Skip to main content
Erschienen in: Inflammation Research 8/2019

30.05.2019 | Original Research Paper

Protective effect of galangin against dextran sulfate sodium (DSS)-induced ulcerative colitis in Balb/c mice

verfasst von: Rajendra Sangaraju, Nasiruddin Nalban, Sateesh Alavala, Vinoth Rajendran, Mahesh Kumar Jerald, Ramakrishna Sistla

Erschienen in: Inflammation Research | Ausgabe 8/2019

Einloggen, um Zugang zu erhalten

Abstract

Objective and design

Inflammatory bowel disease (IBD) is known to cause chronic inflammation in the digestive tract by the immune malfunction. Herein, we demonstrate the protective effect of galangin (GAL), a phytochemical, on LPS-induced inflammation in cultured mouse macrophages (RAW 264.7) and the treatment of DSS-induced ulcerative colitis in Balb/c mice. However, the anti-inflammatory effect of GAL in DSS-exposed experimental colitis has not been investigated.

Materials and methods

We determined the levels of proinflammatory cytokines by ELISA, biochemical analysis using standard protocols and protein expression level of NF-κB signaling pathway and activation of Nrf2 gene pathway were analyzed by western blot analysis in colitis-induced mice.

Results

Our in vitro studies showed that LPS-stimulated RAW 264.7 cells treated with GAL reduced the levels of nitrites, IL-6, and TNF-α in a concentration-dependent manner. The results demonstrated that oral administration of GAL at 20 mg/kg (lower dose) and 40 mg/kg (higher dose) significantly reduced the severity of colitis and mitigated the clinical signs of both macroscopic and microscopic of the disease. The levels of proinflammatory cytokines (TNF-α and IL-6) in colonic tissue and serum were reduced significantly and in GAL + DSS-treated group relative to DSS alone treated group.  Increased levels of anti-inflammatory cytokine (IL-10) was detected in colon tissues in GAL + DSS-treated groups relative to DSS alone treated group. We also observed decreased levels of myeloperoxidase (MPO), nitrites and TBARS with increased SOD in colonic tissue of GAL + DSS group. Besides, GAL + DSS-treated animals significantly suppressed protein expressions of p-NF-κB and p-Ikk-βα, COX-2, iNOS, Nrf2 and increased HO-1 levels in colon tissues by inhibiting inflammation and oxidative stress.

