Skip to main content
Erschienen in: BMC Pulmonary Medicine 1/2020

Open Access 01.12.2020 | Research article

Prognostic role of the preoperative neutrophil-to-lymphocyte ratio and albumin for 30-day mortality in patients with postoperative acute pulmonary embolism

verfasst von: Chuan Liu, Hui-lu Zhan, Zhang-Heng Huang, Chuan Hu, Yue-Xin Tong, Zhi-Yi Fan, Meng-Ying Zheng, Cheng-Liang Zhao, Gui-Yun Ma

Erschienen in: BMC Pulmonary Medicine | Ausgabe 1/2020

Abstract

Background

This retrospective study aimed to investigate the prognostic value of the neutrophil-to-lymphocyte ratio (NLR) and albumin for 30-day mortality in patients with postoperative acute pulmonary embolism (PAPE).

Methods

We retrospectively reviewed the medical records of 101 patients with PAPE admitted from September 1, 2012, to March 31, 2019. The characteristics, surgical information, admission examination data and mortality within 30 days after PAPE were obtained from our electronic medical recording system and follow-up. The associations between the NLR, PLR, and other predictors and 30-day mortality were analyzed with univariate and multivariate analyses. Then, the nomogram including the independent predictors was established and evaluated.

Results

Twenty-four patients died within 30 days, corresponding to a 30-day mortality rate of 23.8%. The results of the multivariate analysis indicated that both the NLR and albumin were independent predictors for 30-day mortality in patients with PAPE. The probability of death increased by approximately 17.1% (OR = 1.171, 95% CI: 1.073–1.277, P = 0.000) with a one-unit increase in the NLR, and the probability of death decreased by approximately 15.4% (OR = 0.846, 95% CI: 0.762c–0.939, P = 0.002) with a one-unit increase in albumin. The area under the curve of the nomogram was 0.888 (95% CI: 0.812–0.964).

Conclusion

Our findings showed that an elevated NLR and decreased albumin were related to poor prognosis in patients with PAPE. The NLR and albumin were independent prognostic factors for PAPE.
Hinweise
Chuan Liu and Hui-lu Zhan contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
PAPE
Postoperative acute pulmonary embolism
NLR
Neutrophil-to-lymphocyte ratio
MLR
Monocyte-to-lymphocyte ratio
RDW
Red blood cell distribution width
CRP
C-reactive protein\
CBC
Complete blood count
ROC
Receiver operating characteristic curve
AUC
Area under the curve
DCA
Decision curve analysis
LMR
Lymphocyte to monocyte ratio

Background

Postoperative acute pulmonary embolism (PAPE) is one of the most dangerous complications following operations, with an incidence between 0.9 and 3.1% [14]. Although the methods of diagnosis and treatment of PAPE have been continuously developed in recent years, including imaging diagnosis, interventional surgery and medicinal chemotherapy, the overall survival rate of patients with PAPE is extremely low. It was reported that the short-term mortality of patients with PAPE was between 10 and 23.1% [59]. Therefore, identifying the preoperative risk factors associated with mortality may help to direct more aggressive treatment strategies, such as fibrinolytic therapy, towards patients who will derive the greatest benefit.
The mechanism of inflammatory reactions is closely related to the occurrence and development of thromboembolism [10]. In recent years, many researchers have reported that some predictors based on inflammation are associated with prognosis in patients with pulmonary embolism, such as the neutrophil-to-lymphocyte ratio (NLR), monocyte-to-lymphocyte ratio (MLR), red blood cell distribution width (RDW), and C-reactive protein (CRP) [1114]. In addition, the relationship between nutritional status and prognosis in patients with pulmonary embolism has also been extensively studied in a previous study [15]. Plasma albumin is one of the important indicators reflecting systemic nutritional status and is associated with prognosis in patients with acute pulmonary embolism [16]. However, previous studies have focused on nonsurgical patients, and no studies have focused on the relationship between these predictors and mortality in patients with PAPE. Therefore, this study was performed to investigate the relationship of admission NLR, plasma albumin and other predictors with 30-day mortality in patients with PAPE.

Methods

Patients

We performed a single-center, retrospective and case-control study. The medical records of consecutive patients who were diagnosed with pulmonary embolism from September 1, 2012, to March 31, 2019, in our hospital were reviewed, and patients who were diagnosed with acute pulmonary embolism within 90 days postoperatively were included in this study. In the present study, only patients with pulmonary embolism confirmed by computed tomography pulmonary angiography (CTPA) were defined as pulmonary embolism patients, and patients with suspected but unconfirmed pulmonary embolism by examination were not defined as pulmonary embolism patients. Patients were excluded if they underwent cardiac surgery, did not have complete data, had received blood transfusion within 1 month preoperatively, had comorbid infection, and had comorbid hematological disease or received immunosuppressive therapy within 1 month preoperatively. Finally, 101 patients met our inclusion criteria. All patients with PAPE met the diagnostic criteria of the 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolism [17].

