Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 1/2017

28.09.2016 | Research Article

Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans

verfasst von: James B. Dewey, Sumitrajit Dhar

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 1/2017

Einloggen, um Zugang zu erhalten

ABSTRACT

The characteristics of human otoacoustic emissions (OAEs) have not been thoroughly examined above the standard audiometric frequency range (>8 kHz). This is despite the fact that deterioration of cochlear function often starts at the basal, high-frequency end of the cochlea before progressing apically. Here, stimulus-frequency OAEs (SFOAEs) were obtained from 0.5 to 20 kHz in 23 young, audiometrically normal female adults and three individuals with abnormal audiograms, using a low-to-moderate probe level of 36 dB forward pressure level (FPL). In audiometrically normal ears, SFOAEs were measurable at frequencies approaching the start of the steeply sloping high-frequency portion of the audiogram (∼12–15 kHz), though their amplitudes often declined substantially above ∼7 kHz, rarely exceeding 0 dB SPL above 8 kHz. This amplitude decline was typically abrupt and occurred at a frequency that was variable across subjects and not strongly related to the audiogram. In contrast, certain ears with elevated mid-frequency thresholds but regions of normal high-frequency sensitivity could possess surprisingly large SFOAEs (>10 dB SPL) above 7 kHz. When also measured, distortion-product OAEs (DPOAEs) usually remained stronger at higher stimulus frequencies and mirrored the audiogram more closely than SFOAEs. However, the high-frequency extent of SFOAE and DPOAE responses was similar when compared as a function of the response frequency, suggesting that middle ear transmission may be a common limiting factor at high frequencies. Nevertheless, cochlear factors are more likely responsible for complexities observed in high-frequency SFOAE spectra, such as abrupt amplitude changes and narrowly defined response peaks above 10 kHz, as well as the large responses in abnormal ears. These factors may include altered cochlear reflectivity due to subtle damage or the reduced spatial extent of the SFOAE generation region at the cochlear base. The use of higher probe levels is necessary to further evaluate the characteristics and potential utility of high-frequency SFOAE measurements.
Literatur
Zurück zum Zitat Arnold DJ, Lonsbury-Martin BL, Martin GK (1999) High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions. Arch Otolaryngol Head Neck Surg 125:215–222CrossRefPubMed Arnold DJ, Lonsbury-Martin BL, Martin GK (1999) High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions. Arch Otolaryngol Head Neck Surg 125:215–222CrossRefPubMed
Zurück zum Zitat Avan P, Bonfils P, Loth D, Narcy P, Trotoux J (1991) Quantitative assessment of human cochlear function by evoked otoacoustic emissions. Hear Res 52:99–112CrossRefPubMed Avan P, Bonfils P, Loth D, Narcy P, Trotoux J (1991) Quantitative assessment of human cochlear function by evoked otoacoustic emissions. Hear Res 52:99–112CrossRefPubMed
Zurück zum Zitat Avan P, Bonfils P, Loth D, Elbez M, Erminy M (1995) Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig. J Acoust Soc Am 97:3012–3020CrossRefPubMed Avan P, Bonfils P, Loth D, Elbez M, Erminy M (1995) Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig. J Acoust Soc Am 97:3012–3020CrossRefPubMed
Zurück zum Zitat Büchler M, Kompis M, Hotz MA (2012) Extended frequency range hearing thresholds and otoacoustic emissions in acute acoustic trauma. Otol Neurotol 33:1315–1322CrossRefPubMed Büchler M, Kompis M, Hotz MA (2012) Extended frequency range hearing thresholds and otoacoustic emissions in acute acoustic trauma. Otol Neurotol 33:1315–1322CrossRefPubMed