Conclusion

Our study highlights the protective effect of galangin as an anti-inflammatory agent against the severe form of colitis in pre-clinical models suggesting its potency for the treatment of IBD in humans.
Literatur
1.
Zurück zum Zitat de Mattos BR, Garcia MP, Nogueira JB, Paiatto LN, Albuquerque CG, Souza CL, et al. Inflammatory bowel disease: an overview of immune mechanisms and biological treatments. Mediators Inflamm. 2015;2015:493012.CrossRefPubMedPubMedCentral de Mattos BR, Garcia MP, Nogueira JB, Paiatto LN, Albuquerque CG, Souza CL, et al. Inflammatory bowel disease: an overview of immune mechanisms and biological treatments. Mediators Inflamm. 2015;2015:493012.CrossRefPubMedPubMedCentral
2.
Zurück zum Zitat MacDonald TT, Monteleone G, Pender SL. Recent developments in the immunology of inflammatory bowel disease. Scand J Immunol. 2000;51:2–9.CrossRefPubMed MacDonald TT, Monteleone G, Pender SL. Recent developments in the immunology of inflammatory bowel disease. Scand J Immunol. 2000;51:2–9.CrossRefPubMed
3.
Zurück zum Zitat Coskun M. Intestinal epithelium in inflammatory bowel disease. Front Med (Lausanne). 2014;1:24. Coskun M. Intestinal epithelium in inflammatory bowel disease. Front Med (Lausanne). 2014;1:24.
4.
Zurück zum Zitat Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390:2769–78.CrossRef Ng SC, Shi HY, Hamidi N, Underwood FE, Tang W, Benchimol EI, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet. 2018;390:2769–78.CrossRef
7.
Zurück zum Zitat Kumar A, Auron M, Aneja A, Mohr F, Jain A, Shen B. Inflammatory bowel disease: perioperative pharmacological considerations. Mayo Clin Proc. 2011;86:748–57.CrossRefPubMedPubMedCentral Kumar A, Auron M, Aneja A, Mohr F, Jain A, Shen B. Inflammatory bowel disease: perioperative pharmacological considerations. Mayo Clin Proc. 2011;86:748–57.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Sales-Campos H, Basso PJ, Alves VB, Fonseca MT, Bonfa G, Nardini V, et al. Classical and recent advances in the treatment of inflammatory bowel diseases. Braz J Med Biol Res. 2015;48:96–107.CrossRefPubMed Sales-Campos H, Basso PJ, Alves VB, Fonseca MT, Bonfa G, Nardini V, et al. Classical and recent advances in the treatment of inflammatory bowel diseases. Braz J Med Biol Res. 2015;48:96–107.CrossRefPubMed
9.
Zurück zum Zitat Kaser A, Zeissig S, Blumberg RS. Genes and environment: how will our concepts on the pathophysiology of IBD develop in the future? Dig Dis. 2010;28:395–405.CrossRefPubMedPubMedCentral Kaser A, Zeissig S, Blumberg RS. Genes and environment: how will our concepts on the pathophysiology of IBD develop in the future? Dig Dis. 2010;28:395–405.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat Viennois E, Chen F, Merlin D. NF-kappaB pathway in colitis-associated cancers. Transl Gastrointest Cancer. 2013;2:21–9.PubMedPubMedCentral Viennois E, Chen F, Merlin D. NF-kappaB pathway in colitis-associated cancers. Transl Gastrointest Cancer. 2013;2:21–9.PubMedPubMedCentral
12.
Zurück zum Zitat Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 2014;104:Unit 15–25. Chassaing B, Aitken JD, Malleshappa M, Vijay-Kumar M. Dextran sulfate sodium (DSS)-induced colitis in mice. Curr Protoc Immunol. 2014;104:Unit 15–25.
13.
Zurück zum Zitat Eichele DD, Kharbanda KK. Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol. 2017;23:6016–29.CrossRefPubMedPubMedCentral Eichele DD, Kharbanda KK. Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J Gastroenterol. 2017;23:6016–29.CrossRefPubMedPubMedCentral
14.
Zurück zum Zitat Basri AM, Taha H, Ahmad N. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation. Pharmacogn Rev. 2017;11:43–56.CrossRefPubMedPubMedCentral Basri AM, Taha H, Ahmad N. A review on the pharmacological activities and phytochemicals of Alpinia officinarum (Galangal) extracts derived from bioassay-guided fractionation and isolation. Pharmacogn Rev. 2017;11:43–56.CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Lee C-C, Lin M-L, Meng M, Chen S-S. Galangin induces p53-independent S-phase arrest and apoptosis in human nasopharyngeal carcinoma cells through inhibiting PI3 K–AKT signaling pathway. Anticancer Res. 2018;38:1377–89.PubMed Lee C-C, Lin M-L, Meng M, Chen S-S. Galangin induces p53-independent S-phase arrest and apoptosis in human nasopharyngeal carcinoma cells through inhibiting PI3 K–AKT signaling pathway. Anticancer Res. 2018;38:1377–89.PubMed
