Skip to main content
Erschienen in: Critical Care 6/2014

Open Access 01.12.2014 | Commentary

Protein in nutritional support: the newborn hero for the critically ill?

verfasst von: Taku Oshima, Claudia P Heidegger, Claude Pichard

Erschienen in: Critical Care | Ausgabe 6/2014

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

In their current review, Weijs and colleagues highlight the importance of protein and amino acid provision for improving clinical outcome in critically ill patients. The interdependence between energy and protein is highlighted. They call for urgent research to develop new methods to evaluate protein and amino acid requirements, accurately and conveniently, in order to optimize nutrition support for critically ill patients.
Appropriate nutrition delivery for critically ill patients remains a highly debated issue. Energy, a critical factor for life, was until now the superstar of nutrition support. It now faces a rival or, more correctly, a partner in function, namely protein. This is a chance to take a close look at protein, the new hero in the field of critical care nutrition, and the struggles it encounters in becoming the true superstar.
Hinweise

Competing interests

The authors declare that they have no competing interests.
In their current review, Weijs and colleagues [1] highlight the importance of protein and amino acid provision for critically ill patients, the combination of which for adequate energy provision has been shown by an increasing number of studies.
Providing nutrition support for critically ill patients is generally recommended as a standard of care. This approach is confirmed by recent studies which demonstrated the benefits of early and adequate nutrition support, whenever possible by the enteral route. The nutrition target is often defined as calculated calories/kg body weight per day, or measured by indirect calorimetry. But what about the protein target and its measurement?
Disturbances of protein metabolism are observed as a physiologic response to stress, and are reflected by important nitrogen loss and muscle wasting which are proportional to the severity of illness. Amino acid administration acts as a main signal for protein synthesis in healthy conditions, but does not reduce protein breakdown [2]. This signal is blunted in critically ill patients due to anabolic resistance [3]. Ishibashi and colleagues [4] suggested that protein catabolism over a 10-day period soon after ICU admission was reduced by 50% when protein intake increased and allowed a reduction of muscle loss of 1.1 to 1.5 g/kg of dry fat-free mass/day (that is, lean tissue without water content). A higher level of protein intake (1.9 g/kg/day) did not confer any additional protein-sparing advantage, and 1.2 g/kg/day was suggested as the optimum dose. These suggestions for protein intake level of at least 1.2 g/kg/day are in accordance with the current recommendations [5],[6]. On the other hand, a previous study by Weijs and colleagues [7] suggested that protein intake of 1.5 g/kg/day improves clinical outcome. Indeed, a number of contradictory studies have resulted in variations of the recommended protein provision over the past decades. In the 1970s, provision as high as 3.5 g/kg was recommended [8], but this was then reduced to 1.2 g/kg/day by 2006 [9]. During the same period, the recommended provision of calories has decreased from 40 to 45 to 20 to 30 kcal/kg/day. It is likely that such a decrease in energy administration has an impact on protein needs, because energy deficit increases proteolysis to fuel obligatory gluconeogenesis. Currently, there is a trend among experts to increase daily protein provision up to 1.5 to 1.8 g/kg/day, and to reconsider the protein/energy ratio to optimize the respective amounts of protein and energy administered [10]. Robust data are still lacking to support final recommendations. The importance of both components was shown recently by Weijs and colleagues [7], demonstrating that the achievement of defined protein and energy targets was associated with a 50% decrease in 28-day mortality in mechanically ventilated patients, whereas reaching only the energy target did not impact mortality.
Apart from highly contributing to the gross mass of body protein, amino acids are signaling molecules in a number of cellular processes, including those related to stress-related catabolism. This implies that not only the amount of amino acid but also their composition profile is important. It should be recalled that muscle wasting and protein loss during the acute phase of critical illnesses could only be mitigated by adequate and optimal supplementation of amino acids, along with energy and micronutrients.
Optimal nutrition for critically ill patients through the enteral route, though it is strongly recommended in recent guidelines, is difficult in some patients as gastrointestinal tolerance limits the rate of administration and absorption. For instance, diarrhea is commonly observed in critically ill patients and strongly associated with antibiotics, as well as with enteral nutrition if covering more than 60% of energy needs [11]. This frequently limits the prescription of full enteral nutrition support. In such cases, exclusive parenteral nutrition [12], supplemental parenteral nutrition [13] or a specific administration of amino acids to supplement enterally administered protein may be a therapeutic option. Nutrients administered through the enteral route must be digested, a process which increases the energy and oxygen demand of the intestine, which in turn increases splanchnic blood flow [14]. This effect may not be tolerated by very hemodynamically unstable patients.
The recommendations for protein provision in guidelines [5],[6] are derived from expert opinion, rather than from robust scientific evidence. This situation mostly results from the complexity and the costs of measuring protein synthesis and degradation, and the current lack of analytical methods that can obtain results sufficiently rapidly to enable the prescription of nutrition support to be altered appropriately. Weijs and colleagues give a great overview of the complexity involved in assessing protein and specific amino acid requirements, and point out the interdependence between energy and protein provision. We join their call for urgent research to develop new methods to evaluate protein and amino acid requirements, accurately and conveniently, in order to optimize nutrition support for critically ill patients.

