Skip to main content
Erschienen in: Diabetology & Metabolic Syndrome 1/2017

Open Access 01.12.2017 | Research

Prevalence and risk factors of diabetes in a large community-based study in North India: results from a STEPS survey in Punjab, India

verfasst von: Jaya Prasad Tripathy, J. S. Thakur, Gursimer Jeet, Sohan Chawla, Sanjay Jain, Arnab Pal, Rajendra Prasad, Rajiv Saran

Erschienen in: Diabetology & Metabolic Syndrome | Ausgabe 1/2017

Abstract

Aims

India is the diabetes capital with home to 69.1 million people with DM, the second highest number of cases after China. Recent epidemiological evidence indicates a rising DM epidemic across all classes, both affluent and the poor in India. This article reports on the prevalence of diabetes and pre-diabetes in the North Indian state of Punjab as part of a large household NCD Risk Factor Survey.

Methods

A household NCD STEPS survey was done in the state of Punjab, India in a multistage stratified sample of 5127 individuals. All the subjects were administered the WHO STEPS questionnaire, anthropometric and blood pressure measurements. Every alternate respondent in the sample (n = 2499) was assayed for blood parameters.

Results

Overall prevalence of DM among the study participants was found out to be 8.3% (95% CI 7.3–9.4%) whereas prevalence of prediabetes was 6.3% (5.4–7.3%). Age group (45–69 years), marital status, hypertension, obesity and family history of DM were found to be the risk factors significantly associated with DM. Out of all persons with DM, only 18% were known case of DM or on treatment, among whom only about one-third had controlled blood glucose status.

Conclusions

The study reported high prevalence of diabetes, especially of undiagnosed cases amongst the adult population, most of whom have uncontrolled blood sugar levels. This indicates the need for systematic screening and awareness program to identify the undiagnosed cases in the community and offer early treatment and regular follow up.
Abkürzungen
NCD
non communicable disease
DM
diabetes mellitus
LDL
low density lipoproteins
HDL
high density lipoproteins
GPAQ
Global Physical Activity Questionnaire
BMI
body mass index

Background

According to International Diabetes Federation estimates, around 415 million people had DM in 2015 and this number is expected to rise to 642 million by 2040 [1]. Around 75% of subjects with DM live in low- and middle-income countries (LMICs). In financial terms, the global burden of DM is enormous, with an estimated annual expenditure of 673 billion US dollars in 2015, which constituted 12% of global health spending for that year [1]. While in urban areas of LMICs, diabetes is well recognized as a public health priority; recent prevalence data suggest that diabetes is an increasing problem among rural populations as well [2].
India is home to 69.1 million people with DM and is estimated to have the second highest number of cases of DM in the world after China in 2015 [1]. The prevalence of DM in India ranges from 5–17%, with higher levels found in the southern part of the country and in urban areas [39]. DM continues to increase as a result of rapid cultural and social changes, which include: ageing populations, increasing urbanization, dietary changes, reduced physical activity and unhealthy behavior. Historically a disease of the affluent, recent epidemiological evidence indicates a rising DM incidence and prevalence in urban India’s middle class and working poor [10]. Indians are also believed to have a greater degree of insulin resistance and a stronger genetic predisposition to diabetes [11].
Against this background, an understanding of the changing epidemiology of diabetes in India is required. Estimation of the prevalence of diabetes and identification of high risk groups is essential for planning of community based risk factor reduction interventions. There is currently insufficient information available on prevalence of type 2 diabetes and associated factors in North India. Previous community based studies in this region have been limited only to the Union Territory of Chandigarh which does not truly represent the North Indian population [3, 9]. Using a large cross-sectional data of 2700 individuals drawn from a multistage stratified sample in a North Indian state of Punjab, this study assesses the prevalence of type 2 DM and its associated risk factors (socio-demographic and behavioural).

Methods

Study design

This study reports results of a cross-sectional survey conducted in the state of Punjab, India using a multistage stratified sample.

Study setting

Punjab is a prosperous state in northern part of India bordering Pakistan with a population of 27 million according to 2011 national census. It ranks second in terms of human development index among all states [12]. A state wide non communicable disease (NCD) risk factor survey based on WHO-STEPS approach was undertaken in Punjab in 2014–2015. The survey adopted a multistage stratified, geographically clustered sampling approach using the 2011 census sampling frame. A three-stage design was employed in urban areas whereas in rural areas a two-stage sampling design was followed. Out of a total of 100 Primary Sampling Units (PSUs), there were 60 villages from rural areas and 40 Census Enumeration Blocks from the urban locality. From each selected PSU, 54 households were selected using systematic random sampling. The ultimate sampling units were the households and one individual in the age group of 18–69 years residing in the selected household was selected using the KISH method. The details of the methodology can be found in another paper [13].

