Skip to main content
Erschienen in: Journal of Medical Systems 5/2016

01.05.2016 | Systems-Level Quality Improvement

Quality Aware Compression of Electrocardiogram Using Principal Component Analysis

verfasst von: Rajarshi Gupta

Erschienen in: Journal of Medical Systems | Ausgabe 5/2016

Einloggen, um Zugang zu erhalten

Abstract

Electrocardiogram (ECG) compression finds wide application in various patient monitoring purposes. Quality control in ECG compression ensures reconstruction quality and its clinical acceptance for diagnostic decision making. In this paper, a quality aware compression method of single lead ECG is described using principal component analysis (PCA). After pre-processing, beat extraction and PCA decomposition, two independent quality criteria, namely, bit rate control (BRC) or error control (EC) criteria were set to select optimal principal components, eigenvectors and their quantization level to achieve desired bit rate or error measure. The selected principal components and eigenvectors were finally compressed using a modified delta and Huffman encoder. The algorithms were validated with 32 sets of MIT Arrhythmia data and 60 normal and 30 sets of diagnostic ECG data from PTB Diagnostic ECG data ptbdb, all at 1 kHz sampling. For BRC with a CR threshold of 40, an average Compression Ratio (CR), percentage root mean squared difference normalized (PRDN) and maximum absolute error (MAE) of 50.74, 16.22 and 0.243 mV respectively were obtained. For EC with an upper limit of 5 % PRDN and 0.1 mV MAE, the average CR, PRDN and MAE of 9.48, 4.13 and 0.049 mV respectively were obtained. For mitdb data 117, the reconstruction quality could be preserved up to CR of 68.96 by extending the BRC threshold. The proposed method yields better results than recently published works on quality controlled ECG compression.
Literatur
1.
Zurück zum Zitat Jalaleddine, S. M. S., Hutchens, C. G., and Strattan, R. D., ECG data compression techniques-a unified approach. IEEE Trans. Biomed. Eng. 37(4):329–343, 1990.CrossRefPubMed Jalaleddine, S. M. S., Hutchens, C. G., and Strattan, R. D., ECG data compression techniques-a unified approach. IEEE Trans. Biomed. Eng. 37(4):329–343, 1990.CrossRefPubMed
2.
Zurück zum Zitat Cox, J. R., Nolle, F. M., Fozzard, H. A., Oliver, G. C., and AZTEC, A preprocessing program for real-time ECG rhythm analysis. IEEE Trans. Biomed. Eng. BME-15:128–129, 1968.CrossRef Cox, J. R., Nolle, F. M., Fozzard, H. A., Oliver, G. C., and AZTEC, A preprocessing program for real-time ECG rhythm analysis. IEEE Trans. Biomed. Eng. BME-15:128–129, 1968.CrossRef
3.
Zurück zum Zitat Muller, W. C., Arrhythmia detection program for an ambulatory ECG monitor. Biomed Sci Instrum 14:81–85, 1978. Muller, W. C., Arrhythmia detection program for an ambulatory ECG monitor. Biomed Sci Instrum 14:81–85, 1978.
4.
Zurück zum Zitat Abenstein, J. P., and Tompkins, W. J., New data-reduction algorithm for real-time ECG analysis. IEEE Trans. Biomed. Eng. BME-29:43–48, 1982.CrossRef Abenstein, J. P., and Tompkins, W. J., New data-reduction algorithm for real-time ECG analysis. IEEE Trans. Biomed. Eng. BME-29:43–48, 1982.CrossRef
5.
Zurück zum Zitat Pollard, A. E., and Barr, R. C., Adaptive sampling of intracellular and extracellular cardiac potentials with the fan method. Med. Biol. Eng. Comput. 25(3):261–268, 1987.CrossRefPubMed Pollard, A. E., and Barr, R. C., Adaptive sampling of intracellular and extracellular cardiac potentials with the fan method. Med. Biol. Eng. Comput. 25(3):261–268, 1987.CrossRefPubMed
6.
Zurück zum Zitat Barr, R. C., Blanchard, S. M., and Dipersio, D. A., SAPA-2 is fan. IEEE Trans. Biomed. Eng. BME-32(5):337, 1985.CrossRef Barr, R. C., Blanchard, S. M., and Dipersio, D. A., SAPA-2 is fan. IEEE Trans. Biomed. Eng. BME-32(5):337, 1985.CrossRef
7.
Zurück zum Zitat Cortman, C. M., Data compression by redundancy reduction. Proc. IEEE 133–139, 1965. Cortman, C. M., Data compression by redundancy reduction. Proc. IEEE 133–139, 1965.
