Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 3/2015

01.06.2015 | Research Article

Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation

verfasst von: Karolina K. Charaziak, Jonathan H. Siegel

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 3/2015

Einloggen, um Zugang zu erhalten

Abstract

Stimulus-frequency otoacoustic emissions (SFOAEs) appear to be well suited for assessing frequency selectivity because, at least on theoretical grounds, they originate over a restricted region of the cochlea near the characteristic place of the evoking tone. In support of this view, we previously found good agreement between SFOAE suppression tuning curves (SF-STCs) and a control measure of frequency selectivity (compound action potential suppression tuning curves (CAP-STC)) for frequencies above 3 kHz in chinchillas. For lower frequencies, however, SF-STCs and were over five times broader than the CAP-STCs and demonstrated more high-pass rather than narrow band-pass filter characteristics. Here, we test the hypothesis that the broad tuning of low-frequency SF-STCs is because emissions originate over a broad region of the cochlea extending basal to the characteristic place of the evoking tone. We removed contributions of the hypothesized basally located SFOAE sources by either pre-suppressing them with a high-frequency interference tone (IT; 4.2, 6.2, or 9.2 kHz at 75 dB sound pressure level (SPL)) or by inducing acoustic trauma at high frequencies (exposures to 8, 5, and lastly 3-kHz tones at 110–115 dB SPL). The 1-kHz SF-STCs and CAP-STCs were measured for baseline, IT present and following the acoustic trauma conditions in anesthetized chinchillas. The IT and acoustic trauma affected SF-STCs in an almost indistinguishable way. The SF-STCs changed progressively from a broad high-pass to narrow band-pass shape as the frequency of the IT was lowered and for subsequent exposures to lower-frequency tones. Both results were in agreement with the “basal sources” hypothesis. In contrast, CAP-STCs were not changed by either manipulation, indicating that neither the IT nor acoustic trauma affected the 1-kHz characteristic place. Thus, unlike CAPs, SFOAEs cannot be considered as a place-specific measure of cochlear function at low frequencies, at least in chinchillas.
Literatur
Zurück zum Zitat Arnold DJ, Lonsbury-Martin BL, Martin GK (1999) High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions. Arch Otolaryngol Head Neck Surg 125:215–222CrossRefPubMed Arnold DJ, Lonsbury-Martin BL, Martin GK (1999) High-frequency hearing influences lower-frequency distortion-product otoacoustic emissions. Arch Otolaryngol Head Neck Surg 125:215–222CrossRefPubMed
Zurück zum Zitat Avan P, Bonfils P, Loth D, Narcy P, Trotoux J (1991) Quantitative assessment of human cochlear function by evoked otoacoustic emissions. Hear Res 52:99–112CrossRefPubMed Avan P, Bonfils P, Loth D, Narcy P, Trotoux J (1991) Quantitative assessment of human cochlear function by evoked otoacoustic emissions. Hear Res 52:99–112CrossRefPubMed
Zurück zum Zitat Avan P, Bonfils P, Loth D, Wit HP (1993) Temporal patterns of transient-evoked otoacoustic emissions in normal and impaired cochleae. Hear Res 70:109–120CrossRefPubMed Avan P, Bonfils P, Loth D, Wit HP (1993) Temporal patterns of transient-evoked otoacoustic emissions in normal and impaired cochleae. Hear Res 70:109–120CrossRefPubMed
Zurück zum Zitat Avan P, Bonfils P, Loth D, Elbez M, Erminy M (1995) Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig. J Acoust Soc Am 97:3012–3020CrossRefPubMed Avan P, Bonfils P, Loth D, Elbez M, Erminy M (1995) Transient-evoked otoacoustic emissions and high-frequency acoustic trauma in the guinea pig. J Acoust Soc Am 97:3012–3020CrossRefPubMed
