Skip to main content
Erschienen in: Journal of Medical Ultrasonics 4/2020

04.08.2020 | Original Article–Physics & Engineering

Preliminary study on the separation of specular reflection and backscattering components using synthetic aperture beamforming

verfasst von: Ryo Nagaoka, Jens E. Wilhjelm, Hideyuki Hasegawa

Erschienen in: Journal of Medical Ultrasonics | Ausgabe 4/2020

Einloggen, um Zugang zu erhalten

Abstract

Purpose

In the early stages of atherosclerosis, the luminal surface of the arterial wall becomes rough due to injury and detachment of endothelial cells. This roughening can potentially be estimated with ultrasound since the electrical echo signal from the transducer is sensitive to both the angle of incidence to an extended surface as well as the roughness of the surface. Specifically, as the roughness of an interface increases, specular reflection is substituted by scattering. We propose a method that attempts separation of reflection and backscattering components in the received echo signals.

Method

Assuming the predominant propagation directions of the reflected and scattered waves can be somewhat controlled by the emitted sound field, separation of those components was attempted using synthetic aperture imaging with a transmit beam, focused at a point more distant than the imaging depth. Specifically, two dedicated beamforming processes were used for generation of reflection-emphasized and backscattering-emphasized images.

Result

Experimental verifications on a phantom using an ultrasound system with a limited number of active transmit–receive channels yielded a difference between these two images of 8 dB. The results further showed a similar (slightly improved) lateral spatial resolution size of 0.41 mm for the backscattering-emphasized image compared with conventional B-mode imaging (0.47 mm).

