Skip to main content
Erschienen in: Journal of Bone and Mineral Metabolism 4/2022

15.04.2022 | Original Article

Profilin-1 negatively controls osteoclast migration by suppressing the protrusive structures based on branched actin filaments

verfasst von: Shuhei Kajikawa, Yoichi Ezura, Yayoi Izu, Kazuhisa Nakashima, Masaki Noda, Akira Nifuji

Erschienen in: Journal of Bone and Mineral Metabolism | Ausgabe 4/2022

Einloggen, um Zugang zu erhalten

Abstract

Background

Profilin-1 (Pfn1), an evolutionarily conserved actin-binding protein, is an important regulator of the cytoskeleton. We previously reported the osteoclast-specific Pfn1-conditional knockout (cKO) mice had postnatal osteolytic phenotype with craniofacial and long-bone deformities associated with increased migration of cultured osteoclasts. We hypothesized the increased cellular processes structured with branched actin filaments may underlies the mechanism of increased bone resorption in these mutant mice.

Materials and methods

The morphological structure and cell migration of the cultured osteoclasts were analyzed using fluorescent microscopy and time-lapse image capturing. Fractional migration distances, as well as the index of protrusive structures (%-PB) that evaluates relative border length of the protrusion were compared between the cells from control and Pfn1-cKO mice.

Results

Time-lapse image analysis showed that %-PB was significantly larger in Pfn1-cKO osteoclasts. In addition, the fractional migration distance was positively correlated with the index. When the branched actin filament organization was suppressed by chemical inhibitors, the osteoclast migration was declined. Importantly, the suppression was more extensive in Pfn1-cKO than in control osteoclasts.