Zurück zum Zitat Avan P, Elbez M, Bonfils P (1997) Click-evoked otoacoustic emissions and the influence of high-frequency hearing losses in humans. J Acoust Soc Am 101:2771–2777CrossRefPubMed Avan P, Elbez M, Bonfils P (1997) Click-evoked otoacoustic emissions and the influence of high-frequency hearing losses in humans. J Acoust Soc Am 101:2771–2777CrossRefPubMed
Zurück zum Zitat Baiduc R, Charaziak KK, Siegel JH (2012) Spatial distribution of stimulus-frequency otoacoustic emissions generators in humans. Assoc Res Otolaryngol Abstr 398 35 Baiduc R, Charaziak KK, Siegel JH (2012) Spatial distribution of stimulus-frequency otoacoustic emissions generators in humans. Assoc Res Otolaryngol Abstr 398 35
Zurück zum Zitat Brass D, Kemp DT (1993) Suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 93:920–939CrossRefPubMed Brass D, Kemp DT (1993) Suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 93:920–939CrossRefPubMed
Zurück zum Zitat Charaziak KK, Siegel JH (2014) Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas. J Assoc Res Otolaryngol 15:883–896CrossRefPubMed Charaziak KK, Siegel JH (2014) Estimating cochlear frequency selectivity with stimulus-frequency otoacoustic emissions in chinchillas. J Assoc Res Otolaryngol 15:883–896CrossRefPubMed
Zurück zum Zitat Charaziak KK, Souza P, Siegel JH (2013) Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning. J Assoc Res Otolaryngol 14:843–862CrossRefPubMedCentralPubMed Charaziak KK, Souza P, Siegel JH (2013) Stimulus-frequency otoacoustic emission suppression tuning in humans: comparison to behavioral tuning. J Assoc Res Otolaryngol 14:843–862CrossRefPubMedCentralPubMed
Zurück zum Zitat Cheatham MA, Naik K, Dallos P (2011a) Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing. J Assoc Res Otolaryngol 12:113–125CrossRefPubMedCentralPubMed Cheatham MA, Naik K, Dallos P (2011a) Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing. J Assoc Res Otolaryngol 12:113–125CrossRefPubMedCentralPubMed
Zurück zum Zitat Cheatham MA, Katz ED, Charaziak KK, Dallos P, Siegel JH (2011b) Using stimulus frequency emissions to characterize cochlear function in mice. AIP Conf Proc 1403:383–388CrossRef Cheatham MA, Katz ED, Charaziak KK, Dallos P, Siegel JH (2011b) Using stimulus frequency emissions to characterize cochlear function in mice. AIP Conf Proc 1403:383–388CrossRef
Zurück zum Zitat Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669CrossRefPubMedCentralPubMed Choi YS, Lee SY, Parham K, Neely ST, Kim DO (2008) Stimulus-frequency otoacoustic emission: measurements in humans and simulations with an active cochlear model. J Acoust Soc Am 123:2651–2669CrossRefPubMedCentralPubMed
Zurück zum Zitat Clark WW (1991) Recent studies of temporary threshold shift (TTS) and permanent threshold shift (PTS) in animals. J Acoust Soc Am 90:155–163CrossRefPubMed Clark WW (1991) Recent studies of temporary threshold shift (TTS) and permanent threshold shift (PTS) in animals. J Acoust Soc Am 90:155–163CrossRefPubMed
Zurück zum Zitat Clark WW, Kim DO, Zurek PM, Bohne BA (1984) Spontaneous otoacoustic emissions in chinchilla ear canals: correlation with histopathology and suppression by external tones. Hear Res 16:299–314CrossRefPubMed Clark WW, Kim DO, Zurek PM, Bohne BA (1984) Spontaneous otoacoustic emissions in chinchilla ear canals: correlation with histopathology and suppression by external tones. Hear Res 16:299–314CrossRefPubMed