Conclusion

A new technique for separation of the reflection and backscattering components using synthetic aperture beamforming with a transmit beam featuring a large focal distance was proposed. The technique demonstrated a partial separation of the reflection and backscattering components, which potentially may be used to estimate surface roughness.
Literatur
1.
Zurück zum Zitat Hasegawa H, Hongo K, Kanai H. Measurement of regional pulse wave velocity using very high frame rate ultrasound. J Med Ultrason. 2013;40:91–8.CrossRef Hasegawa H, Hongo K, Kanai H. Measurement of regional pulse wave velocity using very high frame rate ultrasound. J Med Ultrason. 2013;40:91–8.CrossRef
2.
Zurück zum Zitat Nagaoka R, Masuno G, Kobayashi K, et al. Measurement of regional pulse-wave velocity using spatial compound imaging of the common carotid artery in vivo. Ultrasonics. 2015;55:92–103.CrossRef Nagaoka R, Masuno G, Kobayashi K, et al. Measurement of regional pulse-wave velocity using spatial compound imaging of the common carotid artery in vivo. Ultrasonics. 2015;55:92–103.CrossRef
3.
Zurück zum Zitat Hasegawa H, Sato M, Irie T. High resolution wavenumber analysis for investigation of arterial pulse wave propagation. Jpn J Appl Phys. 2016;55:07FA01.CrossRef Hasegawa H, Sato M, Irie T. High resolution wavenumber analysis for investigation of arterial pulse wave propagation. Jpn J Appl Phys. 2016;55:07FA01.CrossRef
4.
Zurück zum Zitat Apostolakis IZ, Nandlall SD, Konofagou EE. Adaptive stiffness mapping in murine atherosclerotic and aneurysmal aortas using Pulse Wave Imaging (PWI) in vivo. IEEE Trans Med Imag. 2016;35:13–28.CrossRef Apostolakis IZ, Nandlall SD, Konofagou EE. Adaptive stiffness mapping in murine atherosclerotic and aneurysmal aortas using Pulse Wave Imaging (PWI) in vivo. IEEE Trans Med Imag. 2016;35:13–28.CrossRef
5.
Zurück zum Zitat Nandlall S, Konofagou EE. Assessing the stability of aortic aneurysms with pulse wave imaging. Radiology. 2016;8:151407. Nandlall S, Konofagou EE. Assessing the stability of aortic aneurysms with pulse wave imaging. Radiology. 2016;8:151407.
6.
Zurück zum Zitat Hasegawa H. Analysis of arterial wall motion for measurement of regional pulse wave velocity. Jpn J Appl Phys. 2018;57:07LF01.CrossRef Hasegawa H. Analysis of arterial wall motion for measurement of regional pulse wave velocity. Jpn J Appl Phys. 2018;57:07LF01.CrossRef
7.
Zurück zum Zitat De Korte CL, van der Steen AF, Céspedes EI, et al. Intravascular ultrasound elastography in human arteries: initial experience in vitro. Ultrasound Med Biol. 1998;24:401–8.CrossRef De Korte CL, van der Steen AF, Céspedes EI, et al. Intravascular ultrasound elastography in human arteries: initial experience in vitro. Ultrasound Med Biol. 1998;24:401–8.CrossRef
8.
Zurück zum Zitat Kanai H, Hasegawa H, Koiwa Y, et al. Elasticity imaging of atheroma with transcutaneous ultrasound -Preliminary study-. Circulation. 2003;107:3018–21.CrossRef Kanai H, Hasegawa H, Koiwa Y, et al. Elasticity imaging of atheroma with transcutaneous ultrasound -Preliminary study-. Circulation. 2003;107:3018–21.CrossRef
9.
Zurück zum Zitat Maurice RL, Soulez G, Giroux MD, et al. Noninvasive vascular elastography for carotid artery characterization on subjects without previous history of atherosclerosis. Med Phys. 2008;35:3436–43.CrossRef Maurice RL, Soulez G, Giroux MD, et al. Noninvasive vascular elastography for carotid artery characterization on subjects without previous history of atherosclerosis. Med Phys. 2008;35:3436–43.CrossRef
10.
Zurück zum Zitat Hasegawa H. Phase-sensitive 2D motion estimators using frequency spectra of ultrasonic echoes. Appl Sci. 2016;6:195.CrossRef Hasegawa H. Phase-sensitive 2D motion estimators using frequency spectra of ultrasonic echoes. Appl Sci. 2016;6:195.CrossRef
11.