Competing interests

The authors declare that they have no competing interests.
download
DOWNLOAD
print
DRUCKEN
Literatur
1.
Zurück zum Zitat Weijs PJM, Cynober L, DeLegge M, Kreymann G, Wernerman J, Wolfe RR: Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients. Crit Care. 2014 Weijs PJM, Cynober L, DeLegge M, Kreymann G, Wernerman J, Wolfe RR: Proteins and amino acids are fundamental to optimal nutrition support in critically ill patients. Crit Care. 2014
2.
Zurück zum Zitat Biolo G, Toigo G, Ciocchi B, Situlin R, Iscra F, Gullo A, Guarnieri G: Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition. 1997, 13: 52S-57S. 10.1016/S0899-9007(97)00206-2.CrossRef Biolo G, Toigo G, Ciocchi B, Situlin R, Iscra F, Gullo A, Guarnieri G: Metabolic response to injury and sepsis: changes in protein metabolism. Nutrition. 1997, 13: 52S-57S. 10.1016/S0899-9007(97)00206-2.CrossRef
3.
Zurück zum Zitat Rennie M: Anabolic resistance in critically ill patients. Crit Care Med. 2009, 37: S398-S399. 10.1097/CCM.0b013e3181b6ec1f.CrossRef Rennie M: Anabolic resistance in critically ill patients. Crit Care Med. 2009, 37: S398-S399. 10.1097/CCM.0b013e3181b6ec1f.CrossRef
4.
Zurück zum Zitat Ishibashi N, Plank LD, Sando K, Hill GL: Optimal protein requirements during the first 2 weeks after the onset of critical illness. Crit Care Med. 1998, 26: 1529-1535. 10.1097/00003246-199809000-00020.CrossRef Ishibashi N, Plank LD, Sando K, Hill GL: Optimal protein requirements during the first 2 weeks after the onset of critical illness. Crit Care Med. 1998, 26: 1529-1535. 10.1097/00003246-199809000-00020.CrossRef
5.
Zurück zum Zitat Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes A, Griffiths R, Kreyman G, Leverve X, Pichard C: ESPEN Guidelines on parenteral nutrition: intensive care. Clin Nutr. 2009, 28: 387-400. 10.1016/j.clnu.2009.04.024.CrossRef Singer P, Berger MM, Van den Berghe G, Biolo G, Calder P, Forbes A, Griffiths R, Kreyman G, Leverve X, Pichard C: ESPEN Guidelines on parenteral nutrition: intensive care. Clin Nutr. 2009, 28: 387-400. 10.1016/j.clnu.2009.04.024.CrossRef
6.
Zurück zum Zitat McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, Ochoa JB, Napolitano L, Cresci G: Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009, 33: 277-316. 10.1177/0148607109335234.CrossRef McClave SA, Martindale RG, Vanek VW, McCarthy M, Roberts P, Taylor B, Ochoa JB, Napolitano L, Cresci G: Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.). JPEN J Parenter Enteral Nutr. 2009, 33: 277-316. 10.1177/0148607109335234.CrossRef
7.
Zurück zum Zitat Weijs PJM, Stapel SN, de Groot SD, Driessen RH, de Jong E, Girbes AR, Strack van Schijndel RJ, Beishuizen A: Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr. 2012, 36: 60-68. 10.1177/0148607111415109.CrossRef Weijs PJM, Stapel SN, de Groot SD, Driessen RH, de Jong E, Girbes AR, Strack van Schijndel RJ, Beishuizen A: Optimal protein and energy nutrition decreases mortality in mechanically ventilated, critically ill patients: a prospective observational cohort study. JPEN J Parenter Enteral Nutr. 2012, 36: 60-68. 10.1177/0148607111415109.CrossRef
8.
Zurück zum Zitat Hoffer LJ, Bistrian BR: Appropriate protein provision in critical illness: a systematic review and narrative review. Am J Clin Nutr. 2012, 96: 591-600. 10.3945/ajcn.111.032078.CrossRef Hoffer LJ, Bistrian BR: Appropriate protein provision in critical illness: a systematic review and narrative review. Am J Clin Nutr. 2012, 96: 591-600. 10.3945/ajcn.111.032078.CrossRef
9.