Conclusion

Our results indicated the causative involvement of the increased branched actin filament formation at least in part for their excessive migration. Our findings provide a mechanistic rationale for testing novel therapeutic approaches targeting branched actin filaments in osteolytic disorders.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ralston SH, Layfield R (2012) Pathogenesis of paget disease of bone. Calcif Tissue Int 91:97–113CrossRefPubMed Ralston SH, Layfield R (2012) Pathogenesis of paget disease of bone. Calcif Tissue Int 91:97–113CrossRefPubMed
2.
Zurück zum Zitat Ralston SH, Albagha OM (2014) Genetics of paget’s disease of bone. Curr Osteoporos Rep 12:263–271CrossRefPubMed Ralston SH, Albagha OM (2014) Genetics of paget’s disease of bone. Curr Osteoporos Rep 12:263–271CrossRefPubMed
3.
Zurück zum Zitat Gennari L, Rendina D, Falchetti A, Merlotti D (2019) Paget’s disease of bone. Calcif Tissue Int 104:483–500CrossRefPubMed Gennari L, Rendina D, Falchetti A, Merlotti D (2019) Paget’s disease of bone. Calcif Tissue Int 104:483–500CrossRefPubMed
4.
Zurück zum Zitat Merlotti D, Materozzi M, Bianciardi S, Guarnieri V, Rendina D, Volterrani L, Bellan C, Mingiano C, Picchioni T, Frosali A, Orfanelli U, Cenci S, Gennari L (2020) Mutation of PFN1 gene in an early onset, polyostotic paget-like disease. J Clin Endocrinol Metab 105:2553–2565CrossRef Merlotti D, Materozzi M, Bianciardi S, Guarnieri V, Rendina D, Volterrani L, Bellan C, Mingiano C, Picchioni T, Frosali A, Orfanelli U, Cenci S, Gennari L (2020) Mutation of PFN1 gene in an early onset, polyostotic paget-like disease. J Clin Endocrinol Metab 105:2553–2565CrossRef
5.
Zurück zum Zitat Scotto di Carlo F, Pazzaglia L, Esposito T, Gianfrancesco F (2020) The loss of profilin 1 causes early onset paget’s disease of bone. J Bone Miner Res 35:1387–1398CrossRefPubMed Scotto di Carlo F, Pazzaglia L, Esposito T, Gianfrancesco F (2020) The loss of profilin 1 causes early onset paget’s disease of bone. J Bone Miner Res 35:1387–1398CrossRefPubMed
6.
Zurück zum Zitat Böttcher RT, Wiesner S, Braun A, Wimmer R, Berna A, Elad N, Medalia O, Pfeifer A, Aszodi A, Costell M, Fassler R (2009) Profilin 1 is required for abscission during late cytokinesis of chondrocytes. EMBO J 28:1157–1169CrossRefPubMedPubMedCentral Böttcher RT, Wiesner S, Braun A, Wimmer R, Berna A, Elad N, Medalia O, Pfeifer A, Aszodi A, Costell M, Fassler R (2009) Profilin 1 is required for abscission during late cytokinesis of chondrocytes. EMBO J 28:1157–1169CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Miyajima D, Hayata T, Suzuki T, Hemmi H, Nakamoto T, Notomi T, Amagasa T, Bottcher RT, Costell M, Fassler R, Ezura Y, Noda M (2012) Profilin1 regulates sternum development and endochondral bone formation. J Biol Chem 287:33545–33553CrossRefPubMedPubMedCentral Miyajima D, Hayata T, Suzuki T, Hemmi H, Nakamoto T, Notomi T, Amagasa T, Bottcher RT, Costell M, Fassler R, Ezura Y, Noda M (2012) Profilin1 regulates sternum development and endochondral bone formation. J Biol Chem 287:33545–33553CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Lin W, Izu Y, Smriti A, Kawasaki M, Pawaputanon C, Bottcher RT, Costell M, Moriyama K, Noda M, Ezura Y (2018) Profilin1 is expressed in osteocytes and regulates cell shape and migration. J Cell Physiol 233:259–268CrossRefPubMed Lin W, Izu Y, Smriti A, Kawasaki M, Pawaputanon C, Bottcher RT, Costell M, Moriyama K, Noda M, Ezura Y (2018) Profilin1 is expressed in osteocytes and regulates cell shape and migration. J Cell Physiol 233:259–268CrossRefPubMed
9.
Zurück zum Zitat Shirakawa J, Kajikawa S, Bottcher RT, Costell M, Izu Y, Hayata T, Noda M, Ezura Y (2019) Profilin 1 negatively regulates osteoclast migration in postnatal skeletal growth, remodeling, and homeostasis in mice. JBMR Plus 3:e10130CrossRefPubMedPubMedCentral Shirakawa J, Kajikawa S, Bottcher RT, Costell M, Izu Y, Hayata T, Noda M, Ezura Y (2019) Profilin 1 negatively regulates osteoclast migration in postnatal skeletal growth, remodeling, and homeostasis in mice. JBMR Plus 3:e10130CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Schachtner H, Calaminus SD, Thomas SG, Machesky LM (2013) Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton 70:572–589CrossRefPubMed Schachtner H, Calaminus SD, Thomas SG, Machesky LM (2013) Podosomes in adhesion, migration, mechanosensing and matrix remodeling. Cytoskeleton 70:572–589CrossRefPubMed
11.
Zurück zum Zitat Henty-Ridilla JC, Goode BL (2015) Global resource distribution: allocation of actin building blocks by profilin. Dev Cell 32:5–6CrossRefPubMed Henty-Ridilla JC, Goode BL (2015) Global resource distribution: allocation of actin building blocks by profilin. Dev Cell 32:5–6CrossRefPubMed
12.
Zurück zum Zitat Takeshita S, Kaji K, Kudo A (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 15:1477–1488CrossRefPubMed Takeshita S, Kaji K, Kudo A (2000) Identification and characterization of the new osteoclast progenitor with macrophage phenotypes being able to differentiate into mature osteoclasts. J Bone Miner Res 15:1477–1488CrossRefPubMed