Data collection

Data were extracted from the hospital electronic database by two independent doctors. If controversial data were encountered, the two doctors who collected the data underwent discussion to reach an agreement. All patients’ characteristics (sex, age, BMI, smoking history and drinking history), comorbidities (hypertension, diabetes, respiratory diseases, chronic coronary heart disease, chronic arrhythmia, history of stroke and chronic renal failure), surgical information (surgical type and ASA level), admission examination data (neutrophil-to-lymphocyte ratio; platelet-to-lymphocyte ratio; monocyte-to-lymphocyte ratio; hemoglobin; white blood cell; platelet; mean platelet volume; platelet distribution width; red cell distribution width; glucose; neutrophil; lymphocyte; creatinine and albumin) and the situation within 30 days after PAPE were obtained through our electronic medical recording system and follow-up. Complete blood counts (CBCs), blood glucose levels, and albumin assessments were carried out at the biochemistry laboratory of our hospital. The NLR was obtained by dividing the absolute neutrophil counts by the absolute lymphocyte counts from the same blood sample, the PLR was obtained by dividing the absolute platelet counts by the absolute lymphocyte counts from the same blood sample, and the MLR was obtained by dividing the absolute monocyte counts by the absolute lymphocyte counts from the same blood samples. All test results were obtained from the same blood sample test within 3 days before surgery.

Statistical analysis

Data analysis was performed using the Statistical Package for the Social Sciences version 25.0 for Windows (IBM, Chicago, IL, USA). Data with a normal distribution are represented as the mean ± standard deviation, and Student’s t-test was used to compare two groups. The data with an abnormal distribution are represented as medians (interquartile ranges), and the Mann-Whitney U test was used to compare two groups. Categorical variables are represented as numbers or percentages, and the χ2 test or Fisher’s exact test was performed for categorical variables. Based on the univariate analysis, variables with a P value < 0.05 were included in the multivariate logistic regression analysis to confirm the independent risk factors. Forward logistic regression analysis was conducted to estimate the OR and 95% CI for 30-day mortality of the NLR, albumin and other parameters after adjusting for potential confounding factors. The receiver operating characteristic (ROC) curve was used to examine the performance of independent risk factors in predicting 30-day mortality. The area under the curve (AUC) was derived from the ROC curve, which ranged from 0.5 to 1.0 – with higher values indicating higher discriminatory ability, and the Youden Index (maximum [sensitivity +specificity] minus 1) was adopted to define the optimal cut-off value. Afterwards, a nomogram based on the independent predictors was established, and the calibration curve and decision curve analysis (DCA) were generated to evaluate the nomogram. In addition, the AUC of the nomogram was calculated, and the differences in the AUC between the nomogram and independent predictors were compared by the pROC package in R software (version 3.6.1). All P values < 0.05 were accepted as statistically significant.

Results

Baseline

During the study period, 125 patients were diagnosed with pulmonary embolism within 90 days after noncardiac surgery. Twenty-four patients were excluded because they did not meet our criteria for hematological disease (2 cases), received blood transfusion within 1 month preoperatively (13 cases), had an infection (2 cases), received immunosuppressive therapy within 1 month preoperatively (1 case) and had missing data (6 cases). Finally, 101 patients with PAPE following noncardiac surgery met our inclusion criteria and were included in this study, which included 41 males and 60 females, and the median age was 64 years (interquartile range: 57.50–71.00 years). For 101 patients, the median time of PAPE was 3 days (interquartile range: 1–5 days). Seven patients were diagnosed with massive pulmonary embolism: ten patients received fibrinolytic therapy, and the remaining patients received anticoagulant therapy. The demographic data and clinical data of deaths and survivors are listed in Table 1.
Table 1
Comparison of baseline and comorbidities between deaths and survivors
 
Total(n = 101)
Deaths(n = 24)
Survivors(n = 77)
P
Age, yr
64.00 (57.50–71.00)a
67.00 (59.00–75.75) a
63.00 (57.00–70.00) a
0.200
Sex (Female)
60
12
48
0.283
BMI, kg/m2
25.85 ± 3.68
24.54 ± 4.10
26.31 ± 3.59
0.050
Smoking history
23
6
17
0.766
Drinking history
19
4
15
0.758
Surgical type
   
0.861
 Musculoskeletal
45
12
33
 
 Abdominal
28
7
21
 
 Respiratory
10
2
8
 
 Gynecologic
8
2
6
 
 Neurosurgery
5
1
4
 
 Vascular
5
0
5
 
ASA
   
0.787
 II
65
16
49
 
 III
36
8
28
 
Admission SBP
120.00 (135.00,150.00)a
124.50 (133.50,149.25)a
120.00 (136.00,151.00)a
0.873
Comorbidities
 Hypertension
38
9
29
0.989
 Diabetes
15
2
13
0.484
 Coronary heart disease
19
4
15
0.993
 Respiratory diseases
9
1
8
0.600
 Arrhythmia
4
1
3
1.000b
 History of stroke
7
2
5
1.000
 Renal failure
1
1
0
0.238b
aInterquartile range
bFisher’s Exact test
BMI Body mass index, SBP Systolic blood pressure