8.
Zurück zum Zitat Steward, D., Dower, G. E., and Suranyi, O., An ECG compression code. J. Electrocardiol. 6(2):175–176, 1973.CrossRef Steward, D., Dower, G. E., and Suranyi, O., An ECG compression code. J. Electrocardiol. 6(2):175–176, 1973.CrossRef
9.
Zurück zum Zitat Gupta, R., and Mitra, M., Wireless electrocardiogram transmission in ISM band: an approach towards telecardiology. J. Med. Syst. 38(10):1–14, 2014.CrossRef Gupta, R., and Mitra, M., Wireless electrocardiogram transmission in ISM band: an approach towards telecardiology. J. Med. Syst. 38(10):1–14, 2014.CrossRef
10.
Zurück zum Zitat Roy, S., and Gupta, R., Short range centralized cardiac health monitoring system based on zigbee communication. Proc IEEE Global Humanitarian Technology Conference (GHTC)-South Asia Satellite (SAS), 26–27 September, 2014, Kerala, India, pp. 177–182. Roy, S., and Gupta, R., Short range centralized cardiac health monitoring system based on zigbee communication. Proc IEEE Global Humanitarian Technology Conference (GHTC)-South Asia Satellite (SAS), 26–27 September, 2014, Kerala, India, pp. 177–182.
11.
Zurück zum Zitat Hamilton, P. S., and Tompkins, W. J., Compression of the ambulatory ECG by average beat subtraction and residual differencing. IEEE Trans. Biomed. Eng. 38(3):253–259, 1991.CrossRefPubMed Hamilton, P. S., and Tompkins, W. J., Compression of the ambulatory ECG by average beat subtraction and residual differencing. IEEE Trans. Biomed. Eng. 38(3):253–259, 1991.CrossRefPubMed
12.
Zurück zum Zitat Mammen, C. P., and Ramamurthi, B., Vector quantization for compression of multi-channel ECG. IEEE Trans. Biomed. Eng. 37(9):821–825, 1990.CrossRefPubMed Mammen, C. P., and Ramamurthi, B., Vector quantization for compression of multi-channel ECG. IEEE Trans. Biomed. Eng. 37(9):821–825, 1990.CrossRefPubMed
13.
Zurück zum Zitat Dutt, D. N., Krishnan, S. M., and Srinivasan, N., A dynamic nonlinear time domain model for reconstruction and compression of cardiovascular signals with application to telemedicine. Comput. Biol. Med. 33:45–63, 2003.CrossRefPubMed Dutt, D. N., Krishnan, S. M., and Srinivasan, N., A dynamic nonlinear time domain model for reconstruction and compression of cardiovascular signals with application to telemedicine. Comput. Biol. Med. 33:45–63, 2003.CrossRefPubMed
14.
Zurück zum Zitat Al-Nashash, H. A. M., A dynamic Fourier series for the compression of ECG using FTT and adaptive coefficient. Med. Eng. Phys. 17(3):197–203, 1995.CrossRefPubMed Al-Nashash, H. A. M., A dynamic Fourier series for the compression of ECG using FTT and adaptive coefficient. Med. Eng. Phys. 17(3):197–203, 1995.CrossRefPubMed
15.
Zurück zum Zitat Batista, L. V., Melcher, E. U. K., and Carvalho, L. C., Compression of ECG Signals by optimized quantization of discrete cosine transform coefficients. Med. Eng. Phys. 23(2):127–134, 2001.CrossRefPubMed Batista, L. V., Melcher, E. U. K., and Carvalho, L. C., Compression of ECG Signals by optimized quantization of discrete cosine transform coefficients. Med. Eng. Phys. 23(2):127–134, 2001.CrossRefPubMed
16.
Zurück zum Zitat Colomer, A. A., Adaptive ECG data compression using discrete legendre transform. Digital Signal Process. 7(4):222–228, 1997.CrossRef Colomer, A. A., Adaptive ECG data compression using discrete legendre transform. Digital Signal Process. 7(4):222–228, 1997.CrossRef
17.
Zurück zum Zitat Degani, R., Bortolan, G., and Murolo, S., Karhunen Louve coding of ECG signals. Proc Computers in Cardiology, September 23–26, 1990, Chicago, pp. 395–398. Degani, R., Bortolan, G., and Murolo, S., Karhunen Louve coding of ECG signals. Proc Computers in Cardiology, September 23–26, 1990, Chicago, pp. 395–398.
18.
Zurück zum Zitat Blanchett, T., Kember, G. C., and Fenton, G. A., KLT-based quality controlled compression of single-lead ECG. IEEE Trans. Biomed. Eng. 45(7):942–945, 1998.CrossRefPubMed Blanchett, T., Kember, G. C., and Fenton, G. A., KLT-based quality controlled compression of single-lead ECG. IEEE Trans. Biomed. Eng. 45(7):942–945, 1998.CrossRefPubMed