Data collection instrument

A culturally adapted, Punjabi (local language) translated and pre-tested version of the WHO STEP Surveillance (STEPS) questionnaire (version 3.1) was used with minor adaptations [14]. As part of the household survey, socio demographic and behavioural information on tobacco and alcohol use, diet, physical activity, history of chronic diseases, family history of chronic conditions, health screening, and health care costs were collected in Step 1. Physical measurements such as height, weight, blood pressure and waist circumference were collected in Step 2. Biochemical tests were conducted to measure fasting blood glucose, total cholesterol, triglycerides, HDL and LDL cholesterol in Step 3.

Data collection

Data were collected by trained investigators. SECA adult portable stadiometer was used to measure height after removing shoes, socks, slippers and any head gear. It was measured in centimetres up to 0.1 cm. SECA digital weighing scale was used to measure weight of the individuals. The scale was regularly calibrated against a standard weight. The participants were asked to remove footwear and socks and weight was recorded in kilograms up to 0.1 kg. Waist circumference was measured using a SECA constant tension tape to the nearest 0.1 cm at the level of the midpoint between the inferior margin of the last rib and the iliac crest in the mid-axillary plane. The measurement was taken at the end of a normal expiration with the arms relaxed at the sides.
One serving of vegetable was considered to be one cup of raw green leafy vegetables or 1/2 cup of other vegetables (cooked or chopped raw). One serving of fruit was considered to be one medium size piece of apple, banana or orange, 1/2 cup of chopped, canned fruit or 1/2 cup of fruit juice.
Physical activity was assessed using the Global Physical Activity Questionnaire (GPAQ), which has been developed by the World Health Organization and used in the STEPS questionnaire. This questionnaire assesses physical activity behaviour in three different domains: work, transport and during leisure time. Activities are classified into three intensity levels: vigorous, moderate and light. ‘Vigorous-intensity activities’ are activities that require hard physical effort and cause large increases in breathing or heart rate, ‘moderate-intensity activities’ are activities that require moderate physical effort and cause small increases in breathing or heart rate. Participants were classified as sufficiently active who exceed the minimum duration of physical activity per week recommended by WHO i.e. 150 min of moderate intensity physical activity or 75 min of vigorous intensity physical activity or an equivalent combination of moderate- and vigorous-intensity physical activity achieving at least 600 MET-minutes per week with each activity performed in bouts of at least 10-min duration [15]. Obesity was defined as BMI ≥ 27.5. Show cards (pictorial, adapted to the local context) were used to explain to the participants the type of physical activity, servings of fruits and vegetables and salty food intake.
Biochemical measurements (step 3): Every alternate individual (50%) of the initial sample was subjected to steps 3 (around 2700). A mix of dry and wet chemistry methods was used to assess biochemical profile of participants using blood and urine samples. For blood glucose, dry chemistry method was used by blood glucose measurement device (Optium H, Freestyle). For lipid profile i.e. cholesterol and triglycerides measurements, blood samples were drawn on individuals after 10–12 h fasting. 5 ml of venous blood was taken in sitting position, and centrifuged immediately to separate serum, and transferred under cold chain condition to the Central Reference Laboratory of Department of Biochemistry, Post Graduate Institute of Medical Education and Research, Chandigarh, India.
Laboratory measurement of triglyceride was made on Modular P 800 autoanalyzer (Roche Diagnostics, Germany) using commercially available kits (Roche Diagnostics, Germany).

Sample size

Sample size of 4609 was calculated using the estimated prevalence of physical activity as 50%, 0.05 margin of error and 95% confidence interval. Assuming a response rate of 85%, sample size was raised to 5400. Every 2nd individual was subjected to Step 3 i.e. biochemical assessment. Out of 2700 respondents, 2499 (93%) gave consent to blood sampling for biochemical assessment.

Data analysis

Categorical variables are summarized using proportions and continuous variables using mean or median, whichever is applicable, with 95% confidence intervals. Chi square test was used for comparison of proportions across groups and ANOVA test for comparison of means across groups. Univariate and multiple logistic regression analysis (backward conditional method) was done to determine the predictors of diabetes. Variables entered into the multiple regression models were selected on the basis of significance (p < 0.2) in the univariate analysis. Statistical analysis was done using SPSS version 16.0.
The Institute Ethics Committee of Post Graduate Institute of Medical Education and Research, Chandigarh approved the study (reference number P-727, dated July 21, 2014). Informed written consent was taken from all participants.

Operational definitions

Dyslipidemia

National Cholesterol Education Programme (NCEP) guidelines [10] were used for definition of dyslipidemia as follows:
Hypertriglyceridemia—serum triglyceride levels ≥150 mg/dl (≥1.7 mmol/l).

Diabetes

Individuals diagnosed by a physician and/or on antidiabetic medications and/or those who had fasting blood glucose ≥126 mg/dl (≥7 mmol/l) [16].