Zurück zum Zitat Dallos P, Cheatham MA (1976a) Compound action potential (AP) tuning curves. J Acoust Soc Am 59:591–597CrossRefPubMed Dallos P, Cheatham MA (1976a) Compound action potential (AP) tuning curves. J Acoust Soc Am 59:591–597CrossRefPubMed
Zurück zum Zitat Dallos P, Cheatham MA (1976b) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512CrossRefPubMed Dallos P, Cheatham MA (1976b) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512CrossRefPubMed
Zurück zum Zitat Davis RI, Ahroon WA, Hamernik RP (1989) The relation among hearing loss, sensory cell loss and tuning characteristics in the chinchilla. Hear Res 41:1–14CrossRefPubMed Davis RI, Ahroon WA, Hamernik RP (1989) The relation among hearing loss, sensory cell loss and tuning characteristics in the chinchilla. Hear Res 41:1–14CrossRefPubMed
Zurück zum Zitat Dhar S, Rogers A, Abdala C (2011) Breaking away: violation of distortion emission phase-frequency invariance at low frequencies. J Acoust Soc Am 129:3115–3122CrossRefPubMedCentralPubMed Dhar S, Rogers A, Abdala C (2011) Breaking away: violation of distortion emission phase-frequency invariance at low frequencies. J Acoust Soc Am 129:3115–3122CrossRefPubMedCentralPubMed
Zurück zum Zitat Dreisbach LE, Torre P 3rd, Kramer SJ, Kopke R, Jackson R, Balough B (2008) Influence of ultrahigh-frequency hearing thresholds on distortion-product otoacoustic emission levels at conventional frequencies. J Am Acad Audiol 19:325–336CrossRefPubMed Dreisbach LE, Torre P 3rd, Kramer SJ, Kopke R, Jackson R, Balough B (2008) Influence of ultrahigh-frequency hearing thresholds on distortion-product otoacoustic emission levels at conventional frequencies. J Am Acad Audiol 19:325–336CrossRefPubMed
Zurück zum Zitat Ellison JC, Keefe DH (2005) Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements. Ear Hear 26:487–503CrossRefPubMedCentralPubMed Ellison JC, Keefe DH (2005) Audiometric predictions using stimulus-frequency otoacoustic emissions and middle ear measurements. Ear Hear 26:487–503CrossRefPubMedCentralPubMed
Zurück zum Zitat Geisler CD, Yates GK, Patuzzi RB, Johnstone BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–256CrossRefPubMed Geisler CD, Yates GK, Patuzzi RB, Johnstone BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–256CrossRefPubMed
Zurück zum Zitat Goodman SS, Mertes IB, Scheperle RA (2011) Delays and growth rates of multiple TEOAE components. In: Shera CA, Olson ES (eds) What fire is in mine ears: progress in auditory biomechanics. AIP Conf. Proc, pp 279–285 Goodman SS, Mertes IB, Scheperle RA (2011) Delays and growth rates of multiple TEOAE components. In: Shera CA, Olson ES (eds) What fire is in mine ears: progress in auditory biomechanics. AIP Conf. Proc, pp 279–285
Zurück zum Zitat Gorga MP, Neely ST, Kopun J, Tan H (2011) Distortion-product otoacoustic emission suppression tuning curves in humans. J Acoust Soc Am 129:817–827CrossRefPubMedCentralPubMed Gorga MP, Neely ST, Kopun J, Tan H (2011) Distortion-product otoacoustic emission suppression tuning curves in humans. J Acoust Soc Am 129:817–827CrossRefPubMedCentralPubMed
Zurück zum Zitat Guinan JJ (1990) Changes in stimulus frequency otoacoustic emissions produced by two-tone suppression and efferent stimulation in cats. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The mechanics and biophysics of hearing. Springer, Madison, pp 170–177CrossRef Guinan JJ (1990) Changes in stimulus frequency otoacoustic emissions produced by two-tone suppression and efferent stimulation in cats. In: Dallos P, Geisler CD, Matthews JW, Ruggero MA, Steele CR (eds) The mechanics and biophysics of hearing. Springer, Madison, pp 170–177CrossRef