13.
Zurück zum Zitat Kajikawa S, Taguchi Y, Hayata T, Ezura Y, Ueta R, Arimura S, Inoue JI, Noda M, Yamanashi Y (2018) Dok-3 and Dok-1/-2 adaptors play distinctive roles in cell fusion and proliferation during osteoclastogenesis and cooperatively protect mice from osteopenia. Biochem Biophys Res Commun 498:967–974CrossRefPubMed Kajikawa S, Taguchi Y, Hayata T, Ezura Y, Ueta R, Arimura S, Inoue JI, Noda M, Yamanashi Y (2018) Dok-3 and Dok-1/-2 adaptors play distinctive roles in cell fusion and proliferation during osteoclastogenesis and cooperatively protect mice from osteopenia. Biochem Biophys Res Commun 498:967–974CrossRefPubMed
14.
Zurück zum Zitat Hetrick B, Han MS, Helgeson LA, Nolen BJ (2013) Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change. Chem Biol 20:701–712CrossRefPubMedPubMedCentral Hetrick B, Han MS, Helgeson LA, Nolen BJ (2013) Small molecules CK-666 and CK-869 inhibit actin-related protein 2/3 complex by blocking an activating conformational change. Chem Biol 20:701–712CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Beckham Y, Vasquez RJ, Stricker J, Sayegh K, Campillo C, Gardel ML (2014) Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly. PLoS ONE 9:e100943CrossRefPubMedPubMedCentral Beckham Y, Vasquez RJ, Stricker J, Sayegh K, Campillo C, Gardel ML (2014) Arp2/3 inhibition induces amoeboid-like protrusions in MCF10A epithelial cells by reduced cytoskeletal-membrane coupling and focal adhesion assembly. PLoS ONE 9:e100943CrossRefPubMedPubMedCentral
16.
Zurück zum Zitat Skruber K, Warp PV, Shklyarov R, Thomas JD, Swanson MS, Henty-Ridilla JL, Read TA, Vitriol EA (2020) Arp2/3 and Mena/VASP require profilin 1 for actin network assembly at the leading edge. Curr Biol 30:2651–2664 (e2655)CrossRefPubMedPubMedCentral Skruber K, Warp PV, Shklyarov R, Thomas JD, Swanson MS, Henty-Ridilla JL, Read TA, Vitriol EA (2020) Arp2/3 and Mena/VASP require profilin 1 for actin network assembly at the leading edge. Curr Biol 30:2651–2664 (e2655)CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Destaing O, Saltel F, Géminard JC, Jurdic P, Bard F (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14:407–416CrossRefPubMedPubMedCentral Destaing O, Saltel F, Géminard JC, Jurdic P, Bard F (2003) Podosomes display actin turnover and dynamic self-organization in osteoclasts expressing actin-green fluorescent protein. Mol Biol Cell 14:407–416CrossRefPubMedPubMedCentral
18.
Zurück zum Zitat van den Dries K, Linder S, Maridonneau-Parini I, Poincloux R (2019) Probing the mechanical landscape - new insights into podosome architecture and mechanics. J Cell Sci 132:jcs236828CrossRefPubMed van den Dries K, Linder S, Maridonneau-Parini I, Poincloux R (2019) Probing the mechanical landscape - new insights into podosome architecture and mechanics. J Cell Sci 132:jcs236828CrossRefPubMed
19.
Zurück zum Zitat Bae YH, Ding Z, Das T, Wells A, Gertler F, Roy P (2010) Profilin1 regulates PI(3,4)P2 and lamellipodin accumulation at the leading edge thus influencing motility of MDA-MB-231 cells. Proc Natl Acad Sci USA 107:21547–21552CrossRefPubMedPubMedCentral Bae YH, Ding Z, Das T, Wells A, Gertler F, Roy P (2010) Profilin1 regulates PI(3,4)P2 and lamellipodin accumulation at the leading edge thus influencing motility of MDA-MB-231 cells. Proc Natl Acad Sci USA 107:21547–21552CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Bender M, Stritt S, Nurden P, van Eeuwijk JM, Zieger B, Kentouche K, Schulze H, Morbach H, Stegner D, Heinze KG, Dütting S, Gupta S, Witke W, Falet H, Fischer A, Hartwig JH, Nieswandt B (2014) Megakaryocyte-specific profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun 5:4746CrossRefPubMed Bender M, Stritt S, Nurden P, van Eeuwijk JM, Zieger B, Kentouche K, Schulze H, Morbach H, Stegner D, Heinze KG, Dütting S, Gupta S, Witke W, Falet H, Fischer A, Hartwig JH, Nieswandt B (2014) Megakaryocyte-specific profilin1-deficiency alters microtubule stability and causes a Wiskott-Aldrich syndrome-like platelet defect. Nat Commun 5:4746CrossRefPubMed
21.
Zurück zum Zitat Schoppmeyer R, Zhao R, Cheng H, Hamed M, Liu C, Zhou X, Schwarz EC, Zhou Y, Knorck A, Schwar G, Ji S, Liu L, Long J, Helms V, Hoth M, Yu X, Qu B (2017) Human profilin 1 is a negative regulator of CTL mediated cell-killing and migration. Eur J Immunol 47:1562–1572CrossRefPubMed Schoppmeyer R, Zhao R, Cheng H, Hamed M, Liu C, Zhou X, Schwarz EC, Zhou Y, Knorck A, Schwar G, Ji S, Liu L, Long J, Helms V, Hoth M, Yu X, Qu B (2017) Human profilin 1 is a negative regulator of CTL mediated cell-killing and migration. Eur J Immunol 47:1562–1572CrossRefPubMed
Metadaten
Titel
Profilin-1 negatively controls osteoclast migration by suppressing the protrusive structures based on branched actin filaments
verfasst von
Shuhei Kajikawa
Yoichi Ezura
Yayoi Izu
Kazuhisa Nakashima
Masaki Noda
Akira Nifuji
Publikationsdatum
15.04.2022
Verlag
Springer Nature Singapore
Erschienen in
Journal of Bone and Mineral Metabolism / Ausgabe 4/2022
Print ISSN: 0914-8779
Elektronische ISSN: 1435-5604
DOI
https://doi.org/10.1007/s00774-022-01320-y