Prediabetes or impaired fasting glucose [IFG]

Two different cut-offs have been used: Fasting blood glucose ≥100 mg/dl (≥5.6 mmol/l) and <126 mg/dl (<7 mmol/l) [16] and fasting blood glucose ≥110 mg/dl (≥6.1 mmol/l) and <126 mg/dl (<7 mmol/l) [17].

Hypertension

Individuals diagnosed by a physician and on antihypertensive medications (self-reported) and/or those who had systolic blood pressure ≥140 mmHg and/or diastolic blood pressure ≥90 mmHg—Joint National Committee 8 (JNC8) Criteria [18].

Current smoking

Smoking in the last one month.
Good glycemic control: defined as fasting blood glucose <130 mg/dl [16].

Results

Sociodemographic and behavioural characteristics

Table 1 shows the socio-demographic, behavioural and clinical characteristics of the respondents in the study. Majority of the respondents are females (64%), adults in the age group 25–44 years (51%), rural residents (61%) and belong to the general caste (48%). The prevalence of hypertension among the respondents was 36%. Nearly 15% were current alcohol users whereas around 4% were found to be current smokers (Table 1).
Table 1
Socio-demographic and behavioural characteristics of the study population, STEPS survey, Punjab, India, 2014–15
Characteristics
N = 2465 (%)
Age group (years)
 18–24
439 (18)
 25–44
1263 (51)
 45–69
763 (31)
Gender
 Male
890 (36)
 Female
1575 (64)
Residence
 Rural
1492 (61)
 Urban
973 (39)
Social group
 SC
926 (38)
 Other backward caste
337 (14)
 General
1163 (48)
Educational status
 Illiterate
575 (23)
 Up to primary education
575 (23)
 Up to secondary education
365 (15)
 Higher education
950 (39)
Marital status
 Never married
420 (17)
 Currently married
1834 (75)
 Separated/divorced
31 (1)
 Widowed and cohabitating
162 (7)
Current smoking
 Yes
104 (4)
 No
2361 (96)
Current alcohol usea
 Yes
381 (15)
 No
2084 (85)
Hypertensionb
 Yes
876 (36)
 No
1589 (64)
aOne who has drank alcohol in the past 30 days
bSystolic Blood Pressure ≥ 140 and/or Diastolic Blood Pressure ≥ 90 or currently on medication
Figures in parenthesis indicate percentages; SC scheduled caste, SCs are groups of historically disadvantaged people in India recognised by the Constitution of India. Other backward caste is a collective term used by the Constitution of India to classify castes which are socially and educationally disadvantaged although they are considered to be at a less disadvantageous position than SCs and STs; General category is a term used in India to denote a group other than OBCs and SCs and are considered socially, educationally, and economically advanced

Prevalence of DM

Overall prevalence of DM among the study participants was found out to be 8.3% (95% CI 7.3–9.4%) which was higher in urban areas (9.4%, 95% CI 7.7–11.4%) compared to rural (7.6, 6.4–9.1%), though not significant. The prevalence of prediabetes was 6.3% (5.4–7.3%) based on ADA criteria and 6.0% (5.0–7.1%) based on NPCDCS guidelines, again with a higher proportion among the urban dwellers (Table 2). On univariate analysis, the prevalence of DM was found to be significantly higher among those aged 45–69 years (18.0%), hypertensives (14.3%), obese (14.4%), with family history of DM (11.9%) and those with hypertriglyceridemia. No difference was found in prevalence by sex, residence, social group, educational status, smoking and alcohol use (Table 3).
Table 2
Prevalence of diabetes and pre-diabetes in Punjab, India stratified by age group, sex, and type of residence, 2014–2015
Characteristics
Prevalence of pre-diabetes N (%, 95% CI)
Prevalence of diabetes N (%, 95% CI)
Age group (years)
 18–24
12 (2.8, 1.6–4.8)
6 (1.4, 0.6–3.0)
 25–44
67 (5.2, 4.1–6.5)
61 (4.7, 3.7–6.0)
 45–69
77 (9.9, 8.0–12.2)
140 (18.0, 15.5–20.9)
Sex
 Male
59 (6.5, 5.1–8.3)
76 (8.4, 6.7–10.3)
 Female
97 (6.1, 5.0–7.4)
131 (8.2, 7.0–9.7)
Type of residence
 Rural
88 (5.8, 4.7–7.1)
116 (7.6, 6.4–9.1)
 Urban
68 (7.0, 5.6–8.8)
91 (9.4, 7.7–11.4)
 Overall
156 (6.3, 5.4–7.3)a
207 (8.3, 7.3–9.4)
Diabetes is defined as individuals diagnosed by a physician and/or on antidiabetic medications and/or those who had fasting blood glucose ≥126 mg/dl (≥7 mmol/l); prediabetes is defined as individuals who had fasting blood glucose ≥ 100 mg/dl (≥5.6 mmol/l) and <126 mg/dl (<7 mmol/l)
aPrevalence of pre-diabetes based on NPCDCS guidelines- fasting blood glucose ≥ 110 mg/dl (≥6.1 mmol/l) and < 126 mg/dl (<7 mmol/l) is (6.0, 5.0–7.1) the figures in the parentheses are expressed as percentages with 95% confidence intervals
Table 3
Socio-economic, behavioural and clinical correlates of patients with diabetes, STEPS survey, Punjab, India, 2014–15
Characteristics
Total
Diabetes
p value
Odds ratio
95% CI
p value
Age group (years)
  