Zurück zum Zitat Harding GW, Bohne BA, Ahmad M (2002) DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise. Hear Res 174:158–171CrossRefPubMed Harding GW, Bohne BA, Ahmad M (2002) DPOAE level shifts and ABR threshold shifts compared to detailed analysis of histopathological damage from noise. Hear Res 174:158–171CrossRefPubMed
Zurück zum Zitat He W, Porsov E, Kemp D, Nuttall AL, Ren T (2012) The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window. PLoS One 7:e34356CrossRefPubMedCentralPubMed He W, Porsov E, Kemp D, Nuttall AL, Ren T (2012) The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window. PLoS One 7:e34356CrossRefPubMedCentralPubMed
Zurück zum Zitat Heitmann J, Waldmann B, Schnitzler H-U, Plinkert PK, Zenner H-P (1998) Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1−f2 removes DP-gram fine structure—evidence for a secondary generator. J Acoust Soc Am 103:1527–1531CrossRef Heitmann J, Waldmann B, Schnitzler H-U, Plinkert PK, Zenner H-P (1998) Suppression of distortion product otoacoustic emissions (DPOAE) near 2f1−f2 removes DP-gram fine structure—evidence for a secondary generator. J Acoust Soc Am 103:1527–1531CrossRef
Zurück zum Zitat Jedrzejczak WW, Kochanek K, Trzaskowski B, Pilka E, Skarzynski PH, Skarzynski H (2012) Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz. Ear Hear 33:757–767CrossRefPubMed Jedrzejczak WW, Kochanek K, Trzaskowski B, Pilka E, Skarzynski PH, Skarzynski H (2012) Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz. Ear Hear 33:757–767CrossRefPubMed
Zurück zum Zitat Kalluri R, Shera CA (2007) Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am 122:3562–3575CrossRefPubMed Kalluri R, Shera CA (2007) Comparing stimulus-frequency otoacoustic emissions measured by compression, suppression, and spectral smoothing. J Acoust Soc Am 122:3562–3575CrossRefPubMed
Zurück zum Zitat Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP (2008) Two-tone suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 123:1479–1494CrossRefPubMedCentralPubMed Keefe DH, Ellison JC, Fitzpatrick DF, Gorga MP (2008) Two-tone suppression of stimulus frequency otoacoustic emissions. J Acoust Soc Am 123:1479–1494CrossRefPubMedCentralPubMed
Zurück zum Zitat Kemp DT (2007) Otoacoustic Emissions: the basics, the science and the future potential. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications. Theime, New York, pp 7–42 Kemp DT (2007) Otoacoustic Emissions: the basics, the science and the future potential. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications. Theime, New York, pp 7–42
Zurück zum Zitat Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions–two tone suppression. In: deBoer E, Viergever MA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–41CrossRef Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions–two tone suppression. In: deBoer E, Viergever MA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–41CrossRef
Zurück zum Zitat Killan EC, Lutman ME, Montelpare WJ, Thyer NJ (2012) A mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions. Hear Res 285:58–64CrossRefPubMed Killan EC, Lutman ME, Montelpare WJ, Thyer NJ (2012) A mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions. Hear Res 285:58–64CrossRefPubMed
Zurück zum Zitat Lewis J, Goodman S (2014) The origin of short-latency transient-evoked otoacoustic emissions. J Assoc Res Otolaryngol 37:72, Abstr: 126 Lewis J, Goodman S (2014) The origin of short-latency transient-evoked otoacoustic emissions. J Assoc Res Otolaryngol 37:72, Abstr: 126
Zurück zum Zitat Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455CrossRefPubMed Liberman MC (1978) Auditory-nerve response from cats raised in a low-noise chamber. J Acoust Soc Am 63:442–455CrossRefPubMed