Zurück zum Zitat Charaziak KK, Siegel JH (2015) Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation. J Assoc Res Otolaryngol 16:317–329CrossRefPubMedPubMedCentral Charaziak KK, Siegel JH (2015) Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation. J Assoc Res Otolaryngol 16:317–329CrossRefPubMedPubMedCentral
Zurück zum Zitat Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669CrossRefPubMedPubMedCentral Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669CrossRefPubMedPubMedCentral
Zurück zum Zitat Clark WW, Kim DO, Zurek PM, Bohne BA (1984) Spontaneous otoacoustic emissions in chinchilla ear canals: correlation with histopathology and suppression by external tones. Hear Res 16:299–314CrossRefPubMed Clark WW, Kim DO, Zurek PM, Bohne BA (1984) Spontaneous otoacoustic emissions in chinchilla ear canals: correlation with histopathology and suppression by external tones. Hear Res 16:299–314CrossRefPubMed
Zurück zum Zitat Dewey JB and Dhar S (2015) Wideband profiles of stimulus-frequency otoacoustic emissions in humans. In: Karavitaki KD, Corey DP (eds) Mechanics of hearing: protein to perception. American Institute of Physics, Melville, NY, pp 090018-1–090018-5. Dewey JB and Dhar S (2015) Wideband profiles of stimulus-frequency otoacoustic emissions in humans. In: Karavitaki KD, Corey DP (eds) Mechanics of hearing: protein to perception. American Institute of Physics, Melville, NY, pp 090018-1–090018-5.
Zurück zum Zitat Dreisbach LE (1999) Characterizing the 2f 1-f 2 distortion-product otoacoustic emission and its generators measured from 2 to 20 kHz in humans. Doctoral dissertation, Northwestern University, Evanston, Illinois Dreisbach LE (1999) Characterizing the 2f 1-f 2 distortion-product otoacoustic emission and its generators measured from 2 to 20 kHz in humans. Doctoral dissertation, Northwestern University, Evanston, Illinois
Zurück zum Zitat Dreisbach LE, Siegel JH (2001) Distortion-product otoacoustic emissions measured at high frequencies in humans. J Acoust Soc Am 110:2456–2469CrossRefPubMed Dreisbach LE, Siegel JH (2001) Distortion-product otoacoustic emissions measured at high frequencies in humans. J Acoust Soc Am 110:2456–2469CrossRefPubMed
Zurück zum Zitat Dreisbach LE, Siegel JH (2005) Level dependence of distortion-product otoacoustic emissions measured at high frequencies in humans. J Acoust Soc Am 117:2980–2988CrossRefPubMed Dreisbach LE, Siegel JH (2005) Level dependence of distortion-product otoacoustic emissions measured at high frequencies in humans. J Acoust Soc Am 117:2980–2988CrossRefPubMed
Zurück zum Zitat Dreisbach LE, Long KM, Lees SE (2006) Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults. Ear Hear 27:466–479CrossRefPubMed Dreisbach LE, Long KM, Lees SE (2006) Repeatability of high-frequency distortion-product otoacoustic emissions in normal-hearing adults. Ear Hear 27:466–479CrossRefPubMed
Zurück zum Zitat Ellison JC, Keefe DH (2005) Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements. Ear Hear 26:487–503CrossRefPubMedPubMedCentral Ellison JC, Keefe DH (2005) Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements. Ear Hear 26:487–503CrossRefPubMedPubMedCentral
Zurück zum Zitat Fausti SA, Erickson DA, Frey RH, Rappaport BZ, Schechter MA (1981) The effects of noise upon human hearing sensitivity from 8000 to 20 000 Hz. J Acoust Soc Am 69:1343–1347CrossRefPubMed Fausti SA, Erickson DA, Frey RH, Rappaport BZ, Schechter MA (1981) The effects of noise upon human hearing sensitivity from 8000 to 20 000 Hz. J Acoust Soc Am 69:1343–1347CrossRefPubMed
Zurück zum Zitat Goodman SS, Fitzpatrick DF, Ellison JC, Jesteadt W, Keefe DH (2009) High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans. J Acoust Soc Am 125:1014–1032CrossRefPubMedPubMedCentral Goodman SS, Fitzpatrick DF, Ellison JC, Jesteadt W, Keefe DH (2009) High-frequency click-evoked otoacoustic emissions and behavioral thresholds in humans. J Acoust Soc Am 125:1014–1032CrossRefPubMedPubMedCentral