16.
Zurück zum Zitat Kumar R, Tiku A. Galangin induces cell death by modulating the expression of glyoxalase-1 and Nrf-2 in HeLa cells. Chem Biol Interact. 2018;279:1–9.CrossRefPubMed Kumar R, Tiku A. Galangin induces cell death by modulating the expression of glyoxalase-1 and Nrf-2 in HeLa cells. Chem Biol Interact. 2018;279:1–9.CrossRefPubMed
17.
Zurück zum Zitat Jung YC, Kim ME, Yoon JH, Park PR, Youn H-Y, Lee H-W, et al. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-κB pathway regulation. Immunopharmacol Immunotoxicol. 2014;36:426–32.CrossRefPubMed Jung YC, Kim ME, Yoon JH, Park PR, Youn H-Y, Lee H-W, et al. Anti-inflammatory effects of galangin on lipopolysaccharide-activated macrophages via ERK and NF-κB pathway regulation. Immunopharmacol Immunotoxicol. 2014;36:426–32.CrossRefPubMed
18.
Zurück zum Zitat Kale VM, Namdeo AG. Antiarthritic effect of galangin isolated from rhizomes of Alpinia officinarum in complete Freund’s adjuvant-induced arthritis in rats. Int J Pharm Pharm Sci. 2014;6:499–505. Kale VM, Namdeo AG. Antiarthritic effect of galangin isolated from rhizomes of Alpinia officinarum in complete Freund’s adjuvant-induced arthritis in rats. Int J Pharm Pharm Sci. 2014;6:499–505.
19.
Zurück zum Zitat Jung CH, Jang SJ, Ahn J, Gwon SY, Jeon TI, Kim TW, et al. Alpinia officinarum inhibits adipocyte differentiation and high-fat diet-induced obesity in mice through regulation of adipogenesis and lipogenesis. J Med Food. 2012;15:959–67.CrossRefPubMed Jung CH, Jang SJ, Ahn J, Gwon SY, Jeon TI, Kim TW, et al. Alpinia officinarum inhibits adipocyte differentiation and high-fat diet-induced obesity in mice through regulation of adipogenesis and lipogenesis. J Med Food. 2012;15:959–67.CrossRefPubMed
20.
Zurück zum Zitat Aloud AA, Veeramani C, Govindasamy C, Alsaif MA, El Newehy AS, Al-Numair KS. Galangin, a dietary flavonoid, improves antioxidant status and reduces hyperglycemia-mediated oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. 2017;22:290–300.CrossRefPubMed Aloud AA, Veeramani C, Govindasamy C, Alsaif MA, El Newehy AS, Al-Numair KS. Galangin, a dietary flavonoid, improves antioxidant status and reduces hyperglycemia-mediated oxidative stress in streptozotocin-induced diabetic rats. Redox Rep. 2017;22:290–300.CrossRefPubMed
21.
Zurück zum Zitat Tsai MS, Chien CC, Lin TH, Liu CC, Liu RH, Su HL, et al. Galangin prevents acute hepatorenal toxicity in novel propacetamol-induced acetaminophen-overdosed mice. J Med Food. 2015;18:1187–97.CrossRefPubMed Tsai MS, Chien CC, Lin TH, Liu CC, Liu RH, Su HL, et al. Galangin prevents acute hepatorenal toxicity in novel propacetamol-induced acetaminophen-overdosed mice. J Med Food. 2015;18:1187–97.CrossRefPubMed
22.
Zurück zum Zitat Huang YC, Tsai MS, Hsieh PC, Shih JH, Wang TS, Wang YC, et al. Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-kappaB signaling. Toxicol Appl Pharmacol. 2017;329:128–39.CrossRefPubMed Huang YC, Tsai MS, Hsieh PC, Shih JH, Wang TS, Wang YC, et al. Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-kappaB signaling. Toxicol Appl Pharmacol. 2017;329:128–39.CrossRefPubMed
23.
Zurück zum Zitat Tomar A, Vasisth S, Khan SI, Malik S, Nag TC, Arya DS, et al. Galangin ameliorates cisplatin induced nephrotoxicity in vivo by modulation of oxidative stress, apoptosis and inflammation through interplay of MAPK signaling cascade. Phytomedicine. 2017;34:154–61.CrossRefPubMed Tomar A, Vasisth S, Khan SI, Malik S, Nag TC, Arya DS, et al. Galangin ameliorates cisplatin induced nephrotoxicity in vivo by modulation of oxidative stress, apoptosis and inflammation through interplay of MAPK signaling cascade. Phytomedicine. 2017;34:154–61.CrossRefPubMed
24.
Zurück zum Zitat Shu YS, Tao W, Miao QB, Lu SC, Zhu YB. Galangin dampens mice lipopolysaccharide-induced acute lung injury. Inflammation. 2014;37:1661–8.CrossRefPubMed Shu YS, Tao W, Miao QB, Lu SC, Zhu YB. Galangin dampens mice lipopolysaccharide-induced acute lung injury. Inflammation. 2014;37:1661–8.CrossRefPubMed
25.