Weitere Artikel der Ausgabe 4/2022

Journal of Bone and Mineral Metabolism 4/2022 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Eingreifen von Umstehenden rettet vor Erstickungstod!

15.05.2024 Fremdkörperaspiration Nachrichten

Wer sich an einem Essensrest verschluckt und um Luft ringt, benötigt vor allem rasche Hilfe. Dass Umstehende nur in jedem zweiten Erstickungsnotfall bereit waren, diese zu leisten, ist das ernüchternde Ergebnis einer Beobachtungsstudie aus Japan. Doch es gibt auch eine gute Nachricht.

Neue S3-Leitlinie zur unkomplizierten Zystitis: Auf Antibiotika verzichten?

15.05.2024 Harnwegsinfektionen Nachrichten

Welche Antibiotika darf man bei unkomplizierter Zystitis verwenden und wovon sollte man die Finger lassen? Welche pflanzlichen Präparate können helfen? Was taugt der zugelassene Impfstoff? Antworten vom Koordinator der frisch überarbeiteten S3-Leitlinie, Prof. Florian Wagenlehner.

Schadet Ärger den Gefäßen?

14.05.2024 Arteriosklerose Nachrichten

In einer Studie aus New York wirkte sich Ärger kurzfristig deutlich negativ auf die Endothelfunktion gesunder Probanden aus. Möglicherweise hat dies Einfluss auf die kardiovaskuläre Gesundheit.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.