Zurück zum Zitat Goodman SS, Withnell RH, Shera CA (2003) The origin of SFOAE microstructure in the guinea pig. Hear Res 183:7–17CrossRefPubMed Goodman SS, Withnell RH, Shera CA (2003) The origin of SFOAE microstructure in the guinea pig. Hear Res 183:7–17CrossRefPubMed
Zurück zum Zitat Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605CrossRefPubMed Greenwood DD (1990) A cochlear frequency-position function for several species—29 years later. J Acoust Soc Am 87:2592–2605CrossRefPubMed
Zurück zum Zitat Hecker DJ, Lohscheller J, Bader CA, Delb W, Schick B, Dlugaiczyk J (2011) A new method to analyze distortion product otoacoustic emissions (DPOAEs) in the high-frequency range up to 18 kHz using windowed periodograms. IEEE Trans Biomed Eng 58:2369–2377CrossRef Hecker DJ, Lohscheller J, Bader CA, Delb W, Schick B, Dlugaiczyk J (2011) A new method to analyze distortion product otoacoustic emissions (DPOAEs) in the high-frequency range up to 18 kHz using windowed periodograms. IEEE Trans Biomed Eng 58:2369–2377CrossRef
Zurück zum Zitat Kakigi A, Hirakawa H, Harel N, Mount RJ, Harrison RV (1998) Basal cochlear lesions result in increased amplitude of otoacoustic emissions. J Otolaryngol 27:354–360 Kakigi A, Hirakawa H, Harel N, Mount RJ, Harrison RV (1998) Basal cochlear lesions result in increased amplitude of otoacoustic emissions. J Otolaryngol 27:354–360
Zurück zum Zitat Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637CrossRefPubMed Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637CrossRefPubMed
Zurück zum Zitat Kalluri R, Shera CA (2007a) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 121:2097–2110CrossRefPubMed Kalluri R, Shera CA (2007a) Near equivalence of human click-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 121:2097–2110CrossRefPubMed
Zurück zum Zitat Kalluri R, Shera CA (2007b) Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am 122:3562–3575CrossRefPubMed Kalluri R, Shera CA (2007b) Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am 122:3562–3575CrossRefPubMed
Zurück zum Zitat Keefe DH (2012) Moments of click-evoked otoacoustic emissions in human ears: group delay and spread, instantaneous frequency and bandwidth. J Acoust Soc Am 132:3319–3350CrossRefPubMedPubMedCentral Keefe DH (2012) Moments of click-evoked otoacoustic emissions in human ears: group delay and spread, instantaneous frequency and bandwidth. J Acoust Soc Am 132:3319–3350CrossRefPubMedPubMedCentral
Zurück zum Zitat Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP (2008) Two-tone suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 123:1479–1494CrossRefPubMedPubMedCentral Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP (2008) Two-tone suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 123:1479–1494CrossRefPubMedPubMedCentral
Zurück zum Zitat Keefe DH, Goodman SS, Ellison JC, Fitzpatrick DF, Gorga MP (2011) Detecting high-frequency hearing loss with click-evoked otoacoustic emissions. J Acoust Soc Am 129:245–261CrossRefPubMedPubMedCentral Keefe DH, Goodman SS, Ellison JC, Fitzpatrick DF, Gorga MP (2011) Detecting high-frequency hearing loss with click-evoked otoacoustic emissions. J Acoust Soc Am 129:245–261CrossRefPubMedPubMedCentral
Zurück zum Zitat Kemp DT (1979) The evoked cochlear mechanical response and the auditory microstructure—evidence for a new element in cochlear mechanics. Scand Audiol Supp 9:35–47 Kemp DT (1979) The evoked cochlear mechanical response and the auditory microstructure—evidence for a new element in cochlear mechanics. Scand Audiol Supp 9:35–47
Zurück zum Zitat Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions—two tone suppression. In: deBoer E, Viergever MA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–41. Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions—two tone suppression. In: deBoer E, Viergever MA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–41.
