Skip to main content
Erschienen in: Cancer and Metastasis Reviews 2/2008

01.06.2008

PRL PTPs: mediators and markers of cancer progression

verfasst von: Darrell C. Bessette, Dexin Qiu, Catherine J. Pallen

Erschienen in: Cancer and Metastasis Reviews | Ausgabe 2/2008

Einloggen, um Zugang zu erhalten

Abstract

Aberrant protein tyrosine phosphorylation resulting from the altered activity of protein tyrosine phosphatases (PTPs) is increasingly being implicated in the genesis and progression of human cancer. Accumulating evidence indicates that the dysregulated expression of members of the phosphatase of regenerating liver (PRL) subgroup of PTPs is linked to these processes. Enhanced expression of the PRLs, notably PRL-1 and PRL-3, promotes the acquisition of cellular properties that confer tumorigenic and metastatic abilities. Up-regulation of PRL-3 is associated with the progression and eventual metastasis of several types of human cancer. Indeed, PRL-3 shows promise as a biomarker and prognostic indicator in colorectal, breast, and gastric cancers. However, the substrates and molecular mechanisms of action of the PRLs have remained elusive. Recent findings indicate that PRLs may function in regulating cell adhesion structures to effect epithelial-mesenchymal transition. The identification of PRL substrates is key to understanding their roles in cancer progression and exploiting their potential as exciting new therapeutic targets for cancer treatment.
Literatur
1.
Zurück zum Zitat Mohn, K. L., Laz, T. M., Hsu, J. C., Melby, A. E., Bravo, R., & Taub, R. (1991). The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Molecular and Cellular Biology, 11, 381–390.PubMed Mohn, K. L., Laz, T. M., Hsu, J. C., Melby, A. E., Bravo, R., & Taub, R. (1991). The immediate-early growth response in regenerating liver and insulin-stimulated H-35 cells: comparison with serum-stimulated 3T3 cells and identification of 41 novel immediate-early genes. Molecular and Cellular Biology, 11, 381–390.PubMed
2.
Zurück zum Zitat Diamond, R. H., Cressman, D. E., Laz, T. M., Abrams, C. S., & Taub, R. (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Molecular and Cellular Biology, 14, 3752–3762.PubMed Diamond, R. H., Cressman, D. E., Laz, T. M., Abrams, C. S., & Taub, R. (1994). PRL-1, a unique nuclear protein tyrosine phosphatase, affects cell growth. Molecular and Cellular Biology, 14, 3752–3762.PubMed
3.
Zurück zum Zitat Montagna, M., Serova, O., Sylla, B. S., Feunteun, J., & Lenoir, G. M. (1995). A 100-kb physical and transcriptional map around the EDH17B2 gene: identification of three novel genes and a pseudogene of a human homologue of the rat PRL-1 tyrosine phosphatase. Human Genetics, 96, 532–538.PubMedCrossRef Montagna, M., Serova, O., Sylla, B. S., Feunteun, J., & Lenoir, G. M. (1995). A 100-kb physical and transcriptional map around the EDH17B2 gene: identification of three novel genes and a pseudogene of a human homologue of the rat PRL-1 tyrosine phosphatase. Human Genetics, 96, 532–538.PubMedCrossRef
4.
Zurück zum Zitat Cates, C. A., Michael, R. L., Stayrook, K. R., Harvey, K. A., Burke, Y. D., Randall, S. K., et al. (1996). Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Letters, 110, 49–55.PubMedCrossRef Cates, C. A., Michael, R. L., Stayrook, K. R., Harvey, K. A., Burke, Y. D., Randall, S. K., et al. (1996). Prenylation of oncogenic human PTP(CAAX) protein tyrosine phosphatases. Cancer Letters, 110, 49–55.PubMedCrossRef
5.
Zurück zum Zitat Zeng, Q., Hong, W., & Tan, Y. H. (1998). Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochemical and Biophysical Research Communications, 244, 421–427.PubMedCrossRef Zeng, Q., Hong, W., & Tan, Y. H. (1998). Mouse PRL-2 and PRL-3, two potentially prenylated protein tyrosine phosphatases homologous to PRL-1. Biochemical and Biophysical Research Communications, 244, 421–427.PubMedCrossRef
6.
Zurück zum Zitat Zeng, Q., Si, X., Horstmann, H., Xu, Y., Hong, W., & Pallen, C. J. (2000). Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome. Journal of Biological Chemistry, 275, 21444–21452.PubMedCrossRef Zeng, Q., Si, X., Horstmann, H., Xu, Y., Hong, W., & Pallen, C. J. (2000). Prenylation-dependent association of protein-tyrosine phosphatases PRL-1, -2, and -3 with the plasma membrane and the early endosome. Journal of Biological Chemistry, 275, 21444–21452.PubMedCrossRef
7.
Zurück zum Zitat Sun, J. P., Wang, W. Q., Yang, H., Liu, S., Liang, F., Fedorov, A. A., et al. (2005). Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry, 44, 12009–12021.PubMedCrossRef Sun, J. P., Wang, W. Q., Yang, H., Liu, S., Liang, F., Fedorov, A. A., et al. (2005). Structure and biochemical properties of PRL-1, a phosphatase implicated in cell growth, differentiation, and tumor invasion. Biochemistry, 44, 12009–12021.PubMedCrossRef
8.
Zurück zum Zitat Jeong, D. G., Kim, S. J., Kim, J. H., Son, J. H., Park, M. R., Lim, S. M., et al. (2005). Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms. Journal of Molecular Biology, 345, 401–413.PubMedCrossRef Jeong, D. G., Kim, S. J., Kim, J. H., Son, J. H., Park, M. R., Lim, S. M., et al. (2005). Trimeric structure of PRL-1 phosphatase reveals an active enzyme conformation and regulation mechanisms. Journal of Molecular Biology, 345, 401–413.PubMedCrossRef
9.
Zurück zum Zitat Kim, K. A., Song, J. S., Jee, J., Sheen, M. R., Lee, C., Lee, T. G., et al. (2004). Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Letters, 565, 181–187.PubMedCrossRef Kim, K. A., Song, J. S., Jee, J., Sheen, M. R., Lee, C., Lee, T. G., et al. (2004). Structure of human PRL-3, the phosphatase associated with cancer metastasis. FEBS Letters, 565, 181–187.PubMedCrossRef
10.
Zurück zum Zitat Kozlov, G., Cheng, J., Ziomek, E., Banville, D., Gehring, K., & Ekiel, I. (2004). Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. Journal of Biological Chemistry, 279, 11882–11889.PubMedCrossRef Kozlov, G., Cheng, J., Ziomek, E., Banville, D., Gehring, K., & Ekiel, I. (2004). Structural insights into molecular function of the metastasis-associated phosphatase PRL-3. Journal of Biological Chemistry, 279, 11882–11889.PubMedCrossRef
11.
Zurück zum Zitat Zhou, H., Gallina, M., Mao, H., Nietlispach, D., Betz, S. F., Fetrow, J. S., et al. (2003). 1H, 13C and 15N resonance assignments and secondary structure of the human protein tyrosine phosphatase, PRL-2. Journal of Biomolecular NMR, 27, 397–398.PubMedCrossRef Zhou, H., Gallina, M., Mao, H., Nietlispach, D., Betz, S. F., Fetrow, J. S., et al. (2003). 1H, 13C and 15N resonance assignments and secondary structure of the human protein tyrosine phosphatase, PRL-2. Journal of Biomolecular NMR, 27, 397–398.PubMedCrossRef
12.