Prognostic factors of PAPE

Twenty-four patients died within 30 days, corresponding to a 30-day mortality rate of 23.8%. There were no significant differences in terms of age, sex, BMI, smoking history, drinking history, admission systolic blood pressure, surgical type or ASA level (all P values>0.05). There were no significant differences in terms of hypertension, diabetes, respiratory diseases, coronary heart disease, arrhythmia, history of stroke or renal failure (all P values>0.05). The baseline characteristics and comorbidities of the patients are shown in Table 1. The preoperative laboratory parameters are presented in Table 2. The NLR, neutrophil count and creatinine level were significantly higher in those who died than in survivors with PAPE (all P values < 0.05), and the albumin level was significantly lower in those who died than in survivors after PAPE (P = 0.008). There were no significant differences in the other parameters included in our research (Table 2).
Table 2
Comparison of admission laboratory data between deaths and survivors
 
Deaths(n = 24)*
Survivors(n = 77)*
P
NLR
14.13 (7.67–23.04)
5.93 (2.60–8.70)
0.000
PLR
230.00 (102.25–396.24)
157.29 (103.99–243.52)
0.193
MLR
0.80 (0.44–1.27)
0.44 (0.31–0.77)
0.004
WBC, × 109/L
13.84 (8.80–17.47)
9.74 (6.62–12.71)
0.001
Neutrophil, ×109/L
12.21 (8.04–15.85)
6.20 (3.98–9.91)
0.000
Lymphocyte, ×109/L
0.82 (0.51–1.59)
1.21 (0.90–1.82)
0.017
Monocyte, ×109/L
0.63 (0.36–0.89)
0.63 (0.45–0.99)
0.621
PLT, ×109/L
163.50 (131.25–215.25)
199.00 (141.00–247.00)
0.273
MPV, fL
10.15 (9.30–10.78)
10.10 (9.40–10.88)
0.631
PDW
12.75 (11.28–15.80)
13.25 (10.73–16.08)
0.990
Hb, g/L
121.00 (108.25–141.50)
108.00 (90.00–119.00)
0.795
RDW
13.15 (12.73–15.33)
13.20 (12.45–14.35)
0.369
Creatinine, μmol/L
84.40 (71.72–106.50)
72.00 (59.75–87.00)
0.023
GLU, mmol/L
8.19 (6.95–13.83)
7.60 (5.56–9.92)
0.054
Albumin, g/L
32.33 (27.37–35.69)
38.20 (32.49–45.80)
0.008
*All variables are describe as median and interquartile range
NLR neutrophil-to-lymphocyte ratio, PLR platelet to lymphocyte ratio, WBC white blood cell, MLR monocyte-to-lymphocyte ratio, PLT platelet, MPV mean platelet volume, PDW platelet distribution width, Hb hemoglobin, RDW red cell distribution width, GLU glucose
To further confirm the independent risk factors for mortality after PAPE, multivariate logistic analysis was performed. The NLR, MLR, WBC, neutrophil, lymphocyte, creatinine, and albumin (all P values<0.05) were included in the multivariate analysis, and the results indicated that both the NLR and albumin were independent predictors of 30-day mortality in patients with PAPE. The probability of death increased by approximately 17.1% (OR = 1.171, 95% CI: 1.073–1.277, P = 0.000) with a one-unit increase in the NLR, and the probability of death decreased by approximately 15.4% (OR = 0.846, 95% CI: 0.762c–0.939, P = 0.002) with a one-unit increase in albumin (Table 3). In addition, the results indicated that creatinine, the MLR, neutrophil, lymphocyte and WBC were no longer independent predictors in multivariate analysis (all P values > 0.05).
Table 3
Multivariate regression results of 30-days mortality
 
B
SE
Wald
OR
95% CI
P
Albumin
−0.167
0.053
9.881
0.846
0.762–0.939
0.002
NLR
0.158
0.044
12.644
1.171
1.073–1.277
0.000
NLR neutrophil-to-lymphocyte ratio

Development of a nomogram

Based on the independent predictors, a nomogram was established to predict 30-day mortality in PAPE patients (Fig. 1). The AUC of the nomogram was 0.888 (95% CI: 0.812–0.964), which was significantly higher than that of any single predictor (P value< 0.05) (Table 4 and Figs. 2 and 3a). Moreover, the calibration curve is shown in Fig. 2b, and the results indicated that the prediction by the nomogram was highly consistent with the actual observations. In addition, the DCA indicated that if the threshold probability of a patient and a doctor was between 5 and 75%, this nomogram predicted 30-day mortality with more benefit than the scheme(Fig. 2c).
Table 4
Values of predicators in predicting 30-days mortality
Predicators
AUC
95% CI for AUC
P
Cut-off
Sensitivity
Specificity
NLR
0.823
0.729–0.917
0.000
12.00
0.625
0.909
Albumin
0.768
0.668–0.868
0.000
36.66
0.571
0.875
AUC area under the curve, NLR neutrophil-to-lymphocyte ratio