19.
Zurück zum Zitat Xingyuan, W., and Juan, M., Wavelet based hybrid ECG compression technique. Analog Integr. Circ. Sig. Proccess. 59(3):301–308, 2009.CrossRef Xingyuan, W., and Juan, M., Wavelet based hybrid ECG compression technique. Analog Integr. Circ. Sig. Proccess. 59(3):301–308, 2009.CrossRef
20.
Zurück zum Zitat Chen, J., Yang, M., Zhang, Y., and Shi, X., ECG compression by optimized quantization of wavelet coefficients. Intell. Comput. Signal Process. Pattern Recogn. LNCIS 345:809–814, 2006.CrossRef Chen, J., Yang, M., Zhang, Y., and Shi, X., ECG compression by optimized quantization of wavelet coefficients. Intell. Comput. Signal Process. Pattern Recogn. LNCIS 345:809–814, 2006.CrossRef
21.
Zurück zum Zitat Istepanian, R. S. H., Hadjileontiadis, L. J., and Panas, S. M., ECG data compression using wavelets and higher order statistics methods. IEEE Trans. Inf. Technol. Biomed. 5(2):108–115, 2001.CrossRefPubMed Istepanian, R. S. H., Hadjileontiadis, L. J., and Panas, S. M., ECG data compression using wavelets and higher order statistics methods. IEEE Trans. Inf. Technol. Biomed. 5(2):108–115, 2001.CrossRefPubMed
22.
Zurück zum Zitat Kim, B. S., Yoo, S. K., and Lee, M. H., Wavelet-based low delay ECG compression algorithm for continuous ECG transmission. IEEE Trans. Biomed. Eng. 10(1):77–83, 2006.CrossRef Kim, B. S., Yoo, S. K., and Lee, M. H., Wavelet-based low delay ECG compression algorithm for continuous ECG transmission. IEEE Trans. Biomed. Eng. 10(1):77–83, 2006.CrossRef
23.
Zurück zum Zitat Manikandan, M. S., and Dandapat, S., Wavelet-based electrocardiogram signal compression methods and their performances: a prospective review. Biomed. Signal Process. Control 14:73–107, 2014.CrossRef Manikandan, M. S., and Dandapat, S., Wavelet-based electrocardiogram signal compression methods and their performances: a prospective review. Biomed. Signal Process. Control 14:73–107, 2014.CrossRef
24.
Zurück zum Zitat Jigel, Y., Cohen, A., and Katz, A., The weighted diagnostic distortion measure for ECG signal compression. IEEE Trans. Biomed. Eng. 47(11):1422–1430, 2000.CrossRef Jigel, Y., Cohen, A., and Katz, A., The weighted diagnostic distortion measure for ECG signal compression. IEEE Trans. Biomed. Eng. 47(11):1422–1430, 2000.CrossRef
25.
Zurück zum Zitat Al-Fahoum, A. S., Quality assessment of ECG compression techniques using a wavelet-based diagnostic measure. IEEE Trans. Inf. Technol. Biomed. 10(1):182–191, 2006.CrossRefPubMed Al-Fahoum, A. S., Quality assessment of ECG compression techniques using a wavelet-based diagnostic measure. IEEE Trans. Inf. Technol. Biomed. 10(1):182–191, 2006.CrossRefPubMed
26.
Zurück zum Zitat Ku, C. T., Hung, K. C., Wu, T. C., and Wang, H. S., Wavelet based ECG data compression system with linear quality control scheme. IEEE Trans. Biomed. Eng. 57(6):1399–1409, 2010.CrossRefPubMed Ku, C. T., Hung, K. C., Wu, T. C., and Wang, H. S., Wavelet based ECG data compression system with linear quality control scheme. IEEE Trans. Biomed. Eng. 57(6):1399–1409, 2010.CrossRefPubMed
27.
Zurück zum Zitat Alesanco, A., and Garcia, J., Automatic real-time ECG coding methodology guaranteeing signal interpretation quality. IEEE Trans. Biomed. Eng. 55(11):2519–2527, 2008.CrossRefPubMed Alesanco, A., and Garcia, J., Automatic real-time ECG coding methodology guaranteeing signal interpretation quality. IEEE Trans. Biomed. Eng. 55(11):2519–2527, 2008.CrossRefPubMed
29.
Zurück zum Zitat Banerjee, S., Gupta, R., and Mitra, M., Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measurement 45(3):474–487, 2012.CrossRef Banerjee, S., Gupta, R., and Mitra, M., Delineation of ECG characteristic features using multiresolution wavelet analysis method. Measurement 45(3):474–487, 2012.CrossRef
30.