Zurück zum Zitat Barford, D., Das, A. K., & Egloff, M. P. (1998). The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annual Review of Biophysics and Biomolecular Structure, 27, 133–164.PubMedCrossRef Barford, D., Das, A. K., & Egloff, M. P. (1998). The structure and mechanism of protein phosphatases: Insights into catalysis and regulation. Annual Review of Biophysics and Biomolecular Structure, 27, 133–164.PubMedCrossRef
13.
Zurück zum Zitat Denu, J. M., Stuckey, J. A., Saper, M. A., & Dixon, J. E. (1996). Form and function in protein dephosphorylation. Cell, 87, 361–364.PubMedCrossRef Denu, J. M., Stuckey, J. A., Saper, M. A., & Dixon, J. E. (1996). Form and function in protein dephosphorylation. Cell, 87, 361–364.PubMedCrossRef
14.
Zurück zum Zitat Zhang, Z. Y. (1998). Protein-tyrosine phosphatases: Biological function, structural characteristics, and mechanism of catalysis. Critical Reviews in Biochemistry and Molecular Biology, 33, 1–52.PubMedCrossRef Zhang, Z. Y. (1998). Protein-tyrosine phosphatases: Biological function, structural characteristics, and mechanism of catalysis. Critical Reviews in Biochemistry and Molecular Biology, 33, 1–52.PubMedCrossRef
15.
Zurück zum Zitat Wang, J., Kirby, C. E., & Herbst, R. (2002). The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. Journal of Biological Chemistry, 277, 46659–46668.PubMedCrossRef Wang, J., Kirby, C. E., & Herbst, R. (2002). The tyrosine phosphatase PRL-1 localizes to the endoplasmic reticulum and the mitotic spindle and is required for normal mitosis. Journal of Biological Chemistry, 277, 46659–46668.PubMedCrossRef
16.
Zurück zum Zitat Zhang, Z. Y., Palfey, B. A., Wu, L., & Zhao, Y. (1995). Catalytic function of the conserved hydroxyl group in the protein tyrosine phosphatase signature motif. Biochemistry, 34, 16389–16396.PubMedCrossRef Zhang, Z. Y., Palfey, B. A., Wu, L., & Zhao, Y. (1995). Catalytic function of the conserved hydroxyl group in the protein tyrosine phosphatase signature motif. Biochemistry, 34, 16389–16396.PubMedCrossRef
17.
Zurück zum Zitat Denu, J. M., & Dixon, J. E. (1995). A catalytic mechanism for the dual-specific phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 92, 5910–5914.PubMedCrossRef Denu, J. M., & Dixon, J. E. (1995). A catalytic mechanism for the dual-specific phosphatases. Proceedings of the National Academy of Sciences of the United States of America, 92, 5910–5914.PubMedCrossRef
18.
Zurück zum Zitat Sun, J. P., Luo, Y., Yu, X., Wang, W. Q., Zhou, B., Liang, F., et al. (2007). Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. Journal of Biological Chemistry, 282, 29043–29051.PubMedCrossRef Sun, J. P., Luo, Y., Yu, X., Wang, W. Q., Zhou, B., Liang, F., et al. (2007). Phosphatase activity, trimerization, and the C-terminal polybasic region are all required for PRL1-mediated cell growth and migration. Journal of Biological Chemistry, 282, 29043–29051.PubMedCrossRef
19.
Zurück zum Zitat Yu, L., Kelly, U., Ebright, J. N., Malek, G., Saloupis, P., Rickman, D. W., et al. (2007). Oxidative stress-induced expression and modulation of Phosphatase of Regenerating Liver-1 (PRL-1) in mammalian retina. Biochimica et Biophysica Acta, 1773, 1473–1482.PubMed Yu, L., Kelly, U., Ebright, J. N., Malek, G., Saloupis, P., Rickman, D. W., et al. (2007). Oxidative stress-induced expression and modulation of Phosphatase of Regenerating Liver-1 (PRL-1) in mammalian retina. Biochimica et Biophysica Acta, 1773, 1473–1482.PubMed
20.
Zurück zum Zitat Dumaual, C. M., Sandusky, G. E., Crowell, P. L., & Randall, S. K. (2006). Cellular localization of PRL-1 and PRL-2 gene expression in normal adult human tissues. Journal of Histochemistry and Cytochemistry, 54, 1401–1412.PubMedCrossRef Dumaual, C. M., Sandusky, G. E., Crowell, P. L., & Randall, S. K. (2006). Cellular localization of PRL-1 and PRL-2 gene expression in normal adult human tissues. Journal of Histochemistry and Cytochemistry, 54, 1401–1412.PubMedCrossRef
21.
Zurück zum Zitat Matter, W. F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., et al. (2001). Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochemical and Biophysical Research Communications, 283, 1061–1068.PubMedCrossRef Matter, W. F., Estridge, T., Zhang, C., Belagaje, R., Stancato, L., Dixon, J., et al. (2001). Role of PRL-3, a human muscle-specific tyrosine phosphatase, in angiotensin-II signaling. Biochemical and Biophysical Research Communications, 283, 1061–1068.PubMedCrossRef
22.
Zurück zum Zitat Wang, Q., Holmes, D. I., Powell, S. M., Lu, Q. L., & Waxman, J. (2002). Analysis of stromal–epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Letters, 175, 63–69.PubMedCrossRef Wang, Q., Holmes, D. I., Powell, S. M., Lu, Q. L., & Waxman, J. (2002). Analysis of stromal–epithelial interactions in prostate cancer identifies PTPCAAX2 as a potential oncogene. Cancer Letters, 175, 63–69.PubMedCrossRef
23.
Zurück zum Zitat Kato, H., Semba, S., Miskad, U. A., Seo, Y., Kasuga, M., & Yokozaki, H. (2004). High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: A predictive molecular marker of metachronous liver and lung metastases. Clinical Cancer Research, 10, 7318–7328.PubMedCrossRef Kato, H., Semba, S., Miskad, U. A., Seo, Y., Kasuga, M., & Yokozaki, H. (2004). High expression of PRL-3 promotes cancer cell motility and liver metastasis in human colorectal cancer: A predictive molecular marker of metachronous liver and lung metastases. Clinical Cancer Research, 10, 7318–7328.PubMedCrossRef
24.
Zurück zum Zitat Miskad, U. A., Semba, S., Kato, H., & Yokozaki, H. (2004). Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology, 71, 176–184.PubMedCrossRef Miskad, U. A., Semba, S., Kato, H., & Yokozaki, H. (2004). Expression of PRL-3 phosphatase in human gastric carcinomas: close correlation with invasion and metastasis. Pathobiology, 71, 176–184.PubMedCrossRef
25.
Zurück zum Zitat Rouleau, C., Roy, A., St Martin, T., Dufault, M. R., Boutin, P., Liu, D., et al. (2006). Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function. Molecular Cancer Therapeutics, 5, 219–229.PubMedCrossRef Rouleau, C., Roy, A., St Martin, T., Dufault, M. R., Boutin, P., Liu, D., et al. (2006). Protein tyrosine phosphatase PRL-3 in malignant cells and endothelial cells: expression and function. Molecular Cancer Therapeutics, 5, 219–229.PubMedCrossRef
26.