Zurück zum Zitat Huh JE, Jung IT, Choi J, Baek YH, Lee JD, Park DS, et al. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-kappaB in collagen-induced arthritis and bone marrow-derived macrophages. Eur J Pharmacol. 2013;698:57–66.CrossRefPubMed Huh JE, Jung IT, Choi J, Baek YH, Lee JD, Park DS, et al. The natural flavonoid galangin inhibits osteoclastic bone destruction and osteoclastogenesis by suppressing NF-kappaB in collagen-induced arthritis and bone marrow-derived macrophages. Eur J Pharmacol. 2013;698:57–66.CrossRefPubMed
26.
Zurück zum Zitat Sun S, Zhang H, Xue B, Wu Y, Wang J, Yin Z, et al. Protective effect of glutathione against lipopolysaccharide-induced inflammation and mortality in rats. Inflamm Res. 2006;55:504–10.CrossRefPubMed Sun S, Zhang H, Xue B, Wu Y, Wang J, Yin Z, et al. Protective effect of glutathione against lipopolysaccharide-induced inflammation and mortality in rats. Inflamm Res. 2006;55:504–10.CrossRefPubMed
27.
Zurück zum Zitat Sivakumar AS, Anuradha CV. Effect of galangin supplementation on oxidative damage and inflammatory changes in fructose-fed rat liver. Chem Biol Interact. 2011;193:141–8.CrossRefPubMed Sivakumar AS, Anuradha CV. Effect of galangin supplementation on oxidative damage and inflammatory changes in fructose-fed rat liver. Chem Biol Interact. 2011;193:141–8.CrossRefPubMed
28.
Zurück zum Zitat Luo Q, Zhu L, Ding J, Zhuang X, Xu L, Chen F. Protective effect of galangin in Concanavalin A-induced hepatitis in mice. Drug Des Devel Ther. 2015;9:2983–92.PubMedPubMedCentral Luo Q, Zhu L, Ding J, Zhuang X, Xu L, Chen F. Protective effect of galangin in Concanavalin A-induced hepatitis in mice. Drug Des Devel Ther. 2015;9:2983–92.PubMedPubMedCentral
29.
Zurück zum Zitat Sahu BD, Kumar JM, Sistla R. Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: relevance of NF-kappaB signaling. J Nutr Biochem. 2016;28:171–82.CrossRefPubMed Sahu BD, Kumar JM, Sistla R. Fisetin, a dietary flavonoid, ameliorates experimental colitis in mice: relevance of NF-kappaB signaling. J Nutr Biochem. 2016;28:171–82.CrossRefPubMed
30.
Zurück zum Zitat Sahu BD, Tatireddy S, Koneru M, Borkar RM, Kumar JM, Kuncha M, et al. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: possible mechanism of nephroprotection. Toxicol Appl Pharmacol. 2014;277:8–20.CrossRefPubMed Sahu BD, Tatireddy S, Koneru M, Borkar RM, Kumar JM, Kuncha M, et al. Naringin ameliorates gentamicin-induced nephrotoxicity and associated mitochondrial dysfunction, apoptosis and inflammation in rats: possible mechanism of nephroprotection. Toxicol Appl Pharmacol. 2014;277:8–20.CrossRefPubMed
31.
Zurück zum Zitat Lee HN, Shin SA, Choo GS, Kim HJ, Park YS, Kim BS, et al. Antiinflammatory effect of quercetin and galangin in LPS-stimulated RAW264.7 macrophages and DNCB-induced atopic dermatitis animal models. Int J Mol Med. 2018;41:888–98.PubMed Lee HN, Shin SA, Choo GS, Kim HJ, Park YS, Kim BS, et al. Antiinflammatory effect of quercetin and galangin in LPS-stimulated RAW264.7 macrophages and DNCB-induced atopic dermatitis animal models. Int J Mol Med. 2018;41:888–98.PubMed
32.
Zurück zum Zitat Zha WJ, Qian Y, Shen Y, Du Q, Chen FF, Wu ZZ, et al. Galangin abrogates ovalbumin-induced airway inflammation via negative regulation of NF-kappaB. Evid Based Complement Alternat Med. 2013;2013:767689.PubMedPubMedCentral Zha WJ, Qian Y, Shen Y, Du Q, Chen FF, Wu ZZ, et al. Galangin abrogates ovalbumin-induced airway inflammation via negative regulation of NF-kappaB. Evid Based Complement Alternat Med. 2013;2013:767689.PubMedPubMedCentral
33.
Zurück zum Zitat Choi MJ, Lee EJ, Park JS, Kim SN, Park EM, Kim HS. Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: critical role of PPAR-gamma signaling pathway. Biochem Pharmacol. 2017;144:120–31.CrossRefPubMed Choi MJ, Lee EJ, Park JS, Kim SN, Park EM, Kim HS. Anti-inflammatory mechanism of galangin in lipopolysaccharide-stimulated microglia: critical role of PPAR-gamma signaling pathway. Biochem Pharmacol. 2017;144:120–31.CrossRefPubMed
34.
Zurück zum Zitat Choi MJ, Park JS, Park JE, Kim HS. Galangin suppresses pro-inflammatory gene expression in polyinosinic-polycytidylic acid-stimulated microglial cells. Biomol Ther (Seoul). 2017;25:641–7.CrossRef Choi MJ, Park JS, Park JE, Kim HS. Galangin suppresses pro-inflammatory gene expression in polyinosinic-polycytidylic acid-stimulated microglial cells. Biomol Ther (Seoul). 2017;25:641–7.CrossRef