0.001
   
 18–24
430
6 (1.4)
 
Ref
  
 25–44
1289
61 (4.7)
 
1.5
(0.6–3.8)
0.425
 45–69
776
140 (18.0)
 
4.7
(1.8–12.4)
0.001
Gender
  
0.9
   
 Male
907
76 (8.4)
 
 Female
1588
131 (8.2)
 
Residence
  
0.11
   
 Rural
1529
116 (7.6)
 
Ref
  
 Urban
966
91 (9.4)
 
1.1
(0.8–1.6)
0.4
Social group
  
0.053
   
 SC
954
61 (6.4)
 
Ref
  
 Other backward caste
342
35 (10.2)
 
1.3
(0.8–2.1)
0.3
 General
1155
107 (9.3)
 
1.1
(0.8–1.6)
0.6
Educational status
  
0.07
   
 Illiterate
575
51 (8.9)
 
Ref
  
 Up to primary education
599
63 (10.3)
 
1.3
(0.8–1.9)
0.2
 Up to secondary education
1065
74 (6.9)
 
1.0
(0.6–1.5)
0.9
 Higher education
256
19 (7.4)
 
1.0
(0.6–2.0)
0.9
Marital status
  
0.001
   
 Never married
413
5 (1.2)
 
Ref
  
 Currently married
1869
172 (9.2)
 
2.9
(1.0–8.1)
0.04
 Separated/divorced/widowed
195
29 (14.9)
 
3.3
(1.2–10.0)
0.03
Current smoking
  
0.7
   
 Yes
101
8 (7.9)
 
 No
2394
199 (8.3)
 
Current alcohol usea
  
0.109
   
 Yes
386
40 (10.4)
 
 No
2109
167 (7.9)
 
Hypertensionb
  
0.001
   
 Yes
1031
147 (14.3)
 
2.0
(1.4–2.8)
0.001
 No
1464
60 (4.1)
 
Ref
  
≥5 servings of fruits and vegetables dailyc
  
0.4
   
 Yes
109
10 (9.2)
 
 No
2386
197 (8.3)
 
Obesity (Asian cut off)d
  
0.001
   
 Yes
1830
96 (14.4)
 
1.6
(1.2–2.0)
0.03
 No
665
111 (6.1)
 
Ref
  
Family history of diabetes
  
0.001
   
 Yes
537
64 (11.9)
 
1.4
(1.2–1.7)
0.005
 No
1925
142 (7.4)
 
Ref
  
Family history of raised cholesterol
  
0.880
   
 Yes
126
11 (8.7)
 
 No
2336
195 (8.3)
 
Family history of high blood pressure
  
0.965
   
 Yes
852
71 (8.3)
 
 No
1610
134 (8.4)
 
Abdominal obesitye
  
0.001
   
 Yes
1415
165 (11.7)
 
1.5
(1.1–2.1)
0.01
 No
1080
42 (3.9)
 
Ref
  
Hypertriglyceridemiaf
  
0.006
   
 Yes
656
136 (7.4)
 
0.8
(0.6–1.1)
0.2
 No
1839
71 (10.8)
 
Ref
  
Physical activityg
      
 Above minimal recommended
140
04 (3.0)
0.008
Ref
  
 Below minimal recommended
2355
203 (8.6)
 
1.8
1.5–2.1
0.01
CI confidence interval, SC scheduled caste
aOne who has drank alcohol in the past 30 days
bSBP ≥ 140 and/or DBP ≥ 90 or currently on medication
cOne serving of vegetable was considered to be one cup of raw green leafy vegetables or 1/2 cup of other vegetables (cooked or chopped raw). One serving of fruit was considered to be one medium size piece of apple, banana or orange, 1/2 cup of chopped, canned fruit or 1/2 cup of fruit juice
dBody mass index ≥ 27.5 kg/m2
e≥90 cm for males and ≥80 cm for females
fSerum triglyceride >150 mg/dl
gMinimum duration of physical activity per week recommended by WHO as 150 min of moderate intensity physical activity or 75 min of vigorous intensity physical activity or an equivalent combination of moderate- and vigorous-intensity physical activity achieving at least 600 MET-minutes per week with each activity performed in bouts of at least 10-min duration; Backward conditional multivariate logistic regression was performed and values are presented as odds ratio with 95% confidence interval and p value

Risk factors for DM

Age group (45–69 years), marital status, hypertension, obesity and family history of DM were found to be the risk factors significantly associated with DM in a multivariate regression model (Table 3).