Zurück zum Zitat Radke, I., Gotte, M., Kersting, C., Mattsson, B., Kiesel, L., & Wulfing, P. (2006). Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. British Journal of Cancer, 95, 347–354.PubMedCrossRef Radke, I., Gotte, M., Kersting, C., Mattsson, B., Kiesel, L., & Wulfing, P. (2006). Expression and prognostic impact of the protein tyrosine phosphatases PRL-1, PRL-2, and PRL-3 in breast cancer. British Journal of Cancer, 95, 347–354.PubMedCrossRef
27.
Zurück zum Zitat Si, X., Zeng, Q., Ng, C. H., Hong, W., & Pallen, C. J. (2001). Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the beta-subunit of geranylgeranyltransferase II. Journal of Biological Chemistry, 276, 32875–32882.PubMedCrossRef Si, X., Zeng, Q., Ng, C. H., Hong, W., & Pallen, C. J. (2001). Interaction of farnesylated PRL-2, a protein-tyrosine phosphatase, with the beta-subunit of geranylgeranyltransferase II. Journal of Biological Chemistry, 276, 32875–32882.PubMedCrossRef
28.
Zurück zum Zitat Fiordalisi, J. J., Keller, P. J., & Cox, A. D. (2006). PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Research, 66, 3153–3161.PubMedCrossRef Fiordalisi, J. J., Keller, P. J., & Cox, A. D. (2006). PRL tyrosine phosphatases regulate rho family GTPases to promote invasion and motility. Cancer Research, 66, 3153–3161.PubMedCrossRef
29.
Zurück zum Zitat Diamond, R. H., Peters, C., Jung, S. P., Greenbaum, L. E., Haber, B. A., Silberg, D. G., et al. (1996). Expression of PRL-1 nuclear PTPase is associated with proliferation in liver but with differentiation in intestine. American Journal of Physiology, 271, G121–129.PubMed Diamond, R. H., Peters, C., Jung, S. P., Greenbaum, L. E., Haber, B. A., Silberg, D. G., et al. (1996). Expression of PRL-1 nuclear PTPase is associated with proliferation in liver but with differentiation in intestine. American Journal of Physiology, 271, G121–129.PubMed
30.
Zurück zum Zitat Kong, W., Swain, G. P., Li, S., & Diamond, R. H. (2000). PRL-1 PTPase expression is developmentally regulated with tissue-specific patterns in epithelial tissues. American Journal of Physiology -l Gastrointestinal and Liver Physiology, 279, G613–G621. Kong, W., Swain, G. P., Li, S., & Diamond, R. H. (2000). PRL-1 PTPase expression is developmentally regulated with tissue-specific patterns in epithelial tissues. American Journal of Physiology -l Gastrointestinal and Liver Physiology, 279, G613–G621.
31.
Zurück zum Zitat Yarovinsky, T. O., Rickman, D. W., Diamond, R. H., Taub, R., Hageman, G. S., & Bowes Rickman, C. (2000). Expression of the protein tyrosine phosphatase, phosphatase of regenerating liver 1, in the outer segments of primate cone photoreceptors. Brain Research. Molecular Brain Research, 77, 95–103.PubMedCrossRef Yarovinsky, T. O., Rickman, D. W., Diamond, R. H., Taub, R., Hageman, G. S., & Bowes Rickman, C. (2000). Expression of the protein tyrosine phosphatase, phosphatase of regenerating liver 1, in the outer segments of primate cone photoreceptors. Brain Research. Molecular Brain Research, 77, 95–103.PubMedCrossRef
32.
Zurück zum Zitat Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V. E., Rago, C., St Croix, B., et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science, 294, 1343–1346.PubMedCrossRef Saha, S., Bardelli, A., Buckhaults, P., Velculescu, V. E., Rago, C., St Croix, B., et al. (2001). A phosphatase associated with metastasis of colorectal cancer. Science, 294, 1343–1346.PubMedCrossRef
33.
Zurück zum Zitat Bardelli, A., Saha, S., Sager, J. A., Romans, K. E., Xin, B., Markowitz, S. D., et al. (2003). PRL-3 expression in metastatic cancers. Clinical Cancer Research, 9, 5607–5615.PubMed Bardelli, A., Saha, S., Sager, J. A., Romans, K. E., Xin, B., Markowitz, S. D., et al. (2003). PRL-3 expression in metastatic cancers. Clinical Cancer Research, 9, 5607–5615.PubMed
34.
Zurück zum Zitat Li, J., Guo, K., Koh, V. W., Tang, J. P., Gan, B. Q., Shi, H., et al. (2005). Generation of PRL-3- and PRL-1-specific monoclonal antibodies as potential diagnostic markers for cancer metastases. Clinical Cancer Research, 11, 2195–2204.PubMedCrossRef Li, J., Guo, K., Koh, V. W., Tang, J. P., Gan, B. Q., Shi, H., et al. (2005). Generation of PRL-3- and PRL-1-specific monoclonal antibodies as potential diagnostic markers for cancer metastases. Clinical Cancer Research, 11, 2195–2204.PubMedCrossRef
35.
Zurück zum Zitat Peng, L., Ning, J., Meng, L., & Shou, C. (2004). The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. Journal of Cancer Research and Clinical Oncology, 130, 521–526.PubMedCrossRef Peng, L., Ning, J., Meng, L., & Shou, C. (2004). The association of the expression level of protein tyrosine phosphatase PRL-3 protein with liver metastasis and prognosis of patients with colorectal cancer. Journal of Cancer Research and Clinical Oncology, 130, 521–526.PubMedCrossRef
36.
Zurück zum Zitat Wang, Y., Li, Z. F., He, J., Li, Y. L., Zhu, G. B., & Zhang, L. H. (2007). Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis. International Journal of Colorectal Disease, 22, 1179–1184.PubMedCrossRef Wang, Y., Li, Z. F., He, J., Li, Y. L., Zhu, G. B., & Zhang, L. H. (2007). Expression of the human phosphatases of regenerating liver (PRLs) in colonic adenocarcinoma and its correlation with lymph node metastasis. International Journal of Colorectal Disease, 22, 1179–1184.PubMedCrossRef
37.
Zurück zum Zitat Wang, L., Peng, L., Dong, B., Kong, L., Meng, L., Yan, L., et al. (2006). Overexpression of phosphatase of regenerating liver-3 in breast cancer: Association with a poor clinical outcome. Annals of Oncology, 17, 1517–1522.PubMedCrossRef Wang, L., Peng, L., Dong, B., Kong, L., Meng, L., Yan, L., et al. (2006). Overexpression of phosphatase of regenerating liver-3 in breast cancer: Association with a poor clinical outcome. Annals of Oncology, 17, 1517–1522.PubMedCrossRef
38.
Zurück zum Zitat Miskad, U. A., Semba, S., Kato, H., Matsukawa, Y., Kodama, Y., Mizuuchi, E., et al. (2007). High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: An in situ hybridization study. Virchows Archiv, 450, 303–310.PubMedCrossRef Miskad, U. A., Semba, S., Kato, H., Matsukawa, Y., Kodama, Y., Mizuuchi, E., et al. (2007). High PRL-3 expression in human gastric cancer is a marker of metastasis and grades of malignancies: An in situ hybridization study. Virchows Archiv, 450, 303–310.PubMedCrossRef
39.