Zurück zum Zitat Jollife, I. T., Principal component analysis. Springer, New York, 2002. Jollife, I. T., Principal component analysis. Springer, New York, 2002.
31.
Zurück zum Zitat Gupta, R., and Mitra, M., An ECG compression technique for telecardiology application. Proc IEEE India Conf (INDICON), December 16–18, 2011, Hyderabad, India, pp. 1–4. Gupta, R., and Mitra, M., An ECG compression technique for telecardiology application. Proc IEEE India Conf (INDICON), December 16–18, 2011, Hyderabad, India, pp. 1–4.
32.
Zurück zum Zitat Gupta, R., Lossless compression technique for real time photoplethysmographic measurements. IEEE Trans. Instrum. Meas. 64(4):975–983, 2015.CrossRef Gupta, R., Lossless compression technique for real time photoplethysmographic measurements. IEEE Trans. Instrum. Meas. 64(4):975–983, 2015.CrossRef
33.
Zurück zum Zitat Morris, F., Brady, W. J., and Camm, J. (Eds.), ABC of clinical cardiography, 2nd edition. Blackwell, USA, 2008. Morris, F., Brady, W. J., and Camm, J. (Eds.), ABC of clinical cardiography, 2nd edition. Blackwell, USA, 2008.
34.
Zurück zum Zitat Lee, S., Kim, J., and Lee, M., A real-time ECG data compression and transmission algorithm for an e-health device. IEEE Trans. Biomed. Eng. 58(9):2448–2455, 2011.CrossRefPubMed Lee, S., Kim, J., and Lee, M., A real-time ECG data compression and transmission algorithm for an e-health device. IEEE Trans. Biomed. Eng. 58(9):2448–2455, 2011.CrossRefPubMed
35.
Zurück zum Zitat Mamaghanian, H., Khaled, N., Atienza, D., and Vandergheynst, P., Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9):2456–2466, 2011.CrossRefPubMed Mamaghanian, H., Khaled, N., Atienza, D., and Vandergheynst, P., Compressed sensing for real-time energy-efficient ECG compression on wireless body sensor nodes. IEEE Trans. Biomed. Eng. 58(9):2456–2466, 2011.CrossRefPubMed
36.
Zurück zum Zitat Benzid, R., Marir, F., Boussaad, A., Benyoucef, M., and Arar, D., Fixed percentage of wavelet coefficients to be zeroed for ECG compression. Electron. Lett. 39(11):830–831, 2003.CrossRef Benzid, R., Marir, F., Boussaad, A., Benyoucef, M., and Arar, D., Fixed percentage of wavelet coefficients to be zeroed for ECG compression. Electron. Lett. 39(11):830–831, 2003.CrossRef
37.
Zurück zum Zitat Kim, H., Yazicioglu, R. F., Merken, P., Hoof, C. V., and Yoo, H. J., ECG signal compression and classification algorithm with quad level vector for ECG holter system. IEEE Trans. Biomed. Eng. 14(1):93–100, 2010.CrossRef Kim, H., Yazicioglu, R. F., Merken, P., Hoof, C. V., and Yoo, H. J., ECG signal compression and classification algorithm with quad level vector for ECG holter system. IEEE Trans. Biomed. Eng. 14(1):93–100, 2010.CrossRef
38.
Zurück zum Zitat Mitra, M., Bera, J. N., and Gupta, R., Electrocardiogram compression technique for global system of mobile-based offline telecardiology application for rural clinics in India. IET Sci. Meas. Tech. 6(6):412–419, 2012.CrossRef Mitra, M., Bera, J. N., and Gupta, R., Electrocardiogram compression technique for global system of mobile-based offline telecardiology application for rural clinics in India. IET Sci. Meas. Tech. 6(6):412–419, 2012.CrossRef
39.
Zurück zum Zitat Ma, J. L., Zhang, T. T., and Dong, M. C., A novel ECG data compression method using adaptive fourier decomposition with security guarantee in e-health applications. IEE J. Biomed. Health Inf. 19(3):986–994, 2015. Ma, J. L., Zhang, T. T., and Dong, M. C., A novel ECG data compression method using adaptive fourier decomposition with security guarantee in e-health applications. IEE J. Biomed. Health Inf. 19(3):986–994, 2015.
Metadaten
Titel
Quality Aware Compression of Electrocardiogram Using Principal Component Analysis
verfasst von
Rajarshi Gupta
Publikationsdatum
01.05.2016
Verlag
Springer US
Erschienen in
Journal of Medical Systems / Ausgabe 5/2016
Print ISSN: 0148-5598
Elektronische ISSN: 1573-689X
DOI
https://doi.org/10.1007/s10916-016-0468-7

Weitere Artikel der Ausgabe 5/2016

Journal of Medical Systems 5/2016 Zur Ausgabe