Skip to main content
Erschienen in: BMC Infectious Diseases 1/2018

Open Access 01.12.2018 | Case report

Primary bacterial ventriculitis in adults, an emergent diagnosis challenge: report of a meningoccal case and review of the literature

verfasst von: Anaïs Lesourd, Nicolas Magne, Anaïs Soares, Caroline Lemaitre, Muhamed-Kheir Taha, Isabelle Gueit, Michel Wolff, François Caron

Erschienen in: BMC Infectious Diseases | Ausgabe 1/2018

Abstract

Background

Defined by an infection of the ventricular system of the brain, ventriculitis is usually known as a health-care associated infection. In contrast, primary pyogenic ventriculitis complicating community-acquired meningitis is uncommon, and mainly described in infants. Only seven cases that have occured in adults have been found in the international literature.

Case presentation

We report here a new case due to Neisseria meningitidis occurring in an 85 year-old-man. The comparison with previous reports allows to drawn several conclusions: (i) cases occurred in relatively old adults (median age: 65 years); (ii) Streptococcus pneumoniae, N. meningitiditis and Staphylococcus aureus are the leading responsible pathogens; (iii) atypical clinical presentation seems the rule in which meningism often lacks; (iv) in absence of clinical or biological specific parameters, modern brain imaging such as magnetic resonance imaging with gadolinium enhancement is of utmost importance for the diagnosis, leading to anticipate an increase of the diagnosis in the near future, thanks to easier access to such exploration; (v) death or serious sequelae commonly occurred; (vi) prolonged antibiotic courses (6 weeks to 3 months) have been used, without strong rational. In the given case, the patient presented with a lack of meningeal irritation signs. The diagnosis was made by MRI considering a lasting confused state. A four-week antibiotic regimen was successful, combining two weeks of intravenous cefotaxime followed by two weeks of oral levofloxacin much easier to administrate and allowing early rehabilitation.

Conclusion

Primary bacterial ventriculitis is a real diagnosis challenge. Larger indications of MRI for bacterial meningitis, particularly in cases with an atypical presentation or poor evolution would certainly increase the number of diagnosis.
Abkürzungen
ADC
Apparent diffusion coefficient
CSF
Cerebrospinal fluid
CT scan
Computed tomography scan
DWI
Diffusion-weighted imaging
FLAIR
Fluid-attenuated inversion recovery
MIC
Minimal inhibitory concentration
MRI
Magnetic resonance imaging
N. meningitidis
Neisseria meningitidis

Backgound

Ventriculitis most commonly occurs as a complication of external ventricular drains or in patients with ventricular shunts used to relieve increased intracranial pressure associated with hydrocephalus. Such infections are not uncommon (infection rate of ventricular-catheter raising up to 20% in some series) and are caused by microorganisms involved in foreign body infections such as staphylococci or antibiotic resistant Gram-negative bacilli [13].
In contrast, only few cases of primary ventriculitis have been reported, most of them being group B streptococci neonatal infections [46]. In a 2017 review by Gronthoud et al. of primary ventriculitis, only six cases have been described in adults including only one due to Neisseria meningitidis [7]. While such infections are supposed to complicate meningitis, surprisingly no meningism was reported in five out of these six cases, despite meningism being an important clinical feature in the diagnosis of meningitis.
We herein report a new case of meningococcal ventriculitis occurring in an elderly and enabling to discuss the interest of fluoroquinolones in such setting.