Zurück zum Zitat Li, Z. R., Wang, Z., Zhu, B. H., He, Y. L., Peng, J. S., Cai, S. R., et al. (2007). Association of tyrosine PRL-3 phosphatase protein expression with peritoneal metastasis of gastric carcinoma and prognosis. Surgery Today, 37, 646–651.PubMedCrossRef Li, Z. R., Wang, Z., Zhu, B. H., He, Y. L., Peng, J. S., Cai, S. R., et al. (2007). Association of tyrosine PRL-3 phosphatase protein expression with peritoneal metastasis of gastric carcinoma and prognosis. Surgery Today, 37, 646–651.PubMedCrossRef
40.
Zurück zum Zitat Wu, X., Zeng, H., Zhang, X., Zhao, Y., Sha, H., Ge, X., et al. (2004). Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. American Journal of Pathology, 164, 2039–2054.PubMed Wu, X., Zeng, H., Zhang, X., Zhao, Y., Sha, H., Ge, X., et al. (2004). Phosphatase of regenerating liver-3 promotes motility and metastasis of mouse melanoma cells. American Journal of Pathology, 164, 2039–2054.PubMed
41.
Zurück zum Zitat Polato, F., Codegoni, A., Fruscio, R., Perego, P., Mangioni, C., Saha, S., et al. (2005). PRL-3 phosphatase is implicated in ovarian cancer growth. Clinical Cancer Research, 11, 6835–6839.PubMedCrossRef Polato, F., Codegoni, A., Fruscio, R., Perego, P., Mangioni, C., Saha, S., et al. (2005). PRL-3 phosphatase is implicated in ovarian cancer growth. Clinical Cancer Research, 11, 6835–6839.PubMedCrossRef
42.
Zurück zum Zitat Yamashita, S., Masuda, Y., Matsumoto, K., Okumura, Y., Matsuzaki, H., Kurizaki, T., et al. (2007). Down-regulation of the human PRL-3 gene is associated with the metastasis of primary non-small cell lung cancer. Annals of Thoracic and Cardiovascular Surgery, 13, 236–239.PubMed Yamashita, S., Masuda, Y., Matsumoto, K., Okumura, Y., Matsuzaki, H., Kurizaki, T., et al. (2007). Down-regulation of the human PRL-3 gene is associated with the metastasis of primary non-small cell lung cancer. Annals of Thoracic and Cardiovascular Surgery, 13, 236–239.PubMed
43.
Zurück zum Zitat Zeng, Q., Dong, J. M., Guo, K., Li, J., Tan, H. X., Koh, V., et al. (2003). PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Research, 63, 2716–2722.PubMed Zeng, Q., Dong, J. M., Guo, K., Li, J., Tan, H. X., Koh, V., et al. (2003). PRL-3 and PRL-1 promote cell migration, invasion, and metastasis. Cancer Research, 63, 2716–2722.PubMed
44.
Zurück zum Zitat Guo, K., Li, J., Tang, J. P., Koh, V., Gan, B. Q., & Zeng, Q. (2004). Catalytic domain of PRL-3 plays an essential role in tumor metastasis: Formation of PRL-3 tumors inside the blood vessels. Cancer Biology & Therapy, 3, 945–951.CrossRef Guo, K., Li, J., Tang, J. P., Koh, V., Gan, B. Q., & Zeng, Q. (2004). Catalytic domain of PRL-3 plays an essential role in tumor metastasis: Formation of PRL-3 tumors inside the blood vessels. Cancer Biology & Therapy, 3, 945–951.CrossRef
45.
Zurück zum Zitat Qian, F., Li, Y. P., Sheng, X., Zhang, Z. C., Song, R., Dong, W., et al. (2007). PRL-3 siRNA inhibits the metastasis of B16-BL6 mouse melanoma cells in vitro and in vivo. Molecular Medicine, 13, 151–159.PubMed Qian, F., Li, Y. P., Sheng, X., Zhang, Z. C., Song, R., Dong, W., et al. (2007). PRL-3 siRNA inhibits the metastasis of B16-BL6 mouse melanoma cells in vitro and in vivo. Molecular Medicine, 13, 151–159.PubMed
46.
Zurück zum Zitat Li, Z., Zhan, W., Wang, Z., Zhu, B., He, Y., Peng, J., et al. (2006). Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochemical and Biophysical Research Communications, 348, 229–237.PubMedCrossRef Li, Z., Zhan, W., Wang, Z., Zhu, B., He, Y., Peng, J., et al. (2006). Inhibition of PRL-3 gene expression in gastric cancer cell line SGC7901 via microRNA suppressed reduces peritoneal metastasis. Biochemical and Biophysical Research Communications, 348, 229–237.PubMedCrossRef
47.
Zurück zum Zitat St Croix, B., Rago, C., Velculescu, V., Traverso, G., Romans, K. E., Montgomery, E., et al. (2000). Genes expressed in human tumor endothelium. Science, 289, 1197–1202.PubMedCrossRef St Croix, B., Rago, C., Velculescu, V., Traverso, G., Romans, K. E., Montgomery, E., et al. (2000). Genes expressed in human tumor endothelium. Science, 289, 1197–1202.PubMedCrossRef
48.
Zurück zum Zitat Guo, K., Li, J., Wang, H., Osato, M., Tang, J. P., Quah, S. Y., et al. (2006). PRL-3 initiates tumor angiogenesis by recruiting endothelial cells in vitro and in vivo. Cancer Research, 66, 9625–9635.PubMedCrossRef Guo, K., Li, J., Wang, H., Osato, M., Tang, J. P., Quah, S. Y., et al. (2006). PRL-3 initiates tumor angiogenesis by recruiting endothelial cells in vitro and in vivo. Cancer Research, 66, 9625–9635.PubMedCrossRef
49.
Zurück zum Zitat Wang, H., Quah, S. Y., Dong, J. M., Manser, E., Tang, J. P., & Zeng, Q. (2007). PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Research, 67, 2922–2926.PubMedCrossRef Wang, H., Quah, S. Y., Dong, J. M., Manser, E., Tang, J. P., & Zeng, Q. (2007). PRL-3 down-regulates PTEN expression and signals through PI3K to promote epithelial-mesenchymal transition. Cancer Research, 67, 2922–2926.PubMedCrossRef
50.
Zurück zum Zitat Nicholson, K. M., & Anderson, N. G. (2002). The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling, 14, 381–395.PubMedCrossRef Nicholson, K. M., & Anderson, N. G. (2002). The protein kinase B/Akt signalling pathway in human malignancy. Cellular Signalling, 14, 381–395.PubMedCrossRef
51.
Zurück zum Zitat Dillon, R. L., White, D. E., & Muller, W. J. (2007). The phosphatidyl inositol 3-kinase signaling network: Implications for human breast cancer. Oncogene, 26, 1338–1345.PubMedCrossRef Dillon, R. L., White, D. E., & Muller, W. J. (2007). The phosphatidyl inositol 3-kinase signaling network: Implications for human breast cancer. Oncogene, 26, 1338–1345.PubMedCrossRef
52.
Zurück zum Zitat Altomare, D. A., & Testa, J. R. (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene, 24, 7455–7464.PubMedCrossRef Altomare, D. A., & Testa, J. R. (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene, 24, 7455–7464.PubMedCrossRef
53.