Zurück zum Zitat Miyajo A, Hasegawa H. Measurement of 2D motion of carotid arterial wall using phase shift and frequency of ultrasonic echo. Jpn J Appl Phys. 2018;57:07LF11.CrossRef Miyajo A, Hasegawa H. Measurement of 2D motion of carotid arterial wall using phase shift and frequency of ultrasonic echo. Jpn J Appl Phys. 2018;57:07LF11.CrossRef
12.
Zurück zum Zitat Sho E, Sho M, Singh TM, et al. Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp Mol Pathol. 2002;73:142–53.CrossRef Sho E, Sho M, Singh TM, et al. Arterial enlargement in response to high flow requires early expression of matrix metalloproteinases to degrade extracellular matrix. Exp Mol Pathol. 2002;73:142–53.CrossRef
13.
Zurück zum Zitat Wong M, Edelstein J, Wollman J, et al. Ultrasonic pathological comparison of the human arterial wall. Verification of intima-media thickness. Arterioscler Thromb. 1993;13:482–6.CrossRef Wong M, Edelstein J, Wollman J, et al. Ultrasonic pathological comparison of the human arterial wall. Verification of intima-media thickness. Arterioscler Thromb. 1993;13:482–6.CrossRef
14.
Zurück zum Zitat Espeland MA, O’Leary DH, Terry JG, et al. Carotid intimal-media thickness as a surrogate for cardiovascular disease events in trials of HMG-CoA reductase inhibitors. Curr Control Trials Cardiovasc Med. 2005;6:3.CrossRef Espeland MA, O’Leary DH, Terry JG, et al. Carotid intimal-media thickness as a surrogate for cardiovascular disease events in trials of HMG-CoA reductase inhibitors. Curr Control Trials Cardiovasc Med. 2005;6:3.CrossRef
15.
Zurück zum Zitat Hurst RT, Ng DW, Kendall C, et al. Clinical use of carotid intima-media thickness: review of the literature. J Am Soc Echocardiogr. 2007;20:907–14.CrossRef Hurst RT, Ng DW, Kendall C, et al. Clinical use of carotid intima-media thickness: review of the literature. J Am Soc Echocardiogr. 2007;20:907–14.CrossRef
16.
Zurück zum Zitat Pignoli P, Tremoli E, Poli A, et al. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74:1399–406.CrossRef Pignoli P, Tremoli E, Poli A, et al. Intimal plus medial thickness of the arterial wall: a direct measurement with ultrasound imaging. Circulation. 1986;74:1399–406.CrossRef
17.
Zurück zum Zitat Nambi V, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk. J Am Coll Cardiol. 2010;55:1600–7.CrossRef Nambi V, et al. Carotid intima-media thickness and presence or absence of plaque improves prediction of coronary heart disease risk. J Am Coll Cardiol. 2010;55:1600–7.CrossRef
18.
Zurück zum Zitat Greenland P, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: Areport of the American college of cardiology foundation/ American heart association task force on practice guidelines. J Am Coll Cardiol. 2010;56:e50–e103.CrossRef Greenland P, et al. 2010 ACCF/AHA guideline for assessment of cardiovascular risk in asymptomatic adults: Areport of the American college of cardiology foundation/ American heart association task force on practice guidelines. J Am Coll Cardiol. 2010;56:e50–e103.CrossRef
19.
Zurück zum Zitat Ciccone MM, Scicchitano P, Zito A, et al. Correlation between coronary artery disease severity, left ventricular mass index and carotid intima media thickness, assessed by radio-frequency. Cardiovasc Ultrasound. 2011;9:32–9.CrossRef Ciccone MM, Scicchitano P, Zito A, et al. Correlation between coronary artery disease severity, left ventricular mass index and carotid intima media thickness, assessed by radio-frequency. Cardiovasc Ultrasound. 2011;9:32–9.CrossRef
20.
Zurück zum Zitat Kitamura K, Hasegawa H, Kanai H. Accurate estimation of carotid luminal surface roughness using ultrasonic radio-frequency echo. Jpn J Appl Phys. 2012;51:07GF08.CrossRef Kitamura K, Hasegawa H, Kanai H. Accurate estimation of carotid luminal surface roughness using ultrasonic radio-frequency echo. Jpn J Appl Phys. 2012;51:07GF08.CrossRef
21.
Zurück zum Zitat Kageyama S, Hasegawa H, Kanai H. Increasing bandwidth of ultrasound radio frequency echoes using wiener filter for improvement of accuracy in measurement of intima-media thickness. Jpn J Appl Phys. 2013;52:07HF04.CrossRef Kageyama S, Hasegawa H, Kanai H. Increasing bandwidth of ultrasound radio frequency echoes using wiener filter for improvement of accuracy in measurement of intima-media thickness. Jpn J Appl Phys. 2013;52:07HF04.CrossRef