Zurück zum Zitat Liberman MC, Dodds LW (1987) Acute ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res 26:45–64CrossRefPubMed Liberman MC, Dodds LW (1987) Acute ultrastructural changes in acoustic trauma: serial-section reconstruction of stereocilia and cuticular plates. Hear Res 26:45–64CrossRefPubMed
Zurück zum Zitat Martin GK, Stagner BB, Jassir D, Telischi FF, Lonsbury-Martin BL (1999) Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). I. Basic findings in rabbits. Hear Res 136:105–123CrossRefPubMed Martin GK, Stagner BB, Jassir D, Telischi FF, Lonsbury-Martin BL (1999) Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). I. Basic findings in rabbits. Hear Res 136:105–123CrossRefPubMed
Zurück zum Zitat Martin GK, Villasuso EI, Stagner BB, Lonsbury-Martin BL (2003) Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). II. Findings in humans. Hear Res 177:111–122CrossRefPubMed Martin GK, Villasuso EI, Stagner BB, Lonsbury-Martin BL (2003) Suppression and enhancement of distortion-product otoacoustic emissions by interference tones above f(2). II. Findings in humans. Hear Res 177:111–122CrossRefPubMed
Zurück zum Zitat Martin GK, Stagner BB, Fahey PF, Lonsbury-Martin BL (2009) Steep and shallow phase gradient distortion product otoacoustic emissions arising basal to the primary tones. J Acoust Soc Am 125:El85–El92PubMed Martin GK, Stagner BB, Fahey PF, Lonsbury-Martin BL (2009) Steep and shallow phase gradient distortion product otoacoustic emissions arising basal to the primary tones. J Acoust Soc Am 125:El85–El92PubMed
Zurück zum Zitat Martin GK, Stagner BB, Lonsbury-Martin BL (2010) Evidence for basal distortion-product otoacoustic emission components. J Acoust Soc Am 127:2955–2972CrossRefPubMedCentralPubMed Martin GK, Stagner BB, Lonsbury-Martin BL (2010) Evidence for basal distortion-product otoacoustic emission components. J Acoust Soc Am 127:2955–2972CrossRefPubMedCentralPubMed
Zurück zum Zitat Martin GK, Stagner BB, Chung YS, Lonsbury-Martin BL (2011) Characterizing distortion-product otoacoustic emission components across four species. J Acoust Soc Am 129:3090–3103CrossRefPubMedCentralPubMed Martin GK, Stagner BB, Chung YS, Lonsbury-Martin BL (2011) Characterizing distortion-product otoacoustic emission components across four species. J Acoust Soc Am 129:3090–3103CrossRefPubMedCentralPubMed
Zurück zum Zitat Mertes IB, Goodman SS (2013) Short-latency transient-evoked otoacoustic emissions as predictors of hearing status and thresholdsa). J Acoust Soc Am 134:2127–2135CrossRefPubMed Mertes IB, Goodman SS (2013) Short-latency transient-evoked otoacoustic emissions as predictors of hearing status and thresholdsa). J Acoust Soc Am 134:2127–2135CrossRefPubMed
Zurück zum Zitat Mills DM (2000) Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils. J Acoust Soc Am 107:2586–2602CrossRefPubMed Mills DM (2000) Frequency responses of two- and three-tone distortion product otoacoustic emissions in Mongolian gerbils. J Acoust Soc Am 107:2586–2602CrossRefPubMed
Zurück zum Zitat Moleti A, Al-Maamury AM, Bertaccini D, Botti T, Sisto R (2013) Generation place of the long- and short-latency components of transient-evoked otoacoustic emissions in a nonlinear cochlear model. J Acoust Soc Am 133:4098–4108CrossRefPubMed Moleti A, Al-Maamury AM, Bertaccini D, Botti T, Sisto R (2013) Generation place of the long- and short-latency components of transient-evoked otoacoustic emissions in a nonlinear cochlear model. J Acoust Soc Am 133:4098–4108CrossRefPubMed