Zurück zum Zitat Larue, L., & Bellacosa, A. (2005). Epithelial–mesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene, 24, 7443–7454.PubMedCrossRef Larue, L., & Bellacosa, A. (2005). Epithelial–mesenchymal transition in development and cancer: Role of phosphatidylinositol 3′ kinase/AKT pathways. Oncogene, 24, 7443–7454.PubMedCrossRef
54.
Zurück zum Zitat Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMedCrossRef Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial–mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.PubMedCrossRef
55.
Zurück zum Zitat Guarino, M., Rubino, B., & Ballabio, G. (2007). The role of epithelial–mesenchymal transition in cancer pathology. Pathology, 39, 305–318.PubMedCrossRef Guarino, M., Rubino, B., & Ballabio, G. (2007). The role of epithelial–mesenchymal transition in cancer pathology. Pathology, 39, 305–318.PubMedCrossRef
56.
Zurück zum Zitat Barbera, M. J., Puig, I., Dominguez, D., Julien-Grille, S., Guaita-Esteruelas, S., Peiro, S., et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene, 23, 7345–7354.PubMedCrossRef Barbera, M. J., Puig, I., Dominguez, D., Julien-Grille, S., Guaita-Esteruelas, S., Peiro, S., et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene, 23, 7345–7354.PubMedCrossRef
57.
Zurück zum Zitat Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6, 931–940.PubMedCrossRef Zhou, B. P., Deng, J., Xia, W., Xu, J., Li, Y. M., Gunduz, M., et al. (2004). Dual regulation of Snail by GSK-3beta-mediated phosphorylation in control of epithelial–mesenchymal transition. Nature Cell Biology, 6, 931–940.PubMedCrossRef
58.
Zurück zum Zitat Julien, S., Puig, I., Caretti, E., Bonaventure, J., Nelles, L., van Roy, F., et al. (2007). Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene, 26, 7445–7456.PubMedCrossRef Julien, S., Puig, I., Caretti, E., Bonaventure, J., Nelles, L., van Roy, F., et al. (2007). Activation of NF-kappaB by Akt upregulates Snail expression and induces epithelium mesenchyme transition. Oncogene, 26, 7445–7456.PubMedCrossRef
59.
Zurück zum Zitat Li, Z., Wang, L., Zhang, W., Fu, Y., Zhao, H., Hu, Y., et al. (2007). Restoring E-cadherin-mediated cell–cell adhesion increases PTEN protein level and stability in human breast carcinoma cells. Biochemical and Biophysical Research Communications, 363, 165–170.PubMedCrossRef Li, Z., Wang, L., Zhang, W., Fu, Y., Zhao, H., Hu, Y., et al. (2007). Restoring E-cadherin-mediated cell–cell adhesion increases PTEN protein level and stability in human breast carcinoma cells. Biochemical and Biophysical Research Communications, 363, 165–170.PubMedCrossRef
60.
Zurück zum Zitat Watabe-Uchida, M., Uchida, N., Imamura, Y., Nagafuchi, A., Fujimoto, K., Uemura, T., et al. (1998). Alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. Journal of Cell Biology, 142, 847–857.PubMedCrossRef Watabe-Uchida, M., Uchida, N., Imamura, Y., Nagafuchi, A., Fujimoto, K., Uemura, T., et al. (1998). Alpha-Catenin-vinculin interaction functions to organize the apical junctional complex in epithelial cells. Journal of Cell Biology, 142, 847–857.PubMedCrossRef
61.
Zurück zum Zitat Kawajiri, A., Itoh, N., Fukata, M., Nakagawa, M., Yamaga, M., Iwamatsu, A., et al. (2000). Identification of a novel beta-catenin-interacting protein. Biochemical and Biophysical Research Communications, 273, 712–717.PubMedCrossRef Kawajiri, A., Itoh, N., Fukata, M., Nakagawa, M., Yamaga, M., Iwamatsu, A., et al. (2000). Identification of a novel beta-catenin-interacting protein. Biochemical and Biophysical Research Communications, 273, 712–717.PubMedCrossRef
62.
Zurück zum Zitat Subauste, M. C., Nalbant, P., Adamson, E. D., & Hahn, K. M. (2005). Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. Journal of Biological Chemistry, 280, 5676–5681.PubMedCrossRef Subauste, M. C., Nalbant, P., Adamson, E. D., & Hahn, K. M. (2005). Vinculin controls PTEN protein level by maintaining the interaction of the adherens junction protein beta-catenin with the scaffolding protein MAGI-2. Journal of Biological Chemistry, 280, 5676–5681.PubMedCrossRef
63.
Zurück zum Zitat Hehlgans, S., Haase, M., & Cordes, N. (2007). Signalling via integrins: Implications for cell survival and anticancer strategies. Biochimica et Biophysica Acta, 1775, 163–180.PubMed Hehlgans, S., Haase, M., & Cordes, N. (2007). Signalling via integrins: Implications for cell survival and anticancer strategies. Biochimica et Biophysica Acta, 1775, 163–180.PubMed
64.
Zurück zum Zitat Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516–523.PubMedCrossRef Mitra, S. K., & Schlaepfer, D. D. (2006). Integrin-regulated FAK-Src signaling in normal and cancer cells. Current Opinion in Cell Biology, 18, 516–523.PubMedCrossRef
65.
Zurück zum Zitat Peng, L., Jin, G., Wang, L., Guo, J., Meng, L., & Shou, C. (2006). Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3. Biochemical and Biophysical Research Communications, 342, 179–183.PubMedCrossRef Peng, L., Jin, G., Wang, L., Guo, J., Meng, L., & Shou, C. (2006). Identification of integrin alpha1 as an interacting protein of protein tyrosine phosphatase PRL-3. Biochemical and Biophysical Research Communications, 342, 179–183.PubMedCrossRef
66.
Zurück zum Zitat Liang, F., Liang, J., Wang, W. Q., Sun, J. P., Udho, E., & Zhang, Z. Y. (2007). PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. Journal of Biological Chemistry, 282, 5413–5419.PubMedCrossRef Liang, F., Liang, J., Wang, W. Q., Sun, J. P., Udho, E., & Zhang, Z. Y. (2007). PRL3 promotes cell invasion and proliferation by down-regulation of Csk leading to Src activation. Journal of Biological Chemistry, 282, 5413–5419.PubMedCrossRef
67.
Zurück zum Zitat Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., & Nakagawa, H. (1991). CSK: A protein-tyrosine kinase involved in regulation of src family kinases. Journal of Biological Chemistry, 266, 24249–24252.PubMed Okada, M., Nada, S., Yamanashi, Y., Yamamoto, T., & Nakagawa, H. (1991). CSK: A protein-tyrosine kinase involved in regulation of src family kinases. Journal of Biological Chemistry, 266, 24249–24252.PubMed
68.
Zurück zum Zitat Kunte, D. P., Wali, R. K., Koetsier, J. L., Hart, J., Kostjukova, M. N., Kilimnik, A. Y., et al. (2005). Down-regulation of the tumor suppressor gene C-terminal Src kinase: an early event during premalignant colonic epithelial hyperproliferation. FEBS Letters, 579, 3497–3502.PubMedCrossRef Kunte, D. P., Wali, R. K., Koetsier, J. L., Hart, J., Kostjukova, M. N., Kilimnik, A. Y., et al. (2005). Down-regulation of the tumor suppressor gene C-terminal Src kinase: an early event during premalignant colonic epithelial hyperproliferation. FEBS Letters, 579, 3497–3502.PubMedCrossRef
69.
