorf DE, Wasserman BE, Pelekanou V, Mani NL, et al. Quantitative and pathologist-read comparison of the heterogeneity of programmed death-ligand 1 (PD-L1) expression in non-small cell lung cancer. Mod Pathol. 2017;30:340–9.PubMed
187.
Zurück zum Zitat Smith J, Robida MD, Acosta K, Vennapusa B, Mistry A, Martin G, et al. Quantitative and qualitative characterization of two PD-L1 clones: SP263 and E1L3N. Diagn Pathol. 2016;11:44.PubMedPubMedCentral Smith J, Robida MD, Acosta K, Vennapusa B, Mistry A, Martin G, et al. Quantitative and qualitative characterization of two PD-L1 clones: SP263 and E1L3N. Diagn Pathol. 2016;11:44.PubMedPubMedCentral
188.
Zurück zum Zitat Morales-Betanzos CA, Lee H, Gonzalez Ericsson PI, Balko JM, Johnson DB, Zimmerman LJ, et al. Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma. Mol Cell Proteomics. 2017;16:1705–17.PubMedPubMedCentral Morales-Betanzos CA, Lee H, Gonzalez Ericsson PI, Balko JM, Johnson DB, Zimmerman LJ, et al. Quantitative mass spectrometry analysis of PD-L1 protein expression, N-glycosylation and expression stoichiometry with PD-1 and PD-L2 in human melanoma. Mol Cell Proteomics. 2017;16:1705–17.PubMedPubMedCentral
189.
Zurück zum Zitat Lee HH, Wang YN, Xia W, Chen CH, Rau KM, Ye L, et al. Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell. 2019;36:168–178.e4.PubMedPubMedCentral Lee HH, Wang YN, Xia W, Chen CH, Rau KM, Ye L, et al. Removal of N-linked glycosylation enhances PD-L1 detection and predicts anti-PD-1/PD-L1 therapeutic efficacy. Cancer Cell. 2019;36:168–178.e4.PubMedPubMedCentral
Metadaten
Titel
Predictive biomarkers and mechanisms underlying resistance to PD1/PD-L1 blockade cancer immunotherapy
verfasst von
Daixi Ren
Yuze Hua
Boyao Yu
Xin Ye
Ziheng He
Chunwei Li
Jie Wang
Yongzhen Mo
Xiaoxu Wei
Yunhua Chen
Yujuan Zhou
Qianjin Liao
Hui Wang
Bo Xiang
Ming Zhou
Xiaoling Li
Guiyuan Li
Yong Li
Zhaoyang Zeng
Wei Xiong
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2020
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/s12943-020-1144-6

Weitere Artikel der Ausgabe 1/2020

Molecular Cancer 1/2020 Zur Ausgabe

Mehr Brustkrebs, aber weniger andere gynäkologische Tumoren mit Levonorgestrel-IUS

04.06.2024 Levonorgestrel Nachrichten

Unter Frauen, die ein Levonorgestrel-freisetzendes intrauterines System (IUS) verwenden, ist die Brustkrebsrate um 13% erhöht. Dafür kommt es deutlich seltener zu Endometrium-, Zervix- und Ovarialkarzinomen.

Bei seelischem Stress sind Checkpoint-Hemmer weniger wirksam

03.06.2024 NSCLC Nachrichten

Wie stark Menschen mit fortgeschrittenem NSCLC von einer Therapie mit Immun-Checkpoint-Hemmern profitieren, hängt offenbar auch davon ab, wie sehr die Diagnose ihre psychische Verfassung erschüttert

Antikörper mobilisiert Neutrophile gegen Krebs

03.06.2024 Onkologische Immuntherapie Nachrichten

Ein bispezifischer Antikörper formiert gezielt eine Armee neutrophiler Granulozyten gegen Krebszellen. An den Antikörper gekoppeltes TNF-alpha soll die Zellen zudem tief in solide Tumoren hineinführen.

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.