Treatment and control status of DM

Among all persons with DM, only 37 (18%) were known case of DM or on treatment whereas the rest were newly diagnosed. Among those already on treatment or known cases of DM, 13 (35%) had controlled blood glucose status (Table 4).
Table 4
Treatment and control status among diabetic patients in Punjab, STEPS survey, 2014–15
Demographic variables
Total diabetics N
On treatment N (%)
Good glycemic control N (%)
Total
N = 207
N = 37 (18)
N=13 (35)
Gender
 Male
76
16 (21)
6 (38)
 Female
131
21 (16)
7 (33)
Age (in years)
 18–24
6
2 (33)
2 (100)
 25–44
61
12 (20)
4 (33)
 45–69
140
23 (16)
7 (30)
Residence
 Rural
116
22 (19)
9 (41)
 Urban
91
15 (16)
4 (27)
Good glycemic control is defined as fasting blood glucose <130 mg/dl

Discussion

Overall prevalence of DM and prediabetes among the study participants was 8.3 and 6.3% respectively. Only 18% of all cases of DM were already known case or on treatment, among whom only about one-third had controlled blood glucose status.
This state-wide study was done in one of the most prosperous states in India. There have been few large community based studies looking at prevalence of diabetes in India. The National Urban Diabetes Survey showed an age-standardised prevalence of 12.1% for diabetes and 14% for IGT in six large metropolitan cities [5]. The Prevalence of Diabetes in India Study (PODIS) reported lower diabetes prevalence of 5.9 and 2.7% in urban and rural areas respectively with an overall prevalence of 4.3% [19]. Two studies in Chandigarh, a very prosperous city in North India, showed high prevalence of diabetes. In the INDIAB study, the city was found to have the highest prevalence of diabetes (13.6%) [3]. The Chandigarh Urban Diabetes Survey (CUDS) also reported high prevalence of diabetes and prediabetes i.e. 11.1 and 13.2% respectively [9].
Barik et al. in a large cross-sectional survey in rural West Bengal, which is situated in the eastern region of the country, found that the prevalence of diabetes and pre-diabetes among adults >18 years was 2.95 and 3.34% respectively [6]. In another study, Little et al. reported a high prevalence of type 2 diabetes (10.8%) among adults population (>19 years) in rural parts of South India [4]. These figures imply that though the prevalence of DM varies in different settings, it is certainly quite high and warrants immediate attention.
Our study adds to the limited but growing body of evidence suggesting that diabetes is no longer confined to urban areas of India and is a matter of concern in rural areas as well [4]. Considering the fact that over 70% of the population of India are rural and often faced with issues like poverty, poor access to health care, this is quite a worrisome finding. The present study reported no gender difference in the prevalence of DM which is supported by evidence from other studies in India [5, 6, 20], although a few studies have shown a male preponderance [3, 21].
Generalized obesity/high BMI and abdominal obesity were independently associated with diabetes which is similar to the results in most other studies [36, 9, 21]. Indians have a lower BMI than those of European descent. However, the risk of diabetes increases at very low levels of BMI for Indians [22]. Poor physical activity was also associated with diabetes as supported by earlier studies [4, 6]. The protective effects of physical activity against obesity, cardiovascular disease, and metabolic syndrome have already been proven [23]. The associations remained even after controlling for anthropometric measures, indicating that physical activity may have a direct impact on risk of diabetes apart from its association through obesity [4, 24]. Efforts that focus on healthy diet and promoting physical activity have the potential to reduce the risk of obesity, the single most important risk factor for type 2 diabetes [6]. Family history of DM is a strong predictor of the disease which is supported by most other studies [3, 5, 9]. The study results indicate that elderly individuals, hypertensives, obese (general/abdominal) or those with a family history of DM constitute an important group for screening.
Nearly 80% of individuals with diabetes were previously undiagnosed. The ratio of undiagnosed to total patients with DM was much higher compared to another study in rural Tamil Nadu conducted by Anjana et al. (48% undiagnosed) [3]. In another study in Delhi, only one-third of the diabetic patents were aware of their condition [25] thereby indicating the need for aggressive screening programs. Despite screening for NCDs including diabetes being a major component of the National Programme for Control of Cancer, Diabetes, Cardiovascular Diseases and Stroke (NPCDCS) in India, implementation is dismal [26]. The government of India has taken certain initiatives at national level which is appreciable, but there is a need to implement it at grass root level before the disease takes the shape of a pandemic in India. The pool of undiagnosed cases of DM left untreated is more prone to microvascular as well as macrovascular complications. Hence, it is necessary to identify and offer early therapy to these individuals and ensure regular follow up. The study results show that among persons with known DM on treatment, nearly two-third had uncontrolled blood glucose levels. Further studies are required to understand the reasons for the same.
The strengths of the study include a large multistage stratified community based sample, high participant response rate, use of standardized STEPS questionnaire and robust methodology and adherence to STROBE reporting guidelines [27].