Zurück zum Zitat Defilippi, P., Di Stefano, P., & Cabodi, S. (2006). p130Cas: A versatile scaffold in signaling networks. Trends in Cell Biology, 16, 257–263.PubMedCrossRef Defilippi, P., Di Stefano, P., & Cabodi, S. (2006). p130Cas: A versatile scaffold in signaling networks. Trends in Cell Biology, 16, 257–263.PubMedCrossRef
70.
Zurück zum Zitat Achiwa, H., & Lazo, J. S. (2007). PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Research, 67, 643–650.PubMedCrossRef Achiwa, H., & Lazo, J. S. (2007). PRL-1 tyrosine phosphatase regulates c-Src levels, adherence, and invasion in human lung cancer cells. Cancer Research, 67, 643–650.PubMedCrossRef
71.
Zurück zum Zitat Shah, A. N., & Gallick, G. E. (2007). Src, chemoresistance and epithelial to mesenchymal transition: are they related? Anti-Cancer Drugs, 18, 371–375.PubMedCrossRef Shah, A. N., & Gallick, G. E. (2007). Src, chemoresistance and epithelial to mesenchymal transition: are they related? Anti-Cancer Drugs, 18, 371–375.PubMedCrossRef
72.
Zurück zum Zitat Cheng, J. Q., Lindsley, C. W., Cheng, G. Z., Yang, H., & Nicosia, S. V. (2005). The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene, 24, 7482–7492.PubMedCrossRef Cheng, J. Q., Lindsley, C. W., Cheng, G. Z., Yang, H., & Nicosia, S. V. (2005). The Akt/PKB pathway: molecular target for cancer drug discovery. Oncogene, 24, 7482–7492.PubMedCrossRef
73.
Zurück zum Zitat Avizienyte, E., & Frame, M. C. (2005). Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Current Opinion in Cell Biology, 17, 542–547.PubMedCrossRef Avizienyte, E., & Frame, M. C. (2005). Src and FAK signalling controls adhesion fate and the epithelial-to-mesenchymal transition. Current Opinion in Cell Biology, 17, 542–547.PubMedCrossRef
74.
Zurück zum Zitat Werner, S. R., Lee, P. A., DeCamp, M. W., Crowell, D. N., Randall, S. K., & Crowell, P. L. (2003). Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Letters, 202, 201–211.PubMedCrossRef Werner, S. R., Lee, P. A., DeCamp, M. W., Crowell, D. N., Randall, S. K., & Crowell, P. L. (2003). Enhanced cell cycle progression and down regulation of p21(Cip1/Waf1) by PRL tyrosine phosphatases. Cancer Letters, 202, 201–211.PubMedCrossRef
75.
Zurück zum Zitat Gnainsky, Y., Spira, G., Paizi, M., Bruck, R., Nagler, A., Genina, O., et al. (2006). Involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis effect of halofuginone. Cell and Tissue Research, 324, 385–394.PubMedCrossRef Gnainsky, Y., Spira, G., Paizi, M., Bruck, R., Nagler, A., Genina, O., et al. (2006). Involvement of the tyrosine phosphatase early gene of liver regeneration (PRL-1) in cell cycle and in liver regeneration and fibrosis effect of halofuginone. Cell and Tissue Research, 324, 385–394.PubMedCrossRef
76.
Zurück zum Zitat Kadambi, V. J., Lorenz, J. N., Stagliano, N. E., Matter, W. F., Wang, X. S., Bloem, L., et al. (2000). Impaired ventricular relaxation resulting from cardiac-specific overexpression of a human prenylated protein tyrosine phosphatase. Circulation (Suppl), 102, II–268. Kadambi, V. J., Lorenz, J. N., Stagliano, N. E., Matter, W. F., Wang, X. S., Bloem, L., et al. (2000). Impaired ventricular relaxation resulting from cardiac-specific overexpression of a human prenylated protein tyrosine phosphatase. Circulation (Suppl), 102, II–268.
77.
Zurück zum Zitat Chinnaiyan, K. M., Alexander, D., & McCullough, P. A. (2005). Role of angiotensin II in the evolution of diastolic heart failure. Journal of Clinical Hypertension (Greenwich), 7, 740–747.CrossRef Chinnaiyan, K. M., Alexander, D., & McCullough, P. A. (2005). Role of angiotensin II in the evolution of diastolic heart failure. Journal of Clinical Hypertension (Greenwich), 7, 740–747.CrossRef
78.
Zurück zum Zitat Ehrlich, J. R., Hohnloser, S. H., & Nattel, S. (2006). Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. European Heart Journal, 27, 512–518.PubMedCrossRef Ehrlich, J. R., Hohnloser, S. H., & Nattel, S. (2006). Role of angiotensin system and effects of its inhibition in atrial fibrillation: Clinical and experimental evidence. European Heart Journal, 27, 512–518.PubMedCrossRef
79.
Zurück zum Zitat Peters, C. S., Liang, X., Li, S., Kannan, S., Peng, Y., Taub, R., et al. (2001). ATF-7, a novel bZIP protein, interacts with the PRL-1 protein-tyrosine phosphatase. Journal of Biological Chemistry, 276, 13718–13726.PubMedCrossRef Peters, C. S., Liang, X., Li, S., Kannan, S., Peng, Y., Taub, R., et al. (2001). ATF-7, a novel bZIP protein, interacts with the PRL-1 protein-tyrosine phosphatase. Journal of Biological Chemistry, 276, 13718–13726.PubMedCrossRef
80.
Zurück zum Zitat Monaco, S. E., Angelastro, J. M., Szabolcs, M., & Greene, L. A. (2007). The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines. International Journal of Cancer, 120, 1883–1890.CrossRef Monaco, S. E., Angelastro, J. M., Szabolcs, M., & Greene, L. A. (2007). The transcription factor ATF5 is widely expressed in carcinomas, and interference with its function selectively kills neoplastic, but not nontransformed, breast cell lines. International Journal of Cancer, 120, 1883–1890.CrossRef
81.
Zurück zum Zitat Zerial, M., & McBride, H. (2001). Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology, 2, 107–117.PubMedCrossRef Zerial, M., & McBride, H. (2001). Rab proteins as membrane organizers. Nature Reviews Molecular Cell Biology, 2, 107–117.PubMedCrossRef
82.
Zurück zum Zitat Magnusson, C., Svensson, A., Christerson, U., & Tagerud, S. (2005). Denervation-induced alterations in gene expression in mouse skeletal muscle. European Journal of Neuroscience, 21, 577–580.PubMedCrossRef Magnusson, C., Svensson, A., Christerson, U., & Tagerud, S. (2005). Denervation-induced alterations in gene expression in mouse skeletal muscle. European Journal of Neuroscience, 21, 577–580.PubMedCrossRef
83.
Zurück zum Zitat Yuan, L., Chen, J., Lin, B., Zhang, J., & Zhang, S. (2007). Differential expression and functional constraint of PRL-2 in hibernating bat. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 148, 375–381.CrossRef Yuan, L., Chen, J., Lin, B., Zhang, J., & Zhang, S. (2007). Differential expression and functional constraint of PRL-2 in hibernating bat. Comparative Biochemistry and Physiology. Part B, Biochemistry and Molecular Biology, 148, 375–381.CrossRef
84.