Zurück zum Zitat Sauerwein HP, Strack van Schijndel RJ: Perspective: How to evaluate studies on perioperative nutrition? Considerations about the definition of optimal nutrition for patients and its key role in the comparison of the results of studies on nutritional intervention. Clin Nutr. 2007, 26: 154-158. 10.1016/j.clnu.2006.08.001.CrossRef Sauerwein HP, Strack van Schijndel RJ: Perspective: How to evaluate studies on perioperative nutrition? Considerations about the definition of optimal nutrition for patients and its key role in the comparison of the results of studies on nutritional intervention. Clin Nutr. 2007, 26: 154-158. 10.1016/j.clnu.2006.08.001.CrossRef
10.
Zurück zum Zitat Kreymann G, DeLegge MH, Luft G, Hise ME, Zaloga GP: The ratio of energy expenditure to nitrogen loss in diverse patient groups - a systematic review. Clin Nutr. 2012, 31: 168-175. 10.1016/j.clnu.2011.12.004.CrossRef Kreymann G, DeLegge MH, Luft G, Hise ME, Zaloga GP: The ratio of energy expenditure to nitrogen loss in diverse patient groups - a systematic review. Clin Nutr. 2012, 31: 168-175. 10.1016/j.clnu.2011.12.004.CrossRef
11.
Zurück zum Zitat Thibault R, Graf S, Clerc A, Delieuvin N, Heidegger CP, Pichard C: Diarrhoea in the intensive care unit: respective contribution of feeding and antibiotics. Crit Care. 2013, 17: R153-10.1186/cc12832.CrossRef Thibault R, Graf S, Clerc A, Delieuvin N, Heidegger CP, Pichard C: Diarrhoea in the intensive care unit: respective contribution of feeding and antibiotics. Crit Care. 2013, 17: R153-10.1186/cc12832.CrossRef
12.
Zurück zum Zitat Doig GS, Simpson F, Sweetman EA, Finfer SR, Cooper DJ, Heighes PT, Davies AR, O'Leary M, Solano T, Peake S: Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013, 309: 2130-2138. 10.1001/jama.2013.5124.CrossRef Doig GS, Simpson F, Sweetman EA, Finfer SR, Cooper DJ, Heighes PT, Davies AR, O'Leary M, Solano T, Peake S: Early parenteral nutrition in critically ill patients with short-term relative contraindications to early enteral nutrition: a randomized controlled trial. JAMA. 2013, 309: 2130-2138. 10.1001/jama.2013.5124.CrossRef
13.
Zurück zum Zitat Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, Thibault R, Pichard C: Optimization of energy provision with supplemental parenteral nutrition (SPN) improves the clinical outcome of critically ill patients: a randomized controlled trial. Lancet. 2013, 381: 385-393. 10.1016/S0140-6736(12)61351-8.CrossRef Heidegger CP, Berger MM, Graf S, Zingg W, Darmon P, Costanza MC, Thibault R, Pichard C: Optimization of energy provision with supplemental parenteral nutrition (SPN) improves the clinical outcome of critically ill patients: a randomized controlled trial. Lancet. 2013, 381: 385-393. 10.1016/S0140-6736(12)61351-8.CrossRef
14.
Zurück zum Zitat Gatt M, MacFie J, Anderson A, Howell G, Reddy B, Suppiah A, Renwick I, Mitchell CJ: Changes in superior mesenteric artery blood flow after oral, enteral, and parenteral feeding in humans. Crit Care Med. 2009, 37: 171-176. 10.1097/CCM.0b013e318192fb44.CrossRef Gatt M, MacFie J, Anderson A, Howell G, Reddy B, Suppiah A, Renwick I, Mitchell CJ: Changes in superior mesenteric artery blood flow after oral, enteral, and parenteral feeding in humans. Crit Care Med. 2009, 37: 171-176. 10.1097/CCM.0b013e318192fb44.CrossRef
Metadaten
Titel
Protein in nutritional support: the newborn hero for the critically ill?
verfasst von
Taku Oshima
Claudia P Heidegger
Claude Pichard
Publikationsdatum
01.12.2014
Verlag
BioMed Central
Erschienen in
Critical Care / Ausgabe 6/2014
Elektronische ISSN: 1364-8535
DOI
https://doi.org/10.1186/s13054-014-0592-z

Weitere Artikel der Ausgabe 6/2014

Critical Care 6/2014 Zur Ausgabe

Update AINS

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.