Discussion

PAPE is one of the most dangerous complications following operations, and it is necessary to predict the prognosis of patients early. To the best of our knowledge, this is the first study to investigate predictors and establish a nomogram of 30-day mortality among patients with PAPE following noncardiac surgery. The primary findings of our study were that the NLR was significantly higher in non-surviving patients than in survivors and that plasma albumin was significantly lower in those who died than in survivors; both the NLR and albumin were independent predictors for 30-day mortality among patients with PAPE following noncardiac surgery. Moreover, the nomogram based on the NLR and albumin showed good performance in predicting 30-day mortality in patients with PAPE.
In our research, 101 patients were included, and 24 patients died within 30 days, corresponding to a 30-day mortality rate of 23.8%. According to previous studies, the mortality rate of APE patients ranges from 8.1–25.3% [12, 1820]. Our results showed that the mortality of our cohort was within this range. In our research, the NLR was identified as an effective prognostic biomarker for PAPE patients. The NLR is the comprehensive presentation of systemic inflammation and the balance between neutrophils and lymphocytes in CBCs. Previous studies have shown that an elevated NLR is associated with an increased rate of hospital mortality among patients with acute pulmonary embolism [13], acute exacerbation of chronic obstructive pulmonary disease [21], and acute type A aortic dissection [22]; of 30-day mortality among patients with acute pulmonary embolism [19], acute kidney injury [23], ST-elevation myocardial infarction [24], and intracerebral hemorrhage [25, 26]; and of long-term mortality among patients with ST-elevation myocardial infarction [27], breast cancer [28] and epithelial ovarian cancer [29].
The link between inflammation and pulmonary embolism has been well investigated, although the underlying mechanism is not completely understood. The relationship between them may be linked by cytokines, proinflammatory cytokines, and acute-phase proteins, such as CRP, IL-8, and tumor necrosis factor, which promote the procoagulant state and play an important role in the progression of venous thromboembolism by inducing the expression of tissue factors. In addition, it has recently been reported that inflammatory mediators, such as polyphosphates and bradykinin, can directly activate contact systems and initiate external coagulation pathways [3032]. In our research, we found that the NLR was an independent predictor of 30-day mortality in patients with PAPE, and the area under the curve of the NLR was 0.823. Therefore, we concluded that the NLR is a simple and effective prognostic predictor for patients with PAPE.
We also found that albumin was significantly lower in those who died than in survivors. To our knowledge, this is the first study to indicate the relationship between albumin and mortality in patients with PAPE. Albumin is an indicator of the nutritional status of patients and can regulate the anticoagulation system to some extent. Hypoproteinemia has been confirmed to be associated with mortality in patients with acute pulmonary embolism in previous studies [16]. In a previous study, the mechanism of the association between albumin and mortality was partly explained. Plasma albumin can interact with NO to some extent and generate S-nitrosoproteins, which then promote vasomotor activity and inhibit platelet aggregation. When albumin levels drop, the effect will be weakened [33, 34]. In addition, plasma albumin has important antioxidant, anti-inflammatory and drug carrier effects in human physiological functions [35]. Therefore, a lower plasma albumin concentration will inevitably lead to a decrease or loss of these effects.
There were also some limitations in our research. First, as a single-center study, only 101 patients met the criteria and were included in our study, which was a small sample size. The small sample size makes it impossible to classify and discuss patients with PAPE for specific operations, such as arthroplasty and gastrointestinal cancer resection. Second, although the nomogram showed good performance in terms of the AUC, calibration curve and DCA, independent validation is needed. Finally, as a retrospective study, our research had its own limitations, and some potential predictors were not included in our research. We hope that multicenter and prospective research can be performed to confirm our conclusion in the future.

Conclusions

Both the NLR and albumin were independent predicators for 30-day mortality among patients with acute pulmonary embolism following noncardiac surgery, and the NLR and albumin were better predictors together than separately. This enables assessing the severity of PAPE and can guide the clinical management of PAPE.

Acknowledgements

We would like to thank all the staff in Department of Orthopaedic, Affiliated Hospital of Chengde Medical University for their contribution on our research.
This study was approved by the Institutional Review Board of Affiliated Hospital of Chengde Medical University. Written informed consent was obtained from all patients. No children (under 16 years old) were included in this study.
Not applicable.