Case report

The patient was an 85 year-old-man, with a previous history of atrial fibrillation requiring a long-term curative anticoagulant therapy, renal lithiasis and benign prostatic hyperplasia. He was addressed to the emergency department for a fall in a context of fever at home. As he was afebrile at his arrival in hospital with no evident diagnosis, no antibiotic was introduced. Two days later the patient’s condition worsened with high fever (39.4 °C), confusion and altered mental status, without any neck stiffness nor other symptom of meningism. A computed tomography (CT) scan without contrast showed no abnormality. A lumbar puncture revealed a purulent cerebrospinal fluid (CSF) with 5220 white-cells per mm3 (82% of neutrophils) and rare cocci of undetermined Gram staining on direct microscopic examination. Intravenous antibiotic therapy with cefotaxime and oxacillin was immediately started in combination with adjunctive IV dexamethasone (10 mg q 6 h). Due to the installation of a comatose state (Glasgow coma score 9/15), the patient was admitted to the intensive care unit, intubated and mechanically ventilated.
After 24 h, the CSF’s culture yielded a group B N. meningitidis strain with decreased susceptibility to penicillin (MIC = 0.125 mg/L for penicillin G and = 0.250 mg/L for amino penicillin, MIC = 0.003 mg/L for cefotaxime, MIC = 0.002 mg/L for ciprofloxacin). Cefotaxime alone was continued at 200 mg/kg/day combined with dexamethasone during the first four days (both according to current national guidelines for bacterial meningitis in adults [8]).
The patient’s neurological state progressively improved to regain a vigilant state and was extubated on day 5 of antibiotic therapy. He was discharged to the infectious diseases unit. Nonetheless, he remained confused and somnolent (Glasgow coma score 14/15). Magnetic resonance imaging (MRI) with T2 fluid-attenuated inversion recovery (FLAIR) sequences performed on day 6 revealed the presence of a declivous purulent material inside the lateral ventricles with a moderate dilatation of these structures, not requiring any drainage (fig. 1). This material showed restricted diffusion (decreased apparent diffusion coefficient [ADC] value) and no magnetic susceptibility artefacts on T2* sequences, ruling out the possibility of a blood sediment. It also revealed punctiform hyper intensities in T2 weighted sequences and b1000 diffusion-weighted imaging (DWI) in multiple vascular territories with cortical and deep white matter distribution. These lesions were characterised by a normal or decreased ADC value and some of them were enhanced after gadolinium injection (fig. 2). All of these findings were consistent with semi-recent ischemic strokes.
Because of this unfavourable outcome, the patient received a prolonged duration of antibiotic therapy, namely cefotaxime for 2 weeks switched to oral levofloxacin (500 mg q 24 h) for another 2-week period. After four weeks of antibiotic treatment, the MRI showed a decrease of the purulent debris inside the ventricles with a clear attenuation of the signal (fig. 3). At that time the patient had regained a normal vigilant status. He only suffered from a cerebellar syndrome with a gait disturbance attributed to ischemic cerebellar lesions. After three months of follow-up, the patient’s condition had improved, allowing him to walk and to return home, even if the help of a wheelchair was sometimes required.