Zurück zum Zitat Konrad-Martin D, Keefe DH (2003) Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions. J Acoust Soc Am 114:2021–2043CrossRefPubMed Konrad-Martin D, Keefe DH (2003) Time-frequency analyses of transient-evoked stimulus-frequency and distortion-product otoacoustic emissions: testing cochlear model predictions. J Acoust Soc Am 114:2021–2043CrossRefPubMed
Zurück zum Zitat Lee J, Dhar S, Abel R, Banakis R, Grolley E, Lee J, Zecker S, Siegel J (2012) Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration. Ear Hear 33:315–329CrossRefPubMedPubMedCentral Lee J, Dhar S, Abel R, Banakis R, Grolley E, Lee J, Zecker S, Siegel J (2012) Behavioral hearing thresholds between 0.125 and 20 kHz using depth-compensated ear simulator calibration. Ear Hear 33:315–329CrossRefPubMedPubMedCentral
Zurück zum Zitat Lewis JD, Goodman SS (2015) Basal contributions to short-latency transient-evoked otoacoustic emission components. J Assoc Res Otolaryngol 16:29–45CrossRefPubMed Lewis JD, Goodman SS (2015) Basal contributions to short-latency transient-evoked otoacoustic emission components. J Assoc Res Otolaryngol 16:29–45CrossRefPubMed
Zurück zum Zitat Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J Acoust Soc Am 102:2831–2848CrossRefPubMed Long GR, Talmadge CL (1997) Spontaneous otoacoustic emission frequency is modulated by heartbeat. J Acoust Soc Am 102:2831–2848CrossRefPubMed
Zurück zum Zitat Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626CrossRefPubMed Long GR, Talmadge CL, Lee J (2008) Measuring distortion product otoacoustic emissions using continuously sweeping primaries. J Acoust Soc Am 124:1613–1626CrossRefPubMed
Zurück zum Zitat Martin GK, Stagner BB, Lonsbury-Martin BL (2010) Evidence for basal distortion-product otoacoustic emission components. J Acoust Soc Am 127:2955–2972CrossRefPubMedPubMedCentral Martin GK, Stagner BB, Lonsbury-Martin BL (2010) Evidence for basal distortion-product otoacoustic emission components. J Acoust Soc Am 127:2955–2972CrossRefPubMedPubMedCentral
Zurück zum Zitat Moleti A, Al-Maamury AM, Bertaccini D, Botti T, Sisto R (2013) Generation place of the long- and short-latency components of transient-evoked otoacoustic emissions in a nonlinear cochlear model. J Acoust Soc Am 133:4098–4108CrossRefPubMed Moleti A, Al-Maamury AM, Bertaccini D, Botti T, Sisto R (2013) Generation place of the long- and short-latency components of transient-evoked otoacoustic emissions in a nonlinear cochlear model. J Acoust Soc Am 133:4098–4108CrossRefPubMed
Zurück zum Zitat Moleti A, Sisto R, Lucertini M (2014) Experimental evidence for the basal generation place of the short-latency transient-evoked otoacoustic emissions. J Acoust Soc Am 135:2862–2872CrossRefPubMed Moleti A, Sisto R, Lucertini M (2014) Experimental evidence for the basal generation place of the short-latency transient-evoked otoacoustic emissions. J Acoust Soc Am 135:2862–2872CrossRefPubMed
Zurück zum Zitat Poling GL, Siegel JH, Lee J, Lee J, Dhar S (2014) Characteristics of the 2f 1-f 2 distortion product otoacoustic emission in a normal hearing population. J Acoust Soc Am 135:287–299CrossRefPubMedPubMedCentral Poling GL, Siegel JH, Lee J, Lee J, Dhar S (2014) Characteristics of the 2f 1-f 2 distortion product otoacoustic emission in a normal hearing population. J Acoust Soc Am 135:287–299CrossRefPubMedPubMedCentral