Competing interests

All authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Rinaldo L, Brown DA, Bhargav AG, Rusheen AE, Naylor RM, Gilder HE, Monie DD, Youssef SJ, Parney IF. Venous thromboembolic events in patients undergoing craniotomy for tumor resection: incidence, predictors, and review of literature. J Neurosurg. 2019:1–12. Rinaldo L, Brown DA, Bhargav AG, Rusheen AE, Naylor RM, Gilder HE, Monie DD, Youssef SJ, Parney IF. Venous thromboembolic events in patients undergoing craniotomy for tumor resection: incidence, predictors, and review of literature. J Neurosurg. 2019:1–12.
2.
Zurück zum Zitat De la Garza RR, Longo M, Gelfand Y, Echt M, Kinon MD, Yassari R. Timing of prophylactic anticoagulation and its effect on thromboembolic events after surgery for metastatic tumors of the spine. Spine. 2019;44(11):E650–e655.CrossRef De la Garza RR, Longo M, Gelfand Y, Echt M, Kinon MD, Yassari R. Timing of prophylactic anticoagulation and its effect on thromboembolic events after surgery for metastatic tumors of the spine. Spine. 2019;44(11):E650–e655.CrossRef
3.
Zurück zum Zitat Rottenstreich A, Kleinstern G, Spectre G, Da'as N, Ziv E, Kalish Y. Thromboembolic events following Splenectomy: risk factors, prevention, management and outcomes. World J Surg. 2018;42(3):675–81.CrossRef Rottenstreich A, Kleinstern G, Spectre G, Da'as N, Ziv E, Kalish Y. Thromboembolic events following Splenectomy: risk factors, prevention, management and outcomes. World J Surg. 2018;42(3):675–81.CrossRef
4.
Zurück zum Zitat Goel R, Fleischman AN, Tan T, Sterbis E, Huang R, Higuera C, Parvizi J, Rothman RH. Venous thromboembolic prophylaxis after simultaneous bilateral total knee arthroplasty: aspirin versus warfarin. Bone Joint J. 2018;100-b(1 Supple A):68–75.CrossRef Goel R, Fleischman AN, Tan T, Sterbis E, Huang R, Higuera C, Parvizi J, Rothman RH. Venous thromboembolic prophylaxis after simultaneous bilateral total knee arthroplasty: aspirin versus warfarin. Bone Joint J. 2018;100-b(1 Supple A):68–75.CrossRef
5.
Zurück zum Zitat Hoefnagel D, Kwee LE, van Putten EH, Kros JM, Dirven CM, Dammers R. The incidence of postoperative thromboembolic complications following surgical resection of intracranial meningioma. A retrospective study of a large single center patient cohort. Clin Neurol Neurosurg. 2014;123:150–4.CrossRef Hoefnagel D, Kwee LE, van Putten EH, Kros JM, Dirven CM, Dammers R. The incidence of postoperative thromboembolic complications following surgical resection of intracranial meningioma. A retrospective study of a large single center patient cohort. Clin Neurol Neurosurg. 2014;123:150–4.CrossRef
6.
Zurück zum Zitat Mantziari S, Gronnier C, Pasquer A, Gagniere J, Thereaux J, Demartines N, Schafer M, Mariette C. Incidence and risk factors related to symptomatic venous thromboembolic events after Esophagectomy for Cancer. Ann Thorac Surg. 2016;102(3):979–84.CrossRef Mantziari S, Gronnier C, Pasquer A, Gagniere J, Thereaux J, Demartines N, Schafer M, Mariette C. Incidence and risk factors related to symptomatic venous thromboembolic events after Esophagectomy for Cancer. Ann Thorac Surg. 2016;102(3):979–84.CrossRef
7.
Zurück zum Zitat Chen RX, Wang HZ, Dong J, Ren H, Chen XJ, Xu JX, Yang Y, Wang GD. Pulmonary embolism in non-brain tumor patients after surgery-a retrospective study in China. World J Surg Oncol. 2017;15(1):22.CrossRef Chen RX, Wang HZ, Dong J, Ren H, Chen XJ, Xu JX, Yang Y, Wang GD. Pulmonary embolism in non-brain tumor patients after surgery-a retrospective study in China. World J Surg Oncol. 2017;15(1):22.CrossRef
8.
Zurück zum Zitat Li YP, Shen L, Huang W, Hu XF, Xie D, Yang J, Song X, Zhao YF, Zhou CJ, Jiang GN. Prevalence and risk factors of acute pulmonary embolism in patients with lung Cancer surgery. Semin Thromb Hemost. 2018;44(4):334–40.CrossRef Li YP, Shen L, Huang W, Hu XF, Xie D, Yang J, Song X, Zhao YF, Zhou CJ, Jiang GN. Prevalence and risk factors of acute pulmonary embolism in patients with lung Cancer surgery. Semin Thromb Hemost. 2018;44(4):334–40.CrossRef