Study limitations

The study had few limitations. Firstly, this being a cross-sectional study, prevents us from drawing causal inferences. Secondly, measurement of blood glucose was done by a glucometer device instead of venous blood glucose estimation due to logistic constraints. However, regular quality control check on blood glucose measurement was done in a reference laboratory as per the manufacturer’s instructions. Thirdly, only fasting blood glucose was used to diagnose diabetes and pre-diabetes.

Conclusion

In conclusion, the present study provides reliable and recent epidemiological information regarding the high burden of diabetes mellitus among the adult population in a representative North Indian population. Around 15% of the general adult population have diabetes or pre-diabetes, calling for an urgent attention. This study also highlights a significant burden of undiagnosed cases of DM in the community, most of them are poorly controlled. There is need to identify the large pool of undiagnosed cases of DM and offer early treatment in order to avoid complications.

Authors’ contributions

JPT, JST and GB were responsible for preparation of study proposal, study tool, data collection, interpretation of data and preparation and editing of the manuscript. SC was involved in data collection, entry and analysis. SJ, AP, RK and RS were responsible for preparation of study tool, data collection, data analysis and editing of the manuscript. All the authors critically reviewed the paper and approved the final draft for submission. All authors read and approved the final manuscript.

Acknowledgements

We acknowledge the Department of Health and Family Welfare of Punjab state for granting responsibility of conducting the NCD Risk Factors Survey in Punjab and funding this project through National Health Mission (NHM). We also sincerely acknowledge the support received from National Health Mission, Ministry of Health and Family Welfare, Government of India and World Health Organization. We also thank the Department for International Development (DFID), UK, for funding the Global Operational Research Fellowship Programme at the International Union Against Tuberculosis and Lung Disease (The Union), Paris, France in which Jaya Prasad Tripathy works as an Operational Research Fellow.

Competing interests

The authors declare that they have no competing interests.

Availability of data

Data are not available in public domain because they are currently being analysed in related papers. However, data are available with the corresponding author (JST) and will be made accessible on request at the following e-mail: jsthakur64@gmailcom.

Ethics

Ethics approval was obtained from the Institute Ethics Committee, Post Graduate Institute of Medical Education and Research, Chandigarh, India (reference number P-727, dated July 21, 2014). Written informed consent was obtained from the participants.