Discussion and conclusions

Before the antibiotic era, pathological studies of patients who died from bacterial meningitis have shown that the ventricular fluid usually turned cloudy by the end of the first week of the infection [9]. Nowadays, the incidence of this complication is considered as very low. However, among the six primary ventriculitis cases recently reported by Gronthoud et al., four have been diagnosed during the last ten years [7]. Easier access to modern brain imaging such as MRI has certainly played a role and will increase the number of diagnosis in the near future. MRI including gadolinium-enhanced sequences is the best imaging, particularly in T2 FLAIR sequences which reveal periventricular hyperintensity, an ependymal enhancement and irregular intraventricular debris layering in the occipital horns [10, 11]. The presence of ventricular debris is reported in 16 out of 17 cases (94%) of healthcare-associated ventriculitis described by Fukui et al. [11]. According to these authors, an irregular intraventricular debris is quite specific for pus and helps differentiating from a straight level of acute clotted blood [11]. MRI is preferred to a CT-scan, which lacks sensitivity, can mislead the clinician to a diagnosis of intracerebral bleeding or can miss the diagnosis [7]. Thus, MRI should be considered in those patients who fail to improve despite appropriate antibiotic therapy.
Interestingly, adding the current case to the seven found in the literature (the 6 from Gronthoud et al. and one case reported in Japanese language [4]), the median age was of 65 years (rank of 39–85), our patient being the oldest.
Neck stiffness is present in 74% of patients with bacterial meningitis [12]. However, five out of the six patients reviewed by Gronthoud et al. as well as our patient did not have this sign. While it is well established that some meningococcal meningitis might have an atypical presentation, especially those caused by serogroup W [13], this seems quite the rule in primary pyogenic ventriculitis.
Our patient had multiple ischemic brain lesions located in various vascular territories, which may correspond to cerebral vasculitis. Routine MRI protocol procedures initially performed did not include angiographic sequences. Retrospectively, volume rendering (VR) 3D-vascular reconstructions were performed with the T1 gadolinium sequences revealing no sign of proximal vascular stenosis nor thrombosis (fig. 4). Considering the patient was under curative anticoagulant therapy (for his atrial fibrillation), embolic strokes were here ruled out and infectious vasculitis was considered as highly probable. Such complication is relatively common during the course of pneumococcal meningitis (incidence of 9.8% in a retrospective multicentric study of 162 patients [14]). In contrast, to our best knowledge, no case of meningococcal cerebral vasculitis in adults has been published so far, while one case has been recently reported in a child [15].
While there are precise guidelines for the management of ventricular-catheter related infections [16], we found no recommandations nor expert advice for the management of the treatment of primary bacterial ventriculitis concerning neither the optimal regimen nor its duration. Among the previous cases, precise data on antibiotic treatment are given for only 4 of them: one of the two meningococcal cases was treated for 6 weeks (ceftriaxone 2 g q 12 h) [7] and the other for 3 months (ceftriaxone for 17 days followed by 12 weeks of oral moxifloxacin), both of them recovering without any sequelae [4]; a patient with Streptococcus intermedius ventriculitis received a 6-week-combination of cefotaxime and metronidazole [17] and a methicillin-resistant S. aureus case received an 8-week course of vancomycin (5 days) switched to oral linezolid (49 days) [18].
A 6 to 12-week duration of treatment is similar to what is commonly recommended for brain abscesses [19] despite the absence of evidence to consider this length essential in ventriculitis (for which the bacterial density as well as the antibiotic diffusion are potentially less problematic). However, given the severity of the disease, a long duration of antibiotic therapy could be considered providing the tolerance is acceptable.
We chose an initial regimen of third generation cephalosporin secondarily switched to a fluoroquinolone. Even if the patient did not experience any adverse event with cefotaxime, the goal was to shorten the IV treatment duration. Indeed, this oral switch allowed the patient to regain a faster functional autonomy once released from a parenteral perfusion. Levofloxacin, like other fluoroquinolones, achieves good concentrations into the CSF. It was here preferred to moxifloxacin, ensuring a better tolerance particularly in terms of epilepsy and cardiac toxicity [20, 21].
In the absence of cerebral suppurative lesions, the treatment was stopped after a total of 4 weeks. This relatively short treatment duration was validated by the absence of relapse.
Finally, our patient received adjunctive dexamethasone according to current guidelines, i.e., as soon as possible when the lumbar puncture reveals a purulent CSF [22]. Such a treatment has been proven to be beneficial in preventing hearing loss and neurological sequelae in adult purulent bacterial meningitis, particularly those due to Streptococcus pneumoniae [22, 23]. In the current case, dexamethasone however did not prevent the evolution to a ventriculitis probably due to a late diagnosis and treatment initiation in this elderly patient with an initial atypical presentation.
In conclusion, larger indications of MRI for bacterial meningitis, particularly in cases with an atypical presentation or poor evolution, would certainly increase the number of diagnosis of primitive pyogenic ventriculitis as well as of cerebral vasculitis in the near future. For susceptible strains, fluoroquinolones regimens are an attractive antibiotic class allowing an oral easily-to-tolerate treatment, even if strong evidence for long treatment is lacking.

Acknowledgements

Alexandre Morin, neurologist, for his proofreading and help in the discussion.