9.
Zurück zum Zitat Jia J, Xue SM, Xu N. Efficacy of rivaroxaban for pulmonary embolism. Medicine. 2019;98(16):e15224.CrossRef Jia J, Xue SM, Xu N. Efficacy of rivaroxaban for pulmonary embolism. Medicine. 2019;98(16):e15224.CrossRef
10.
Zurück zum Zitat Branchford BR, Carpenter SL. The role of inflammation in venous thromboembolism. Front Pediatr. 2018;6:142.CrossRef Branchford BR, Carpenter SL. The role of inflammation in venous thromboembolism. Front Pediatr. 2018;6:142.CrossRef
11.
Zurück zum Zitat Jurin I, Trkulja V, Ajduk M, Letilovic T, Hadzibegovic I. Red cell distribution width in acute pulmonary embolism patients: a simple aid for improvement of the 30-day mortality risk stratification based on the pulmonary embolism severity index. Heart Lung. 2019;48(5):436–45. Jurin I, Trkulja V, Ajduk M, Letilovic T, Hadzibegovic I. Red cell distribution width in acute pulmonary embolism patients: a simple aid for improvement of the 30-day mortality risk stratification based on the pulmonary embolism severity index. Heart Lung. 2019;48(5):436–45.
12.
Zurück zum Zitat Ertem AG, Yayla C, Acar B, Kirbas O, Unal S, Uzel Sener M, Akboga MK, Efe TH, Sivri S, Sen F, et al. Relation between lymphocyte to monocyte ratio and short-term mortality in patients with acute pulmonary embolism. Clin Respir J. 2018;12(2):580–6.CrossRef Ertem AG, Yayla C, Acar B, Kirbas O, Unal S, Uzel Sener M, Akboga MK, Efe TH, Sivri S, Sen F, et al. Relation between lymphocyte to monocyte ratio and short-term mortality in patients with acute pulmonary embolism. Clin Respir J. 2018;12(2):580–6.CrossRef
13.
Zurück zum Zitat Soylu K, Gedikli O, Eksi A, Avcioglu Y, Soylu AI, Yuksel S, Gulel O, Yilmaz O. Neutrophil-to-lymphocyte ratio for the assessment of hospital mortality in patients with acute pulmonary embolism. Arch Med Sci. 2016;12(1):95–100.CrossRef Soylu K, Gedikli O, Eksi A, Avcioglu Y, Soylu AI, Yuksel S, Gulel O, Yilmaz O. Neutrophil-to-lymphocyte ratio for the assessment of hospital mortality in patients with acute pulmonary embolism. Arch Med Sci. 2016;12(1):95–100.CrossRef
14.
Zurück zum Zitat Araz O, Yilmazel Ucar E, Yalcin A, Kelercioglu N, Meral M, Gorguner AM, Akgun M. Predictive value of serum Hs-CRP levels for outcomes of pulmonary embolism. Clin Respir J. 2016;10(2):163–7.CrossRef Araz O, Yilmazel Ucar E, Yalcin A, Kelercioglu N, Meral M, Gorguner AM, Akgun M. Predictive value of serum Hs-CRP levels for outcomes of pulmonary embolism. Clin Respir J. 2016;10(2):163–7.CrossRef
15.
Zurück zum Zitat Hayıroğlu Mİ, Keskin M, Keskin T, Uzun AO, Altay S, Kaya A, Öz A, Çinier G, Güvenç TS, Kozan Ö. A novel independent survival predictor in pulmonary embolism: prognostic nutritional index. Clin Appl Thromb Hemost. 2018;24(4):633–9.CrossRef Hayıroğlu Mİ, Keskin M, Keskin T, Uzun AO, Altay S, Kaya A, Öz A, Çinier G, Güvenç TS, Kozan Ö. A novel independent survival predictor in pulmonary embolism: prognostic nutritional index. Clin Appl Thromb Hemost. 2018;24(4):633–9.CrossRef
16.
Zurück zum Zitat Hoskin S, Chow V, Kritharides L, Ng ACC. Incidence and Impact of Hypoalbuminaemia on Outcomes Following Acute Pulmonary Embolism. Heart Lung Circ. 2019;29(2):280–7. Hoskin S, Chow V, Kritharides L, Ng ACC. Incidence and Impact of Hypoalbuminaemia on Outcomes Following Acute Pulmonary Embolism. Heart Lung Circ. 2019;29(2):280–7.
17.
Zurück zum Zitat Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol Ç, Fagard R, Ferrari R. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolismThe task force for the diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)endorsed by the European Respiratory Society (ERS). Eur Heart J. 2014;21(16):1301–36. Zamorano JL, Achenbach S, Baumgartner H, Bax JJ, Bueno H, Dean V, Deaton C, Erol Ç, Fagard R, Ferrari R. 2014 ESC guidelines on the diagnosis and management of acute pulmonary embolismThe task force for the diagnosis and Management of Acute Pulmonary Embolism of the European Society of Cardiology (ESC)endorsed by the European Respiratory Society (ERS). Eur Heart J. 2014;21(16):1301–36.