Funding

This project was funded by the National Health Mission, Punjab, India. We thank Department for International Development (DFID), UK and La Fondation Veuve Emile Metz-Tesch (Luxembourg), for funding this open access publication.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
2.
Zurück zum Zitat Hwang CK, Han PV, Zabetian A, Ali MK, Narayan KMV. Rural diabetes prevalence quintuples over twenty-five years in low- and middle-income countries: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2012;96(3):271–85.CrossRefPubMed Hwang CK, Han PV, Zabetian A, Ali MK, Narayan KMV. Rural diabetes prevalence quintuples over twenty-five years in low- and middle-income countries: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2012;96(3):271–85.CrossRefPubMed
3.
Zurück zum Zitat Anjana RM, Pradeepa R, Deepa M, Datta M, Sudha V, Unnikrishnan R, et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study. Diabetologia. 2011;54(12):3022–7.CrossRefPubMed Anjana RM, Pradeepa R, Deepa M, Datta M, Sudha V, Unnikrishnan R, et al. Prevalence of diabetes and prediabetes (impaired fasting glucose and/or impaired glucose tolerance) in urban and rural India: phase I results of the Indian Council of Medical Research-INdia DIABetes (ICMR-INDIAB) study. Diabetologia. 2011;54(12):3022–7.CrossRefPubMed
4.
Zurück zum Zitat Little M, Humphries S, Patel K, Dodd W, Dewey C. Factors associated with glucose tolerance, pre-diabetes, and type 2 diabetes in a rural community of south India: a cross-sectional study. Diabetol Metab Syndr. 2016;8:21.CrossRefPubMedPubMedCentral Little M, Humphries S, Patel K, Dodd W, Dewey C. Factors associated with glucose tolerance, pre-diabetes, and type 2 diabetes in a rural community of south India: a cross-sectional study. Diabetol Metab Syndr. 2016;8:21.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Ramachandran A, Snehalatha C, Kapur A, Vijay V, Mohan V, Das AK, et al. High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia. 2001;44(9):1094–101.CrossRefPubMed Ramachandran A, Snehalatha C, Kapur A, Vijay V, Mohan V, Das AK, et al. High prevalence of diabetes and impaired glucose tolerance in India: National Urban Diabetes Survey. Diabetologia. 2001;44(9):1094–101.CrossRefPubMed
6.
Zurück zum Zitat Barik A, Mazumdar S, Chowdhury A, Rai RK. Physiological and behavioral risk factors of type 2 diabetes mellitus in rural India. BMJ Open Diabetes Res Care. 2016;4(1):e000255.CrossRefPubMedPubMedCentral Barik A, Mazumdar S, Chowdhury A, Rai RK. Physiological and behavioral risk factors of type 2 diabetes mellitus in rural India. BMJ Open Diabetes Res Care. 2016;4(1):e000255.CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Ajay VS, Prabhakaran D, Jeemon P, Thankappan KR, Mohan V, Ramakrishnan L, et al. Prevalence and determinants of diabetes mellitus in the Indian industrial population. Diabet Med. 2008;25(10):1187–94.CrossRefPubMed Ajay VS, Prabhakaran D, Jeemon P, Thankappan KR, Mohan V, Ramakrishnan L, et al. Prevalence and determinants of diabetes mellitus in the Indian industrial population. Diabet Med. 2008;25(10):1187–94.CrossRefPubMed
8.
Zurück zum Zitat Mohan V, Deepa M, Deepa R, Shanthirani CS, Farooq S, Ganesan A, et al. Secular trends in the prevalence of diabetes and impaired glucose tolerance in urban South India–the Chennai Urban Rural Epidemiology Study (CURES-17). Diabetologia. 2006;49(6):1175–8.CrossRefPubMed Mohan V, Deepa M, Deepa R, Shanthirani CS, Farooq S, Ganesan A, et al. Secular trends in the prevalence of diabetes and impaired glucose tolerance in urban South India–the Chennai Urban Rural Epidemiology Study (CURES-17). Diabetologia. 2006;49(6):1175–8.CrossRefPubMed
9.
Zurück zum Zitat Ravikumar P, Bhansali A, Ravikiran M, Bhansali S, Walia R, Shanmugasundar G, et al. Prevalence and risk factors of diabetes in a community-based study in North India: the Chandigarh Urban Diabetes Study (CUDS). Diabetes Metab. 2011;37(3):216–21.CrossRefPubMed Ravikumar P, Bhansali A, Ravikiran M, Bhansali S, Walia R, Shanmugasundar G, et al. Prevalence and risk factors of diabetes in a community-based study in North India: the Chandigarh Urban Diabetes Study (CUDS). Diabetes Metab. 2011;37(3):216–21.CrossRefPubMed
10.
Zurück zum Zitat Mendenhall E, Shivashankar R, Tandon N, Ali MK, Narayan KMV, Prabhakaran D. Stress and diabetes in socioeconomic context: a qualitative study of urban Indians. Soc Sci Med. 2012;75(12):2522–9.CrossRefPubMedPubMedCentral Mendenhall E, Shivashankar R, Tandon N, Ali MK, Narayan KMV, Prabhakaran D. Stress and diabetes in socioeconomic context: a qualitative study of urban Indians. Soc Sci Med. 2012;75(12):2522–9.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Mohan V. Why are Indians more prone to diabetes? J Assoc Physicians India. 2004;52:468–74.PubMed Mohan V. Why are Indians more prone to diabetes? J Assoc Physicians India. 2004;52:468–74.PubMed
12.
Zurück zum Zitat Suryanarayana M, Agrawal A, Prabhu K. Inequality-adjusted human development index for India’s States. New Delhi; 2011. Suryanarayana M, Agrawal A, Prabhu K. Inequality-adjusted human development index for India’s States. New Delhi; 2011.
13.
Zurück zum Zitat Thakur JS, Jeet G, Pal A, Singh S, Singh A, Deepti SS, et al. Profile of Risk Factors for Non-Communicable Diseases in Punjab, Northern India: results of a State-Wide STEPS Survey. PLoS ONE. 2016;11(7):e0157705.CrossRefPubMedPubMedCentral Thakur JS, Jeet G, Pal A, Singh S, Singh A, Deepti SS, et al. Profile of Risk Factors for Non-Communicable Diseases in Punjab, Northern India: results of a State-Wide STEPS Survey. PLoS ONE. 2016;11(7):e0157705.CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat American Diabetes Association. Standards of medical care in diabetes-2016. Diabetes Care. 2016;39(Suppl 1):S13–22. American Diabetes Association. Standards of medical care in diabetes-2016. Diabetes Care. 2016;39(Suppl 1):S13–22.