Zurück zum Zitat Powers NL, Salvi RJ, Wang J, Spongr V, Qiu CX (1995) Elevation of auditory thresholds by spontaneous cochlear oscillations. Nature 375:585–587CrossRefPubMed Powers NL, Salvi RJ, Wang J, Spongr V, Qiu CX (1995) Elevation of auditory thresholds by spontaneous cochlear oscillations. Nature 375:585–587CrossRefPubMed
Zurück zum Zitat Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113:2773–2789CrossRefPubMed Puria S (2003) Measurements of human middle ear forward and reverse acoustics: implications for otoacoustic emissions. J Acoust Soc Am 113:2773–2789CrossRefPubMed
Zurück zum Zitat Raveh E, Mount RJ, Harrison RV (1998) Increased otoacoustic-emission amplitude secondary to cochlear lesions. J Otolaryngol 27:354–360PubMed Raveh E, Mount RJ, Harrison RV (1998) Increased otoacoustic-emission amplitude secondary to cochlear lesions. J Otolaryngol 27:354–360PubMed
Zurück zum Zitat Ruggero MA, Kramek B, Rich NC (1984) Spontaneous otoacoustic emissions in a dog. Hear Res 13:293–296CrossRefPubMed Ruggero MA, Kramek B, Rich NC (1984) Spontaneous otoacoustic emissions in a dog. Hear Res 13:293–296CrossRefPubMed
Zurück zum Zitat Ruggero MA, Rich NC, Freyman R (1983) Spontaneous and impulsively evoked otoacoustic emissions: indicators of cochlear pathology? Hear Res 10:283–300CrossRefPubMed Ruggero MA, Rich NC, Freyman R (1983) Spontaneous and impulsively evoked otoacoustic emissions: indicators of cochlear pathology? Hear Res 10:283–300CrossRefPubMed
Zurück zum Zitat Ruggero MA, Temchin AN (2002) The roles of the external, middle, and inner ears in determining the bandwidth of hearing. Proc Natl Acad Sci 99:13206–13210CrossRefPubMedPubMedCentral Ruggero MA, Temchin AN (2002) The roles of the external, middle, and inner ears in determining the bandwidth of hearing. Proc Natl Acad Sci 99:13206–13210CrossRefPubMedPubMedCentral
Zurück zum Zitat Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH (2006) Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. J Acoust Soc Am 120:901–914CrossRefPubMedPubMedCentral Schairer KS, Ellison JC, Fitzpatrick D, Keefe DH (2006) Use of stimulus-frequency otoacoustic emission latency and level to investigate cochlear mechanics in human ears. J Acoust Soc Am 120:901–914CrossRefPubMedPubMedCentral
Zurück zum Zitat Scheperle RA, Neely ST, Kopun JG, Gorga MP (2008) Influence of in situ, sound-level calibration on distortion-product otoacoustic emission variability. J Acoust Soc Am 124:288–300CrossRefPubMedPubMedCentral Scheperle RA, Neely ST, Kopun JG, Gorga MP (2008) Influence of in situ, sound-level calibration on distortion-product otoacoustic emission variability. J Acoust Soc Am 124:288–300CrossRefPubMedPubMedCentral
Zurück zum Zitat Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262CrossRefPubMed Shera CA (2003) Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves. J Acoust Soc Am 114:244–262CrossRefPubMed
Zurück zum Zitat Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798CrossRefPubMed Shera CA, Guinan JJ (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798CrossRefPubMed
Zurück zum Zitat Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772CrossRefPubMed Shera CA, Guinan JJ (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772CrossRefPubMed
Zurück zum Zitat Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci 99:3318–3323CrossRefPubMedPubMedCentral Shera CA, Guinan JJ, Oxenham AJ (2002) Revised estimates of human cochlear tuning from otoacoustic and behavioral measurements. Proc Natl Acad Sci 99:3318–3323CrossRefPubMedPubMedCentral