18.
Zurück zum Zitat Comfere TB, Sprung J, Case KA, Dye PT, Johnson JL, Hall BA, Schroeder DR, Hanson AC, Marienau ME, Warner DO. Predictors of mortality following symptomatic pulmonary embolism in patients undergoing noncardiac surgery. Can J Anesth. 2007;54(8):634–41.CrossRef Comfere TB, Sprung J, Case KA, Dye PT, Johnson JL, Hall BA, Schroeder DR, Hanson AC, Marienau ME, Warner DO. Predictors of mortality following symptomatic pulmonary embolism in patients undergoing noncardiac surgery. Can J Anesth. 2007;54(8):634–41.CrossRef
19.
Zurück zum Zitat Ma Y, Mao Y, He X, Sun Y, Huang S, Qiu J. The values of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in predicting 30day mortality in patients with acute pulmonary embolism. BMC Cardiovasc Disord. 2016;16(1):1–6.CrossRef Ma Y, Mao Y, He X, Sun Y, Huang S, Qiu J. The values of neutrophil to lymphocyte ratio and platelet to lymphocyte ratio in predicting 30day mortality in patients with acute pulmonary embolism. BMC Cardiovasc Disord. 2016;16(1):1–6.CrossRef
20.
Zurück zum Zitat Akgüllü Ç, Ömürlü İK, Eryılmaz U, Avcil M, Dağtekin E, Akdeniz M, Güngör H, Zencir C. Predictors of early death in patients with acute pulmonary embolism. Am J Emerg Med. 2015;33(2):214–21..CrossRef Akgüllü Ç, Ömürlü İK, Eryılmaz U, Avcil M, Dağtekin E, Akdeniz M, Güngör H, Zencir C. Predictors of early death in patients with acute pulmonary embolism. Am J Emerg Med. 2015;33(2):214–21..CrossRef
21.
Zurück zum Zitat Yao CY, Liu XL, Tang Z. Prognostic role of neutrophil–lymphocyte ratio and platelet–lymphocyte ratio for hospital mortality in patients with AECOPD. Int J Chron Obstruct Pulmon Dis. 2017;12:2285–90.CrossRef Yao CY, Liu XL, Tang Z. Prognostic role of neutrophil–lymphocyte ratio and platelet–lymphocyte ratio for hospital mortality in patients with AECOPD. Int J Chron Obstruct Pulmon Dis. 2017;12:2285–90.CrossRef
22.
Zurück zum Zitat Karakoyun S, Gursoy MO, Akgun T, Ocal L, Kalcik M, Yesin M, Erdogan E, Kulahcioglu S, Bakal RB, Koksal C, et al. Neutrophil-lymphocyte ratio may predict in-hospital mortality in patients with acute type a aortic dissection. Herz. 2015;40(4):716–21.CrossRef Karakoyun S, Gursoy MO, Akgun T, Ocal L, Kalcik M, Yesin M, Erdogan E, Kulahcioglu S, Bakal RB, Koksal C, et al. Neutrophil-lymphocyte ratio may predict in-hospital mortality in patients with acute type a aortic dissection. Herz. 2015;40(4):716–21.CrossRef
24.
Zurück zum Zitat Park JS, Seo KW, Choi BJ, Choi SY, Yoon MH, Hwang GS, Tahk SJ, Shin JH. Importance of prognostic value of neutrophil to lymphocyte ratio in patients with ST-elevation myocardial infarction. Medicine. 2018;97(48):e13471..CrossRef Park JS, Seo KW, Choi BJ, Choi SY, Yoon MH, Hwang GS, Tahk SJ, Shin JH. Importance of prognostic value of neutrophil to lymphocyte ratio in patients with ST-elevation myocardial infarction. Medicine. 2018;97(48):e13471..CrossRef
25.
Zurück zum Zitat Fei W, Li W, Jiang TT, Xia JJ, Feng X, Shen LJ, Kang WH, Yong D, Mei LX, Ju XF. Neutrophil-to-lymphocyte ratio is an independent predictor of 30-day mortality of Intracerebral hemorrhage patients: a validation cohort study. Neurotox Res. 2018:1–6. Fei W, Li W, Jiang TT, Xia JJ, Feng X, Shen LJ, Kang WH, Yong D, Mei LX, Ju XF. Neutrophil-to-lymphocyte ratio is an independent predictor of 30-day mortality of Intracerebral hemorrhage patients: a validation cohort study. Neurotox Res. 2018:1–6.
26.
Zurück zum Zitat Wang F, Xu F, Quan Y, Wang L, Xia JJ, Jiang TT, Shen LJ, Kang WH, Ding Y, Mei LX. Early increase of neutrophil-to-lymphocyte ratio predicts 30-day mortality in patients with spontaneous intracerebral hemorrhage. Cns Neurosci Ther. 2018;25(1):30–5.CrossRef Wang F, Xu F, Quan Y, Wang L, Xia JJ, Jiang TT, Shen LJ, Kang WH, Ding Y, Mei LX. Early increase of neutrophil-to-lymphocyte ratio predicts 30-day mortality in patients with spontaneous intracerebral hemorrhage. Cns Neurosci Ther. 2018;25(1):30–5.CrossRef
27.