17.
Zurück zum Zitat Directorate General Health Services Ministry of Health and Family Welfare. National Programme for prevention and control of Cancer, Diabetes, Cardiovascular Diseases & Stroke Operational Guidlines (2013–17). New Delhi; 2013. Directorate General Health Services Ministry of Health and Family Welfare. National Programme for prevention and control of Cancer, Diabetes, Cardiovascular Diseases & Stroke Operational Guidlines (2013–17). New Delhi; 2013.
18.
Zurück zum Zitat James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.CrossRefPubMed James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311(5):507–20.CrossRefPubMed
19.
Zurück zum Zitat Sadikot SM, Nigam A, Das S, Bajaj S, Zargar AH, Prasannakumar KM, et al. The burden of diabetes and impaired glucose tolerance in India using the WHO 1999 criteria: prevalence of diabetes in India study (PODIS). Diabetes Res Clin Pract. 2004;66(3):301–7.CrossRefPubMed Sadikot SM, Nigam A, Das S, Bajaj S, Zargar AH, Prasannakumar KM, et al. The burden of diabetes and impaired glucose tolerance in India using the WHO 1999 criteria: prevalence of diabetes in India study (PODIS). Diabetes Res Clin Pract. 2004;66(3):301–7.CrossRefPubMed
20.
Zurück zum Zitat Goswami AK, Gupta SK, Kalaivani M, Nongkynrih B, Pandav CS. Burden of hypertension and diabetes among urban population aged ≥60 years in South Delhi: a community based study. J Clin Diagn Res. 2016;10(3):LC01-5.PubMed Goswami AK, Gupta SK, Kalaivani M, Nongkynrih B, Pandav CS. Burden of hypertension and diabetes among urban population aged ≥60 years in South Delhi: a community based study. J Clin Diagn Res. 2016;10(3):LC01-5.PubMed
21.
Zurück zum Zitat Meshram II, Vishnu Vardhana Rao M, Sudershan Rao V, Laxmaiah A, Polasa K. Regional variation in the prevalence of overweight/obesity, hypertension and diabetes and their correlates among the adult rural population in India. Br J Nutr. 2016;115(7):1265–72.CrossRefPubMed Meshram II, Vishnu Vardhana Rao M, Sudershan Rao V, Laxmaiah A, Polasa K. Regional variation in the prevalence of overweight/obesity, hypertension and diabetes and their correlates among the adult rural population in India. Br J Nutr. 2016;115(7):1265–72.CrossRefPubMed
22.
Zurück zum Zitat Chan JCN, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon K-H, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301(20):2129–40.CrossRefPubMed Chan JCN, Malik V, Jia W, Kadowaki T, Yajnik CS, Yoon K-H, et al. Diabetes in Asia: epidemiology, risk factors, and pathophysiology. JAMA. 2009;301(20):2129–40.CrossRefPubMed
23.
Zurück zum Zitat Kesaniemi YK, Danforth E, Jensen MD, Kopelman PG, Lefèbvre P, Reeder BA. Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc. 2001;33(6 Suppl):S351–8.PubMed Kesaniemi YK, Danforth E, Jensen MD, Kopelman PG, Lefèbvre P, Reeder BA. Dose-response issues concerning physical activity and health: an evidence-based symposium. Med Sci Sports Exerc. 2001;33(6 Suppl):S351–8.PubMed
24.
Zurück zum Zitat Little M, Humphries S, Patel K, Dewey C. Factors associated with BMI, underweight, overweight, and obesity among adults in a population of rural south India: a cross-sectional study. BMC Obes. 2016;3:12.CrossRefPubMedPubMedCentral Little M, Humphries S, Patel K, Dewey C. Factors associated with BMI, underweight, overweight, and obesity among adults in a population of rural south India: a cross-sectional study. BMC Obes. 2016;3:12.CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Singh AK, Mani K, Krishnan A, Aggarwal P, Gupta SK. Prevalence, awareness, treatment and control of diabetes among elderly persons in an urban slum of Delhi. Indian J Community Med. 2012;37(4):236–9.CrossRefPubMedPubMedCentral Singh AK, Mani K, Krishnan A, Aggarwal P, Gupta SK. Prevalence, awareness, treatment and control of diabetes among elderly persons in an urban slum of Delhi. Indian J Community Med. 2012;37(4):236–9.CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Chauhan G, Thakur J. Assessing health workers’ capacity for the prevention and control of noncommunicable diseases in Haroli health block of district Una in Himachal Pradesh, India: a mixed methods approach. Int J Noncommunicable Dis. 2016;1(1):26.CrossRef Chauhan G, Thakur J. Assessing health workers’ capacity for the prevention and control of noncommunicable diseases in Haroli health block of district Una in Himachal Pradesh, India: a mixed methods approach. Int J Noncommunicable Dis. 2016;1(1):26.CrossRef
27.
Zurück zum Zitat von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Bull World Health Organ. 2007;85(11):867–72.CrossRef von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP, et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. Bull World Health Organ. 2007;85(11):867–72.CrossRef
Metadaten
Titel
Prevalence and risk factors of diabetes in a large community-based study in North India: results from a STEPS survey in Punjab, India
verfasst von
Jaya Prasad Tripathy
J. S. Thakur
Gursimer Jeet
Sohan Chawla
Sanjay Jain
Arnab Pal
Rajendra Prasad
Rajiv Saran
Publikationsdatum
01.12.2017
Verlag
BioMed Central
Erschienen in
Diabetology & Metabolic Syndrome / Ausgabe 1/2017
Elektronische ISSN: 1758-5996
DOI
https://doi.org/10.1186/s13098-017-0207-3

Weitere Artikel der Ausgabe 1/2017

Diabetology & Metabolic Syndrome 1/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.