Zurück zum Zitat Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365CrossRefPubMedPubMedCentral Shera CA, Guinan JJ, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365CrossRefPubMedPubMedCentral
Zurück zum Zitat Siegel JH (1994) Ear-canal standing waves and high-frequency sound calibration using otoacoustic emission probes. J Acoust Soc Am 95:2589–2597CrossRef Siegel JH (1994) Ear-canal standing waves and high-frequency sound calibration using otoacoustic emission probes. J Acoust Soc Am 95:2589–2597CrossRef
Zurück zum Zitat Siegel JH (2007) Calibration of otoacoustic emission probes. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications (3rd ed). New York, Thieme Medical, pp 403–427 Siegel JH (2007) Calibration of otoacoustic emission probes. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications (3rd ed). New York, Thieme Medical, pp 403–427
Zurück zum Zitat Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443CrossRefPubMed Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443CrossRefPubMed
Zurück zum Zitat Sisto R, Moleti A, Shera CA (2015) On the spatial distribution of the reflection sources of different latency components of otoacoustic emissions. J Acoust Soc Am 137:768–776CrossRefPubMedPubMedCentral Sisto R, Moleti A, Shera CA (2015) On the spatial distribution of the reflection sources of different latency components of otoacoustic emissions. J Acoust Soc Am 137:768–776CrossRefPubMedPubMedCentral
Zurück zum Zitat Sisto R, Sanjust F, Moleti A (2013) Input/output functions of different-latency components of transient-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 133:2240–2253CrossRefPubMed Sisto R, Sanjust F, Moleti A (2013) Input/output functions of different-latency components of transient-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 133:2240–2253CrossRefPubMed
Zurück zum Zitat Talmadge CL, Long GR, Murphy WJ, Tubis A (1993) New off-line method for detecting spontaneous otoacoustic emissions in human subjects. Hear Res 71:170–182CrossRefPubMed Talmadge CL, Long GR, Murphy WJ, Tubis A (1993) New off-line method for detecting spontaneous otoacoustic emissions in human subjects. Hear Res 71:170–182CrossRefPubMed
Zurück zum Zitat Talmadge CL, Tubis A, Long GR, Tong C (2000) Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure. J Acoust Soc Am 108:2911–2932CrossRefPubMed Talmadge CL, Tubis A, Long GR, Tong C (2000) Modeling the combined effects of basilar membrane nonlinearity and roughness on stimulus frequency otoacoustic emission fine structure. J Acoust Soc Am 108:2911–2932CrossRefPubMed
Zurück zum Zitat Withnell RH, Yates GK, Kirk DL (2000) Changes to low-frequency components of the TEOAE following acoustic trauma to the base of the cochlea. Hear Res 139:1–12CrossRefPubMed Withnell RH, Yates GK, Kirk DL (2000) Changes to low-frequency components of the TEOAE following acoustic trauma to the base of the cochlea. Hear Res 139:1–12CrossRefPubMed
Zurück zum Zitat Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047CrossRefPubMed Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047CrossRefPubMed
Metadaten
Titel
Profiles of Stimulus-Frequency Otoacoustic Emissions from 0.5 to 20 kHz in Humans
verfasst von
James B. Dewey
Sumitrajit Dhar
Publikationsdatum
28.09.2016
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 1/2017
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-016-0588-2

Weitere Artikel der Ausgabe 1/2017

Journal of the Association for Research in Otolaryngology 1/2017 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.