Availability of data and materials

Data sharing is not applicable to this article as no datasets were generated or analysed during the current study.
Not applicable.
This case report has obtained the patient’s written consent for publication.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated.
Literatur
1.
Zurück zum Zitat Blassmann U, Roehr AC, Frey OR, Vetter-Kerkhoff C, Thon N, Hope W, et al. Cerebrospinal fluid penetration of meropenem in neurocritical care patients with proven or suspected ventriculitis: a prospective observational study. Crit Care. 2016;20:343.CrossRefPubMedPubMedCentral Blassmann U, Roehr AC, Frey OR, Vetter-Kerkhoff C, Thon N, Hope W, et al. Cerebrospinal fluid penetration of meropenem in neurocritical care patients with proven or suspected ventriculitis: a prospective observational study. Crit Care. 2016;20:343.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat Beer R, Lackner P, Pfausler B, Schmutzhard E. Nosocomial ventriculitis and meningitis in neurocritical care patients. J Neurol. 2008;255(11):1617–24.CrossRefPubMed Beer R, Lackner P, Pfausler B, Schmutzhard E. Nosocomial ventriculitis and meningitis in neurocritical care patients. J Neurol. 2008;255(11):1617–24.CrossRefPubMed
3.
Zurück zum Zitat Humphreys H, Jenks P, Wilson J, Weston V, Bayston R, Waterhouse C, et al. Surveillance of infection associated with external ventricular drains: proposed methodology and results from a pilot study. J Hosp Infect. 2017;95(2):154–60.CrossRefPubMed Humphreys H, Jenks P, Wilson J, Weston V, Bayston R, Waterhouse C, et al. Surveillance of infection associated with external ventricular drains: proposed methodology and results from a pilot study. J Hosp Infect. 2017;95(2):154–60.CrossRefPubMed
4.
Zurück zum Zitat Nakahara H, Oda T, Fukao E, Horiuchi I, Honma Y, Uchigata M. A case of meningococcal meningitis that was difficult to treat owing to concurrent ventriculitis. Rinsho Shinkeigaku. 日本神経学会. 2016;56:344–7.CrossRefPubMed Nakahara H, Oda T, Fukao E, Horiuchi I, Honma Y, Uchigata M. A case of meningococcal meningitis that was difficult to treat owing to concurrent ventriculitis. Rinsho Shinkeigaku. 日本神経学会. 2016;56:344–7.CrossRefPubMed
5.
Zurück zum Zitat Miyairi I, Causey KT, DeVincenzo JP, Buckingham SC. Group B streptococcal Ventriculitis: a report of three cases and literature review. Pediatr Neurol. 2006;34:395–9.CrossRefPubMed Miyairi I, Causey KT, DeVincenzo JP, Buckingham SC. Group B streptococcal Ventriculitis: a report of three cases and literature review. Pediatr Neurol. 2006;34:395–9.CrossRefPubMed
8.
Zurück zum Zitat Société de Pathologie Infectieuse de Langue Française. 17th consensus conference. Consensus conference on bacterial meningitis. Short text. Médecine Mal Infect. 2009;39:175–86.CrossRef Société de Pathologie Infectieuse de Langue Française. 17th consensus conference. Consensus conference on bacterial meningitis. Short text. Médecine Mal Infect. 2009;39:175–86.CrossRef
9.
Zurück zum Zitat Adams RD, Kubik CS, Bonner FJ. The clinical and pathological aspects of influenzal meningitis. Arch Pediatr. 1948;65:354–76.PubMed Adams RD, Kubik CS, Bonner FJ. The clinical and pathological aspects of influenzal meningitis. Arch Pediatr. 1948;65:354–76.PubMed
10.
Zurück zum Zitat Ziai WC, Lewin JJ. Update in the diagnosis and Management of Central Nervous System Infections. Neurol Clin. 2008;26(2):427–68.CrossRefPubMed Ziai WC, Lewin JJ. Update in the diagnosis and Management of Central Nervous System Infections. Neurol Clin. 2008;26(2):427–68.CrossRefPubMed
11.
Zurück zum Zitat Fukui MB, Williams RL, Mudigonda S. CT and MR imaging features of pyogenic ventriculitis. AJNR Am J Neuroradiol. 2001;22(8):1510–6.PubMed Fukui MB, Williams RL, Mudigonda S. CT and MR imaging features of pyogenic ventriculitis. AJNR Am J Neuroradiol. 2001;22(8):1510–6.PubMed
12.
Zurück zum Zitat Bijlsma MW, Brouwer MC, Kasanmoentalib ES, Kloek AT, Lucas MJ, Tanck MW, et al. Community-acquired bacterial meningitis in adults in the Netherlands, 2006-14: a prospective cohort study. Lancet Infect Dis. 2016;16:339–447.CrossRefPubMed Bijlsma MW, Brouwer MC, Kasanmoentalib ES, Kloek AT, Lucas MJ, Tanck MW, et al. Community-acquired bacterial meningitis in adults in the Netherlands, 2006-14: a prospective cohort study. Lancet Infect Dis. 2016;16:339–447.CrossRefPubMed