Zurück zum Zitat Moleti A, Sisto R, Lucertini M (2014) Experimental evidence for the basal generation place of the short-latency transient-evoked otoacoustic emissions. J Acoust Soc Am 135:2862–2872CrossRefPubMed Moleti A, Sisto R, Lucertini M (2014) Experimental evidence for the basal generation place of the short-latency transient-evoked otoacoustic emissions. J Acoust Soc Am 135:2862–2872CrossRefPubMed
Zurück zum Zitat Muller M, Hoidis S, Smolders JW (2010) A physiological frequency-position map of the chinchilla cochlea. Hear Res 268:184–193CrossRefPubMed Muller M, Hoidis S, Smolders JW (2010) A physiological frequency-position map of the chinchilla cochlea. Hear Res 268:184–193CrossRefPubMed
Zurück zum Zitat Murnane OD, Kelly JK (2003) The effects of high-frequency hearing loss on low-frequency components of the click-evoked otoacoustic emission. J Am Acad Audiol 14:525–533CrossRefPubMed Murnane OD, Kelly JK (2003) The effects of high-frequency hearing loss on low-frequency components of the click-evoked otoacoustic emission. J Am Acad Audiol 14:525–533CrossRefPubMed
Zurück zum Zitat Neely S, Liu Z (2011) EMAV: otoacoustic emission averager. In: Technical Memorandum. Omaha, NE: Boys Town National Research Hospital Neely S, Liu Z (2011) EMAV: otoacoustic emission averager. In: Technical Memorandum. Omaha, NE: Boys Town National Research Hospital
Zurück zum Zitat Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139:13–30CrossRefPubMed Nordmann AS, Bohne BA, Harding GW (2000) Histopathological differences between temporary and permanent threshold shift. Hear Res 139:13–30CrossRefPubMed
Zurück zum Zitat Özdamar Ö, Dallos P (1978) Synchronous responses of the primary auditory fibers to the onset of tone burst and their relation to compound action potentials. Brain Res 155:169–175CrossRefPubMed Özdamar Ö, Dallos P (1978) Synchronous responses of the primary auditory fibers to the onset of tone burst and their relation to compound action potentials. Brain Res 155:169–175CrossRefPubMed
Zurück zum Zitat Pickles JO, Osborne MP, Comis SD (1987) Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig. Hear Res 25:173–183CrossRefPubMed Pickles JO, Osborne MP, Comis SD (1987) Vulnerability of tip links between stereocilia to acoustic trauma in the guinea pig. Hear Res 25:173–183CrossRefPubMed
Zurück zum Zitat Puel JL, Bobbin RP, Fallon M (1988) The active process is affected first by intense sound exposure. Hear Res 37:53–63CrossRefPubMed Puel JL, Bobbin RP, Fallon M (1988) The active process is affected first by intense sound exposure. Hear Res 37:53–63CrossRefPubMed
Zurück zum Zitat Rasetshwane DM, Argenyi M, Neely ST, Kopun JG, Gorga MP (2013) Latency of tone-burst-evoked auditory brain stem responses and otoacoustic emissions: level, frequency, and rise-time effects. J Acoust Soc Am 133:2803–2817CrossRefPubMedCentralPubMed Rasetshwane DM, Argenyi M, Neely ST, Kopun JG, Gorga MP (2013) Latency of tone-burst-evoked auditory brain stem responses and otoacoustic emissions: level, frequency, and rise-time effects. J Acoust Soc Am 133:2803–2817CrossRefPubMedCentralPubMed
Zurück zum Zitat Rhode WS (2007) Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 121:2805–2818CrossRefPubMed Rhode WS (2007) Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 121:2805–2818CrossRefPubMed
Zurück zum Zitat Ruggero MA, Rich NC, Recio A (1996) The effect of intense acoustic stimulation on basilar-membrane vibrations. Audit Neurosci 2:329–345 Ruggero MA, Rich NC, Recio A (1996) The effect of intense acoustic stimulation on basilar-membrane vibrations. Audit Neurosci 2:329–345
Zurück zum Zitat Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798CrossRefPubMed Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798CrossRefPubMed