Zurück zum Zitat Peng, Y., Du, K., Ramirez, S., Diamond, R. H., & Taub, R. (1999). Mitogenic up-regulation of the PRL-1 protein-tyrosine phosphatase gene by Egr-1. Egr-1 activation is an early event in liver regeneration. Journal of Biological Chemistry, 274, 4513–4520.PubMedCrossRef Peng, Y., Du, K., Ramirez, S., Diamond, R. H., & Taub, R. (1999). Mitogenic up-regulation of the PRL-1 protein-tyrosine phosphatase gene by Egr-1. Egr-1 activation is an early event in liver regeneration. Journal of Biological Chemistry, 274, 4513–4520.PubMedCrossRef
85.
Zurück zum Zitat Peng, Y., Genin, A., Spinner, N. B., Diamond, R. H., & Taub, R. (1998). The gene encoding human nuclear protein tyrosine phosphatase, PRL-1. Cloning, chromosomal localization, and identification of an intron enhancer. Journal of Biological Chemistry, 273, 17286–17295.PubMedCrossRef Peng, Y., Genin, A., Spinner, N. B., Diamond, R. H., & Taub, R. (1998). The gene encoding human nuclear protein tyrosine phosphatase, PRL-1. Cloning, chromosomal localization, and identification of an intron enhancer. Journal of Biological Chemistry, 273, 17286–17295.PubMedCrossRef
86.
Zurück zum Zitat Gregory, R. C., Lord, K. A., Panek, L. B., Gaines, P., Dillon, S. B., & Wojchowski, D. M. (2000). Subtraction cloning and initial characterization of novel epo-immediate response genes. Cytokine, 12, 845–857.PubMedCrossRef Gregory, R. C., Lord, K. A., Panek, L. B., Gaines, P., Dillon, S. B., & Wojchowski, D. M. (2000). Subtraction cloning and initial characterization of novel epo-immediate response genes. Cytokine, 12, 845–857.PubMedCrossRef
87.
Zurück zum Zitat McLean, D. J., Friel, P. J., Pouchnik, D., & Griswold, M. D. (2002). Oligonucleotide microarray analysis of gene expression in follicle-stimulating hormone-treated rat Sertoli cells. Molecular Endocrinology, 16, 2780–2792.PubMedCrossRef McLean, D. J., Friel, P. J., Pouchnik, D., & Griswold, M. D. (2002). Oligonucleotide microarray analysis of gene expression in follicle-stimulating hormone-treated rat Sertoli cells. Molecular Endocrinology, 16, 2780–2792.PubMedCrossRef
88.
Zurück zum Zitat Schmidt, J., de Avila, J., & McLean, D. (2006). Regulation of protein tyrosine phosphatase 4a1, B-cell translocation gene 2, nuclear receptor subfamily 4a1 and diacylglycerol O-acyltransferase 1 by follicle stimulating hormone in the rat ovary. Reproduction, Fertility, and Development, 18, 757–765.PubMedCrossRef Schmidt, J., de Avila, J., & McLean, D. (2006). Regulation of protein tyrosine phosphatase 4a1, B-cell translocation gene 2, nuclear receptor subfamily 4a1 and diacylglycerol O-acyltransferase 1 by follicle stimulating hormone in the rat ovary. Reproduction, Fertility, and Development, 18, 757–765.PubMedCrossRef
89.
Zurück zum Zitat Scarlato, M., Beesley, J., & Pleasure, D. (2000). Analysis of oligodendroglial differentiation using cDNA arrays. Journal of Neuroscience Research, 59, 430–435.PubMedCrossRef Scarlato, M., Beesley, J., & Pleasure, D. (2000). Analysis of oligodendroglial differentiation using cDNA arrays. Journal of Neuroscience Research, 59, 430–435.PubMedCrossRef
90.
Zurück zum Zitat Takano, S., Fukuyama, H., Fukumoto, M., Kimura, J., Xue, J. H., Ohashi, H., et al. (1996). PRL-1, a protein tyrosine phosphatase, is expressed in neurons and oligodendrocytes in the brain and induced in the cerebral cortex following transient forebrain ischemia. Brain Research. Molecular Brain Research, 40, 105–115.PubMedCrossRef Takano, S., Fukuyama, H., Fukumoto, M., Kimura, J., Xue, J. H., Ohashi, H., et al. (1996). PRL-1, a protein tyrosine phosphatase, is expressed in neurons and oligodendrocytes in the brain and induced in the cerebral cortex following transient forebrain ischemia. Brain Research. Molecular Brain Research, 40, 105–115.PubMedCrossRef
91.
Zurück zum Zitat Grimes, J. A., Fraser, S. P., Stephens, G. J., Downing, J. E., Laniado, M. E., Foster, C. S., et al. (1995). Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: Contribution to invasiveness in vitro. FEBS Letters, 369, 290–294.PubMedCrossRef Grimes, J. A., Fraser, S. P., Stephens, G. J., Downing, J. E., Laniado, M. E., Foster, C. S., et al. (1995). Differential expression of voltage-activated Na+ currents in two prostatic tumour cell lines: Contribution to invasiveness in vitro. FEBS Letters, 369, 290–294.PubMedCrossRef
92.
Zurück zum Zitat Fraser, S. P., Salvador, V., Manning, E. A., Mizal, J., Altun, S., Raza, M., et al. (2003). Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. Journal of Cellular Physiology, 195, 479–487.PubMedCrossRef Fraser, S. P., Salvador, V., Manning, E. A., Mizal, J., Altun, S., Raza, M., et al. (2003). Contribution of functional voltage-gated Na+ channel expression to cell behaviors involved in the metastatic cascade in rat prostate cancer: I. Lateral motility. Journal of Cellular Physiology, 195, 479–487.PubMedCrossRef
93.
Zurück zum Zitat Raghavendra Prasad, H. S., Qi, Z., Srinivasan, K. N., & Gopalakrishnakone, P. (2004). Potential effects of tetrodotoxin exposure to human glial cells postulated using microarray approach. Toxicon, 44, 597–608.PubMedCrossRef Raghavendra Prasad, H. S., Qi, Z., Srinivasan, K. N., & Gopalakrishnakone, P. (2004). Potential effects of tetrodotoxin exposure to human glial cells postulated using microarray approach. Toxicon, 44, 597–608.PubMedCrossRef
94.
Zurück zum Zitat Tonks, N. K. (2005). Redox redux: Revisiting PTPs and the control of cell signaling. Cell, 121, 667–670.PubMedCrossRef Tonks, N. K. (2005). Redox redux: Revisiting PTPs and the control of cell signaling. Cell, 121, 667–670.PubMedCrossRef
95.
Zurück zum Zitat den Hertog, J., Groen, A., & van der Wijk, T. (2005). Redox regulation of protein-tyrosine phosphatases. Archives of Biochemistry and Biophysics, 434, 11–15.PubMedCrossRef den Hertog, J., Groen, A., & van der Wijk, T. (2005). Redox regulation of protein-tyrosine phosphatases. Archives of Biochemistry and Biophysics, 434, 11–15.PubMedCrossRef
96.