13.
Zurück zum Zitat Ladhani SN, Beebeejaun K, Lucidarme J, Campbell H, Gray S, Kaczmarski E, et al. Increase in endemic neisseria meningitidis capsular group W sequence type 11 complex associated with severe invasive disease in England and wales. Clin Infect Dis. 2015;60:578–85.CrossRefPubMed Ladhani SN, Beebeejaun K, Lucidarme J, Campbell H, Gray S, Kaczmarski E, et al. Increase in endemic neisseria meningitidis capsular group W sequence type 11 complex associated with severe invasive disease in England and wales. Clin Infect Dis. 2015;60:578–85.CrossRefPubMed
15.
Zurück zum Zitat Bouric P, Leboucq P, Meyer P, Jeziorski E. Méningites bactériennes compliquées de vascularites cérébrales, étude rétrospective de 17 cas. Med Mal Infect. 2017;47(4):S26.CrossRef Bouric P, Leboucq P, Meyer P, Jeziorski E. Méningites bactériennes compliquées de vascularites cérébrales, étude rétrospective de 17 cas. Med Mal Infect. 2017;47(4):S26.CrossRef
16.
Zurück zum Zitat Tunkel AR, Hasbun R, Bhimraj A, Byers K, Kaplan SL, Scheld WM, et al. 2017 Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated Ventriculitis and meningitis. Clin Infect Dis. 2017;64:701–6.CrossRef Tunkel AR, Hasbun R, Bhimraj A, Byers K, Kaplan SL, Scheld WM, et al. 2017 Infectious Diseases Society of America’s clinical practice guidelines for healthcare-associated Ventriculitis and meningitis. Clin Infect Dis. 2017;64:701–6.CrossRef
17.
Zurück zum Zitat Vajramani G, Akrawi H, Jones G, Sparrow O. Primary ventriculitis caused by Streptococcus intermedius. Br J Neurosurg. 2007;21(3):293–6. Vajramani G, Akrawi H, Jones G, Sparrow O. Primary ventriculitis caused by Streptococcus intermedius. Br J Neurosurg. 2007;21(3):293–6.
18.
Zurück zum Zitat Marinelli L, Trompetto C, Cocito L. Diffusion magnetic resonance imaging diagnostic relevance in pyogenic ventriculitis with an atypical presentation: a case report. BMC Res Notes. 2014;7:149. Marinelli L, Trompetto C, Cocito L. Diffusion magnetic resonance imaging diagnostic relevance in pyogenic ventriculitis with an atypical presentation: a case report. BMC Res Notes. 2014;7:149.
19.
Zurück zum Zitat Brouwer MC, Tunkel AR, McKhann GM, van de Beek D. Brain abscess. N Engl J Med. 2014;371:447–56.CrossRefPubMed Brouwer MC, Tunkel AR, McKhann GM, van de Beek D. Brain abscess. N Engl J Med. 2014;371:447–56.CrossRefPubMed
20.
Zurück zum Zitat Carbon C. Comparison of side effects of levofloxacin versus other fluoroquinolones. J Chemother. 2001;47:9–14.CrossRef Carbon C. Comparison of side effects of levofloxacin versus other fluoroquinolones. J Chemother. 2001;47:9–14.CrossRef
21.
Zurück zum Zitat Chidiac C. Update on a proper use of systemic fluoroquinolones in adult patients (ciprofloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin). Med Mal Infect. 2015;45(9):348–73.CrossRefPubMed Chidiac C. Update on a proper use of systemic fluoroquinolones in adult patients (ciprofloxacin, levofloxacin, moxifloxacin, norfloxacin, ofloxacin, pefloxacin). Med Mal Infect. 2015;45(9):348–73.CrossRefPubMed
23.
Zurück zum Zitat Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. Practice guidelines for the Management of Bacterial Meningitis. Clin Infect Dis. 2004;39(9):1267–84.CrossRefPubMed Tunkel AR, Hartman BJ, Kaplan SL, Kaufman BA, Roos KL, Scheld WM, et al. Practice guidelines for the Management of Bacterial Meningitis. Clin Infect Dis. 2004;39(9):1267–84.CrossRefPubMed
Metadaten
Titel
Primary bacterial ventriculitis in adults, an emergent diagnosis challenge: report of a meningoccal case and review of the literature
verfasst von
Anaïs Lesourd
Nicolas Magne
Anaïs Soares
Caroline Lemaitre
Muhamed-Kheir Taha
Isabelle Gueit
Michel Wolff
François Caron
Publikationsdatum
01.12.2018
Verlag
BioMed Central
Erschienen in
BMC Infectious Diseases / Ausgabe 1/2018
Elektronische ISSN: 1471-2334
DOI
https://doi.org/10.1186/s12879-018-3119-4

Weitere Artikel der Ausgabe 1/2018

BMC Infectious Diseases 1/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.