Zurück zum Zitat Shera CA, Guinan JJ Jr (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772CrossRefPubMed Shera CA, Guinan JJ Jr (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772CrossRefPubMed
Zurück zum Zitat Shera CA, Tubis A, Talmadge CL, Guinan JJ Jr (2004) The dual effect of “suppressor” tones on stimulus-frequency otoacoustic emissions. J Assoc Res Otolaryngol 27:538 Shera CA, Tubis A, Talmadge CL, Guinan JJ Jr (2004) The dual effect of “suppressor” tones on stimulus-frequency otoacoustic emissions. J Assoc Res Otolaryngol 27:538
Zurück zum Zitat Shera CA, Guinan JJ Jr, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365CrossRefPubMedCentralPubMed Shera CA, Guinan JJ Jr, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365CrossRefPubMedCentralPubMed
Zurück zum Zitat Siegel JH (2006) The biophysical origin of otoacoustic emissions. In: Nuttall AL, Ren T, Gillespe P, Grosh K, de Boer E (eds) Auditory mechanisms: processes and models. World Scientific, Singapore, pp 361–368CrossRef Siegel JH (2006) The biophysical origin of otoacoustic emissions. In: Nuttall AL, Ren T, Gillespe P, Grosh K, de Boer E (eds) Auditory mechanisms: processes and models. World Scientific, Singapore, pp 361–368CrossRef
Zurück zum Zitat Siegel JH (2007) Calibration of otoacoustic emission probes. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications, 3rd edn. Thieme, New York, pp 403–429 Siegel JH (2007) Calibration of otoacoustic emission probes. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications, 3rd edn. Thieme, New York, pp 403–429
Zurück zum Zitat Siegel JH (2008) Species differences in low-level otoacoustic emissions may be explained by “hot regions” in the cochlea. J Acoust Soc Am 123:3852CrossRef Siegel JH (2008) Species differences in low-level otoacoustic emissions may be explained by “hot regions” in the cochlea. J Acoust Soc Am 123:3852CrossRef
Zurück zum Zitat Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443CrossRefPubMed Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443CrossRefPubMed
Zurück zum Zitat Sisto R, Sanjust F, Moleti A (2013) Input/output functions of different-latency components of transient-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 133:2240–2253CrossRefPubMed Sisto R, Sanjust F, Moleti A (2013) Input/output functions of different-latency components of transient-evoked and stimulus-frequency otoacoustic emissions. J Acoust Soc Am 133:2240–2253CrossRefPubMed
Zurück zum Zitat Songer JE, Rosowski JJ (2005) The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla. Hear Res 210:53–62CrossRefPubMedCentralPubMed Songer JE, Rosowski JJ (2005) The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla. Hear Res 210:53–62CrossRefPubMedCentralPubMed
Zurück zum Zitat Souter M (1995) Stimulus frequency otoacoustic emissions from guinea pig and human subjects. Hear Res 90:1–11CrossRefPubMed Souter M (1995) Stimulus frequency otoacoustic emissions from guinea pig and human subjects. Hear Res 90:1–11CrossRefPubMed
Zurück zum Zitat Sutton GJ (1985) Suppression effects in the spectrum of evoked oto-acoustic emissions. Acustica 58:57–63 Sutton GJ (1985) Suppression effects in the spectrum of evoked oto-acoustic emissions. Acustica 58:57–63
Zurück zum Zitat Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569CrossRefPubMed Taberner AM, Liberman MC (2005) Response properties of single auditory nerve fibers in the mouse. J Neurophysiol 93:557–569CrossRefPubMed