Zurück zum Zitat Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., et al. (2006). Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorganic and Medicinal Chemistry Letters, 16, 2996–2999.PubMedCrossRef Ahn, J. H., Kim, S. J., Park, W. S., Cho, S. Y., Ha, J. D., Kim, S. S., et al. (2006). Synthesis and biological evaluation of rhodanine derivatives as PRL-3 inhibitors. Bioorganic and Medicinal Chemistry Letters, 16, 2996–2999.PubMedCrossRef
97.
Zurück zum Zitat Choi, S. K., Oh, H. M., Lee, S. K., Jeong, D. G., Ryu, S. E., Son, K. H., et al. (2006). Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Natural Product Research, 20, 341–346.PubMedCrossRef Choi, S. K., Oh, H. M., Lee, S. K., Jeong, D. G., Ryu, S. E., Son, K. H., et al. (2006). Biflavonoids inhibited phosphatase of regenerating liver-3 (PRL-3). Natural Product Research, 20, 341–346.PubMedCrossRef
98.
Zurück zum Zitat Dursina, B., Reents, R., Delon, C., Wu, Y., Kulharia, M., Thutewohl, M., et al. (2006). Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. Journal of the American Chemical Society, 128, 2822–2835.PubMedCrossRef Dursina, B., Reents, R., Delon, C., Wu, Y., Kulharia, M., Thutewohl, M., et al. (2006). Identification and specificity profiling of protein prenyltransferase inhibitors using new fluorescent phosphoisoprenoids. Journal of the American Chemical Society, 128, 2822–2835.PubMedCrossRef
99.
Zurück zum Zitat Pathak, M. K., Dhawan, D., Lindner, D. J., Borden, E. C., Farver, C., & Yi, T. (2002). Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Molecular Cancer Therapeutics, 1, 1255–1264.PubMed Pathak, M. K., Dhawan, D., Lindner, D. J., Borden, E. C., Farver, C., & Yi, T. (2002). Pentamidine is an inhibitor of PRL phosphatases with anticancer activity. Molecular Cancer Therapeutics, 1, 1255–1264.PubMed
100.
Zurück zum Zitat Sands, M., Kron, M. A., & Brown, R. B. (1985). Pentamidine: A review. Reviews of Infectious Diseases, 7, 625–634.PubMed Sands, M., Kron, M. A., & Brown, R. B. (1985). Pentamidine: A review. Reviews of Infectious Diseases, 7, 625–634.PubMed
101.
Zurück zum Zitat Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93, 2325–2327.PubMedCrossRef Wani, M. C., Taylor, H. L., Wall, M. E., Coggon, P., & McPhail, A. T. (1971). Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. Journal of the American Chemical Society, 93, 2325–2327.PubMedCrossRef
102.
Zurück zum Zitat Lebowitz, P. F., Casey, P. J., Prendergast, G. C., & Thissen, J. A. (1997). Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. Journal of Biological Chemistry, 272, 15591–15594.PubMedCrossRef Lebowitz, P. F., Casey, P. J., Prendergast, G. C., & Thissen, J. A. (1997). Farnesyltransferase inhibitors alter the prenylation and growth-stimulating function of RhoB. Journal of Biological Chemistry, 272, 15591–15594.PubMedCrossRef
103.
Zurück zum Zitat Whyte, D. B., Kirschmeier, P., Hockenberry, T. N., Nunez-Oliva, I., James, L., Catino, J. J., et al. (1997). K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. Journal of Biological Chemistry, 272, 14459–14464.PubMedCrossRef Whyte, D. B., Kirschmeier, P., Hockenberry, T. N., Nunez-Oliva, I., James, L., Catino, J. J., et al. (1997). K- and N-Ras are geranylgeranylated in cells treated with farnesyl protein transferase inhibitors. Journal of Biological Chemistry, 272, 14459–14464.PubMedCrossRef
104.
Zurück zum Zitat Rowell, C. A., Kowalczyk, J. J., Lewis, M. D., & Garcia, A. M. (1997). Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. Journal of Biological Chemistry, 272, 14093–14097.PubMedCrossRef Rowell, C. A., Kowalczyk, J. J., Lewis, M. D., & Garcia, A. M. (1997). Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. Journal of Biological Chemistry, 272, 14093–14097.PubMedCrossRef
105.
Zurück zum Zitat Mijimolle, N., Velasco, J., Dubus, P., Guerra, C., Weinbaum, C. A., Casey, P. J., et al. (2005). Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell, 7, 313–324.PubMedCrossRef Mijimolle, N., Velasco, J., Dubus, P., Guerra, C., Weinbaum, C. A., Casey, P. J., et al. (2005). Protein farnesyltransferase in embryogenesis, adult homeostasis, and tumor development. Cancer Cell, 7, 313–324.PubMedCrossRef
106.
Zurück zum Zitat Konstantinopoulos, P. A., Karamouzis, M. V., & Papavassiliou, A. G. (2007). Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nature Reviews Drug Discovery, 6, 541–555.PubMedCrossRef Konstantinopoulos, P. A., Karamouzis, M. V., & Papavassiliou, A. G. (2007). Post-translational modifications and regulation of the RAS superfamily of GTPases as anticancer targets. Nature Reviews Drug Discovery, 6, 541–555.PubMedCrossRef
107.
Zurück zum Zitat Parker, B. S., Argani, P., Cook, B. P., Liangfeng, H., Chartrand, S. D., Zhang, M., et al. (2004). Alterations in vascular gene expression in invasive breast carcinoma. Cancer Research, 64, 7857–7866.PubMedCrossRef Parker, B. S., Argani, P., Cook, B. P., Liangfeng, H., Chartrand, S. D., Zhang, M., et al. (2004). Alterations in vascular gene expression in invasive breast carcinoma. Cancer Research, 64, 7857–7866.PubMedCrossRef
108.
Zurück zum Zitat Anant, J. S., Desnoyers, L., Machius, M., Demeler, B., Hansen, J. C., Westover, K. D., et al. (1998). Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry, 37, 12559–12568.PubMedCrossRef Anant, J. S., Desnoyers, L., Machius, M., Demeler, B., Hansen, J. C., Westover, K. D., et al. (1998). Mechanism of Rab geranylgeranylation: formation of the catalytic ternary complex. Biochemistry, 37, 12559–12568.PubMedCrossRef
109.
Zurück zum Zitat Andres, D. A., Seabra, M. C., Brown, M. S., Armstrong, S. A., Smeland, T. E., Cremers, F. P., et al. (1993). cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell, 73, 1091–1099.PubMedCrossRef Andres, D. A., Seabra, M. C., Brown, M. S., Armstrong, S. A., Smeland, T. E., Cremers, F. P., et al. (1993). cDNA cloning of component A of Rab geranylgeranyl transferase and demonstration of its role as a Rab escort protein. Cell, 73, 1091–1099.PubMedCrossRef
Metadaten
Titel
PRL PTPs: mediators and markers of cancer progression
verfasst von
Darrell C. Bessette
Dexin Qiu
Catherine J. Pallen
Publikationsdatum
01.06.2008
Verlag
Springer US
Erschienen in
Cancer and Metastasis Reviews / Ausgabe 2/2008
Print ISSN: 0167-7659
Elektronische ISSN: 1573-7233
DOI
https://doi.org/10.1007/s10555-008-9121-3

Weitere Artikel der Ausgabe 2/2008

Cancer and Metastasis Reviews 2/2008 Zur Ausgabe

PREFACE

Preface

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.