22.
Zurück zum Zitat Nagai Y, Hasegawa H, Kanai H. Improvement of accuracy in ultrasonic measurement of luminal surface roughness of carotid arterial wall by deconvolution filtering. Jpn J Appl Phys. 2014;53:07KF19.CrossRef Nagai Y, Hasegawa H, Kanai H. Improvement of accuracy in ultrasonic measurement of luminal surface roughness of carotid arterial wall by deconvolution filtering. Jpn J Appl Phys. 2014;53:07KF19.CrossRef
23.
Zurück zum Zitat Wilhjelm JE, Jespersen SK, Hansen JU, et al. Influence of Insonification Angle on Echogenicity of B-Mode Images of Atherosclerotic Plaque in vitro. Conf Proc in IEEE IUS 1998:1599–602. Wilhjelm JE, Jespersen SK, Hansen JU, et al. Influence of Insonification Angle on Echogenicity of B-Mode Images of Atherosclerotic Plaque in vitro. Conf Proc in IEEE IUS 1998:1599–602.
24.
Zurück zum Zitat Wilhjelm JE, Pedersen PC, Jacobsen SM. The influence of roughness, angle, range, and transducer type on the echo signal from planar interfaces. IEEE Trans Ultrason Ferroelectr Freq Contr. 2001;48:511–21.CrossRef Wilhjelm JE, Pedersen PC, Jacobsen SM. The influence of roughness, angle, range, and transducer type on the echo signal from planar interfaces. IEEE Trans Ultrason Ferroelectr Freq Contr. 2001;48:511–21.CrossRef
25.
Zurück zum Zitat Orofino DP, Pedersen PC. Angle-dependent spectral distortion for an infinite planar fluid-fluid interface. J Acoust Soc Am. 1992;92(5):2883–999.CrossRef Orofino DP, Pedersen PC. Angle-dependent spectral distortion for an infinite planar fluid-fluid interface. J Acoust Soc Am. 1992;92(5):2883–999.CrossRef
26.
Zurück zum Zitat Sehgal CM, Greenleaf JF. Scattering of ultrasound by tissues. Ultrason Imaging. 1984;6:60–80.CrossRef Sehgal CM, Greenleaf JF. Scattering of ultrasound by tissues. Ultrason Imaging. 1984;6:60–80.CrossRef
27.
Zurück zum Zitat Jensen JA, Nikolov SL, Gammelmark KL, Pedersen MH. Synthetic aperture ultrasound imaging. Ultrasonics. 2006;44:e5–e15.CrossRef Jensen JA, Nikolov SL, Gammelmark KL, Pedersen MH. Synthetic aperture ultrasound imaging. Ultrasonics. 2006;44:e5–e15.CrossRef
28.
Zurück zum Zitat Hasegawa H, Nagaoka R. Basic study on synthetic aperture method using two kinds of transmit beams. Tech Rep IEICE. 2019;119(7):21–4. Hasegawa H, Nagaoka R. Basic study on synthetic aperture method using two kinds of transmit beams. Tech Rep IEICE. 2019;119(7):21–4.
29.
Zurück zum Zitat Aks SΦ, Vezzetti DJ. Ultrasonic scattering theory I: scattering by single objects. Ultrason Imaging. 1980;2:85–101.CrossRef Aks SΦ, Vezzetti DJ. Ultrasonic scattering theory I: scattering by single objects. Ultrason Imaging. 1980;2:85–101.CrossRef
30.
Zurück zum Zitat Vezzetti DJ, Aks SΦ. Ultrasonic scattering theory II: scattering from composites. Ultrason Imaging. 1980;2:195–21212.CrossRef Vezzetti DJ, Aks SΦ. Ultrasonic scattering theory II: scattering from composites. Ultrason Imaging. 1980;2:195–21212.CrossRef
31.
Zurück zum Zitat Coussios CC. The significance of shape and orientation in single-particle weak-scatterer models. J Acoust Soc Am. 2002;112:906–15.CrossRef Coussios CC. The significance of shape and orientation in single-particle weak-scatterer models. J Acoust Soc Am. 2002;112:906–15.CrossRef
Metadaten
Titel
Preliminary study on the separation of specular reflection and backscattering components using synthetic aperture beamforming
verfasst von
Ryo Nagaoka
Jens E. Wilhjelm
Hideyuki Hasegawa
Publikationsdatum
04.08.2020
Verlag
Springer Singapore
Erschienen in
Journal of Medical Ultrasonics / Ausgabe 4/2020
Print ISSN: 1346-4523
Elektronische ISSN: 1613-2254
DOI
https://doi.org/10.1007/s10396-020-01038-2

Weitere Artikel der Ausgabe 4/2020

Journal of Medical Ultrasonics 4/2020 Zur Ausgabe

Update Radiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.