Zurück zum Zitat Teas DC, Eldredge DH, Davis H (1962) Cochlear responses to acoustic transients: an interpretation of whole-nerve action potentials. J Acoust Soc Am 34:1438–1459CrossRef Teas DC, Eldredge DH, Davis H (1962) Cochlear responses to acoustic transients: an interpretation of whole-nerve action potentials. J Acoust Soc Am 34:1438–1459CrossRef
Zurück zum Zitat Temchin AN, Rich NC, Ruggero MA (2008) Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations. J Neurophysiol 100:2889–2898CrossRefPubMedCentralPubMed Temchin AN, Rich NC, Ruggero MA (2008) Threshold tuning curves of chinchilla auditory-nerve fibers. I. Dependence on characteristic frequency and relation to the magnitudes of cochlear vibrations. J Neurophysiol 100:2889–2898CrossRefPubMedCentralPubMed
Zurück zum Zitat Temchin AN, Recio-Spinoso A, Cai H, Ruggero MA (2012) Traveling waves on the organ of Corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers. J Neurosci 32:10522–10529CrossRefPubMedCentralPubMed Temchin AN, Recio-Spinoso A, Cai H, Ruggero MA (2012) Traveling waves on the organ of Corti of the chinchilla cochlea: spatial trajectories of inner hair cell depolarization inferred from responses of auditory-nerve fibers. J Neurosci 32:10522–10529CrossRefPubMedCentralPubMed
Zurück zum Zitat Thorne PR, Duncan CE, Gavin JB (1986) The pathogenesis of stereocilia abnormalities in acoustic trauma. Hear Res 21:41–49CrossRefPubMed Thorne PR, Duncan CE, Gavin JB (1986) The pathogenesis of stereocilia abnormalities in acoustic trauma. Hear Res 21:41–49CrossRefPubMed
Zurück zum Zitat Withnell RH, Yates GK, Kirk DL (2000) Changes to low-frequency components of the TEOAE following acoustic trauma to the base of the cochlea. Hear Res 139:1–12CrossRefPubMed Withnell RH, Yates GK, Kirk DL (2000) Changes to low-frequency components of the TEOAE following acoustic trauma to the base of the cochlea. Hear Res 139:1–12CrossRefPubMed
Zurück zum Zitat Yates GK, Withnell RH (1999) The role of intermodulation distortion in transient-evoked otoacoustic emissions. Hear Res 136:49–64CrossRefPubMed Yates GK, Withnell RH (1999) The role of intermodulation distortion in transient-evoked otoacoustic emissions. Hear Res 136:49–64CrossRefPubMed
Zurück zum Zitat Zettner EM, Folsom RC (2003) Transient emission suppression tuning curve attributes in relation to psychoacoustic threshold. J Acoust Soc Am 113:2031–2041CrossRefPubMed Zettner EM, Folsom RC (2003) Transient emission suppression tuning curve attributes in relation to psychoacoustic threshold. J Acoust Soc Am 113:2031–2041CrossRefPubMed
Zurück zum Zitat Zurek PM, Clark WW (1981) Narrow-band acoustic-signals emitted by chinchilla ears after noise exposure. J Acoust Soc Am 70:446–450CrossRef Zurek PM, Clark WW (1981) Narrow-band acoustic-signals emitted by chinchilla ears after noise exposure. J Acoust Soc Am 70:446–450CrossRef
Zurück zum Zitat Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047CrossRefPubMed Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047CrossRefPubMed
Zurück zum Zitat Zwicker E, Wesel J (1990) The effect of addition in suppression of delayed evoked otoacoustic emissions and in masking. Acta Acustica 70:189–196 Zwicker E, Wesel J (1990) The effect of addition in suppression of delayed evoked otoacoustic emissions and in masking. Acta Acustica 70:189–196
Metadaten
Titel
Tuning of SFOAEs Evoked by Low-Frequency Tones Is Not Compatible with Localized Emission Generation
verfasst von
Karolina K. Charaziak
Jonathan H. Siegel
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 3/2015
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-015-0513-0

Weitere Artikel der Ausgabe 3/2015

Journal of the Association for Research in Otolaryngology 3/2015 Zur Ausgabe

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.