Zurück zum Zitat Arbel Y, Shacham Y, Ziv-Baran T, Perl ML, Finkelstein A, Halkin A, Revivo M, Milwidsky A, Berliner S, Herz I. Higher neutrophil/lymphocyte ratio is related to lower ejection fraction and higher Long-term all-cause mortality in ST-elevation myocardial infarction patients. Can J Cardiol. 2014;30(10):1177–82.CrossRef Arbel Y, Shacham Y, Ziv-Baran T, Perl ML, Finkelstein A, Halkin A, Revivo M, Milwidsky A, Berliner S, Herz I. Higher neutrophil/lymphocyte ratio is related to lower ejection fraction and higher Long-term all-cause mortality in ST-elevation myocardial infarction patients. Can J Cardiol. 2014;30(10):1177–82.CrossRef
28.
Zurück zum Zitat Azab B, Shah N, Radbel J, Tan P, Bhatt V, Vonfrolio S, Habeshy A, Picon A, Bloom S. Pretreatment neutrophil/lymphocyte ratio is superior to platelet/lymphocyte ratio as a predictor of long-term mortality in breast cancer patients. Med Oncol. 2013;30(1):432.CrossRef Azab B, Shah N, Radbel J, Tan P, Bhatt V, Vonfrolio S, Habeshy A, Picon A, Bloom S. Pretreatment neutrophil/lymphocyte ratio is superior to platelet/lymphocyte ratio as a predictor of long-term mortality in breast cancer patients. Med Oncol. 2013;30(1):432.CrossRef
29.
Zurück zum Zitat Zhou M, Li L, Wang X, Wang C, Wang D. Neutrophil-to-lymphocyte ratio and platelet count predict Long-term outcome of stage IIIC epithelial ovarian Cancer. Cell Physiol Biochem. 2018;46(1):178–86.CrossRef Zhou M, Li L, Wang X, Wang C, Wang D. Neutrophil-to-lymphocyte ratio and platelet count predict Long-term outcome of stage IIIC epithelial ovarian Cancer. Cell Physiol Biochem. 2018;46(1):178–86.CrossRef
30.
Zurück zum Zitat Long AT, Kenne E, Jung R, Fuchs TA, Renne T. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost. 2016;14(3):427–37.CrossRef Long AT, Kenne E, Jung R, Fuchs TA, Renne T. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost. 2016;14(3):427–37.CrossRef
31.
Zurück zum Zitat van Montfoort ML, Meijers JC. Recent insights into the role of the contact pathway in thrombo-inflammatory disorders. Hematol Am Soc Hematol Educ Program. 2014;2014(1):60–5.CrossRef van Montfoort ML, Meijers JC. Recent insights into the role of the contact pathway in thrombo-inflammatory disorders. Hematol Am Soc Hematol Educ Program. 2014;2014(1):60–5.CrossRef
32.
Zurück zum Zitat Wu Y. Contact pathway of coagulation and inflammation. Thromb J. 2015;13:17.CrossRef Wu Y. Contact pathway of coagulation and inflammation. Thromb J. 2015;13:17.CrossRef
33.
Zurück zum Zitat Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Asp Med. 2012;33(3):209–90.CrossRef Fanali G, di Masi A, Trezza V, Marino M, Fasano M, Ascenzi P. Human serum albumin: from bench to bedside. Mol Asp Med. 2012;33(3):209–90.CrossRef
34.
Zurück zum Zitat Caraceni P, Domenicali M, Tovoli A, Napoli L, Ricci CS, Tufoni M, Bernardi M. Clinical indications for the albumin use: still a controversial issue. Eur J Intern Med. 2013;24(8):721–8.CrossRef Caraceni P, Domenicali M, Tovoli A, Napoli L, Ricci CS, Tufoni M, Bernardi M. Clinical indications for the albumin use: still a controversial issue. Eur J Intern Med. 2013;24(8):721–8.CrossRef
35.
Zurück zum Zitat Arroyo V, Garcia-Martinez R, Salvatella X. Human serum albumin, systemic inflammation, and cirrhosis. J Hepatol. 2014;61(2):396–407.CrossRef Arroyo V, Garcia-Martinez R, Salvatella X. Human serum albumin, systemic inflammation, and cirrhosis. J Hepatol. 2014;61(2):396–407.CrossRef
Metadaten
Titel
Prognostic role of the preoperative neutrophil-to-lymphocyte ratio and albumin for 30-day mortality in patients with postoperative acute pulmonary embolism
verfasst von
Chuan Liu
Hui-lu Zhan
Zhang-Heng Huang
Chuan Hu
Yue-Xin Tong
Zhi-Yi Fan
Meng-Ying Zheng
Cheng-Liang Zhao
Gui-Yun Ma
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
BMC Pulmonary Medicine / Ausgabe 1/2020
Elektronische ISSN: 1471-2466
DOI
https://doi.org/10.1186/s12890-020-01216-5

Weitere Artikel der Ausgabe 1/2020

BMC Pulmonary Medicine 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.