35.
Zurück zum Zitat Ahmed SM, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017;1863:585–97.CrossRefPubMed Ahmed SM, Luo L, Namani A, Wang XJ, Tang X. Nrf2 signaling pathway: pivotal roles in inflammation. Biochim Biophys Acta Mol Basis Dis. 2017;1863:585–97.CrossRefPubMed
36.
Zurück zum Zitat Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 2019;10:89.CrossRefPubMedPubMedCentral Singh R, Chandrashekharappa S, Bodduluri SR, Baby BV, Hegde B, Kotla NG, et al. Enhancement of the gut barrier integrity by a microbial metabolite through the Nrf2 pathway. Nat Commun. 2019;10:89.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Shen G, Kong AN. Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transporters. Biopharm Drug Dispos. 2009;30:345–55.CrossRefPubMedPubMedCentral Shen G, Kong AN. Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transporters. Biopharm Drug Dispos. 2009;30:345–55.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624.CrossRefPubMedPubMedCentral Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624.CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Madduma Hewage SRK, Piao MJ, Kang KA, Ryu YS, Fernando P, Oh MC, et al. Galangin activates the ERK/AKT-driven Nrf2 signaling pathway to increase the level of reduced glutathione in human keratinocytes. Biomol Ther (Seoul). 2017;25:427–33.CrossRef Madduma Hewage SRK, Piao MJ, Kang KA, Ryu YS, Fernando P, Oh MC, et al. Galangin activates the ERK/AKT-driven Nrf2 signaling pathway to increase the level of reduced glutathione in human keratinocytes. Biomol Ther (Seoul). 2017;25:427–33.CrossRef
40.
Zurück zum Zitat Kim JK, Jang HD. Nrf2-mediated HO-1 induction coupled with the ERK signaling pathway contributes to indirect antioxidant capacity of caffeic acid phenethyl ester in HepG2 cells. Int J Mol Sci. 2014;15:12149–65.CrossRefPubMedPubMedCentral Kim JK, Jang HD. Nrf2-mediated HO-1 induction coupled with the ERK signaling pathway contributes to indirect antioxidant capacity of caffeic acid phenethyl ester in HepG2 cells. Int J Mol Sci. 2014;15:12149–65.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochem Soc Trans. 2015;43:621–6.CrossRefPubMedPubMedCentral Wardyn JD, Ponsford AH, Sanderson CM. Dissecting molecular cross-talk between Nrf2 and NF-kappaB response pathways. Biochem Soc Trans. 2015;43:621–6.CrossRefPubMedPubMedCentral
42.
Zurück zum Zitat Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 2006;66:11580–4.CrossRefPubMed Khor TO, Huang MT, Kwon KH, Chan JY, Reddy BS, Kong AN. Nrf2-deficient mice have an increased susceptibility to dextran sulfate sodium-induced colitis. Cancer Res. 2006;66:11580–4.CrossRefPubMed
43.
Zurück zum Zitat Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol. 2008;14:4280–8.CrossRefPubMedPubMedCentral Sanchez-Munoz F, Dominguez-Lopez A, Yamamoto-Furusho JK. Role of cytokines in inflammatory bowel disease. World J Gastroenterol. 2008;14:4280–8.CrossRefPubMedPubMedCentral
44.
45.
Zurück zum Zitat Singer II, Kawka DW, Schloemann S, Tessner T, Riehl T, Stenson WF. Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology. 1998;115:297–306.CrossRefPubMed Singer II, Kawka DW, Schloemann S, Tessner T, Riehl T, Stenson WF. Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology. 1998;115:297–306.CrossRefPubMed
46.
Zurück zum Zitat Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29:781–8.CrossRefPubMed Wang D, Dubois RN. The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene. 2010;29:781–8.CrossRefPubMed
Metadaten
Titel
Protective effect of galangin against dextran sulfate sodium (DSS)-induced ulcerative colitis in Balb/c mice
verfasst von
Rajendra Sangaraju
Nasiruddin Nalban
Sateesh Alavala
Vinoth Rajendran
Mahesh Kumar Jerald
Ramakrishna Sistla
Publikationsdatum
30.05.2019
Verlag
Springer International Publishing
Erschienen in
Inflammation Research / Ausgabe 8/2019
Print ISSN: 1023-3830
Elektronische ISSN: 1420-908X
DOI
https://doi.org/10.1007/s00011-019-01252-w

Weitere Artikel der Ausgabe 8/2019

Inflammation Research 8/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.