Skip to main content
Erschienen in: Brain Structure and Function 8/2020

09.09.2020 | Original Article

Quantification of neurons in the hippocampal formation of chimpanzees: comparison to rhesus monkeys and humans

verfasst von: Christina N. Rogers Flattery, Rebecca F. Rosen, Aaron S. Farberg, Jeromy M. Dooyema, Patrick R. Hof, Chet C. Sherwood, Lary C. Walker, Todd M. Preuss

Erschienen in: Brain Structure and Function | Ausgabe 8/2020

Einloggen, um Zugang zu erhalten

Abstract

The hippocampal formation is important for higher brain functions such as spatial navigation and the consolidation of memory, and it contributes to abilities thought to be uniquely human, yet little is known about how the human hippocampal formation compares to that of our closest living relatives, the chimpanzees. To gain insight into the comparative organization of the hippocampal formation in catarrhine primates, we quantified neurons stereologically in its major subdivisions—the granular layer of the dentate gyrus, CA4, CA2-3, CA1, and the subiculum—in archival brain tissue from six chimpanzees ranging from 29 to 43 years of age. We also sought evidence of Aβ deposition and hyperphosphorylated tau in the hippocampus and adjacent neocortex. A 42-year-old animal had moderate cerebral Aβ-amyloid angiopathy and tauopathy, but Aβ was absent and tauopathy was minimal in the others. Quantitatively, granule cells of the dentate gyrus were most numerous, followed by CA1, subiculum, CA4, and CA2-3. In the context of prior investigations of rhesus monkeys and humans, our findings indicate that, in the hippocampal formation as a whole, the proportions of neurons in CA1 and the subiculum progressively increase, and the proportion of dentate granule cells decreases, from rhesus monkeys to chimpanzees to humans. Because CA1 and the subiculum engender key hippocampal projection pathways to the neocortex, and because the neocortex varies in volume and anatomical organization among these species, these findings suggest that differences in the proportions of neurons in hippocampal subregions of catarrhine primates may be linked to neocortical evolution.
Literatur
Zurück zum Zitat Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182(5):851–914 Amaral DG (1978) A Golgi study of cell types in the hilar region of the hippocampus in the rat. J Comp Neurol 182(5):851–914
Zurück zum Zitat Bartsch T, Döhring J, Rohr A, Jansen O, Deuschl G (2011) CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness. Proc Natl Acad Sci USA 108(42):17562–17567 Bartsch T, Döhring J, Rohr A, Jansen O, Deuschl G (2011) CA1 neurons in the human hippocampus are critical for autobiographical memory, mental time travel, and autonoetic consciousness. Proc Natl Acad Sci USA 108(42):17562–17567
Zurück zum Zitat Braak H, Braak EVA (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16(3):271–278 Braak H, Braak EVA (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16(3):271–278
Zurück zum Zitat Carlesimo GA, Piras F, Orfei MD, Iorio M, Caltagirone C, Spalletta G (2015) Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer’s disease. Alzheimer’s Dement Diagn Assess Dis Monit 1(1):24–32 Carlesimo GA, Piras F, Orfei MD, Iorio M, Caltagirone C, Spalletta G (2015) Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer’s disease. Alzheimer’s Dement Diagn Assess Dis Monit 1(1):24–32
Zurück zum Zitat Clark RE, Squire LR (2013) Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proc Natl Acad Sci USA 110:10365–10370 Clark RE, Squire LR (2013) Similarity in form and function of the hippocampus in rodents, monkeys, and humans. Proc Natl Acad Sci USA 110:10365–10370
Zurück zum Zitat Edler MK, Sherwood CC, Meindl RS, Hopkins WD, Ely JJ, Erwin JM, Raghanti MA (2017) Aged chimpanzees exhibit pathologic hallmarks of Alzheimer’s disease. Neurobiol Aging 59:107–120 Edler MK, Sherwood CC, Meindl RS, Hopkins WD, Ely JJ, Erwin JM, Raghanti MA (2017) Aged chimpanzees exhibit pathologic hallmarks of Alzheimer’s disease. Neurobiol Aging 59:107–120
Zurück zum Zitat Edler MK, Sherwood CC, Meindl RS, Munger EL, Hopkins WD, Ely JJ, Raghanti MA (2018) Microglia changes associated to Alzheimer’s disease pathology in aged chimpanzees. J Comp Neurol 526(18):2921–2936 Edler MK, Sherwood CC, Meindl RS, Munger EL, Hopkins WD, Ely JJ, Raghanti MA (2018) Microglia changes associated to Alzheimer’s disease pathology in aged chimpanzees. J Comp Neurol 526(18):2921–2936
Zurück zum Zitat Eichenbaum H (2017) Memory: organization and control. Annu Rev Psychol 68:19–45 Eichenbaum H (2017) Memory: organization and control. Annu Rev Psychol 68:19–45
Zurück zum Zitat Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425(6954):184–188 Ekstrom AD, Kahana MJ, Caplan JB, Fields TA, Isham EA, Newman EL, Fried I (2003) Cellular networks underlying human spatial navigation. Nature 425(6954):184–188
Zurück zum Zitat Finch CE, Austad SN (2015) Commentary: is Alzheimer’s disease uniquely human? Neurobiol Aging 36(2):553–555 Finch CE, Austad SN (2015) Commentary: is Alzheimer’s disease uniquely human? Neurobiol Aging 36(2):553–555
Zurück zum Zitat George S, Rönnbäck A, Gouras GK, Petit GH, Grueninger F, Winblad B, Brundin P (2014) Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun 2(1):17 George S, Rönnbäck A, Gouras GK, Petit GH, Grueninger F, Winblad B, Brundin P (2014) Lesion of the subiculum reduces the spread of amyloid beta pathology to interconnected brain regions in a mouse model of Alzheimer’s disease. Acta Neuropathol Commun 2(1):17
Zurück zum Zitat Hartley T, Lever C, Burgess N, O’Keefe J (2014) Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc B Biol Sci 369(1635):20120510 Hartley T, Lever C, Burgess N, O’Keefe J (2014) Space in the brain: how the hippocampal formation supports spatial cognition. Philos Trans R Soc B Biol Sci 369(1635):20120510
Zurück zum Zitat Heuer E, Rosen RF, Cintron A, Walker LC (2012) Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr Pharm Des 18(8):1159–1169 Heuer E, Rosen RF, Cintron A, Walker LC (2012) Nonhuman primate models of Alzheimer-like cerebral proteopathy. Curr Pharm Des 18(8):1159–1169
Zurück zum Zitat Hoffman GE, Le WW (2004) Just cool it! Cryoprotectant anti-freeze in immunocytochemistry and in situ hybridization. Peptides 25(3):425–431 Hoffman GE, Le WW (2004) Just cool it! Cryoprotectant anti-freeze in immunocytochemistry and in situ hybridization. Peptides 25(3):425–431
Zurück zum Zitat Insausti R (1993) Comparative anatomy of the entorhinal cortex and hippocampus in mammals. Hippocampus 3(S1):19–26 Insausti R (1993) Comparative anatomy of the entorhinal cortex and hippocampus in mammals. Hippocampus 3(S1):19–26
Zurück zum Zitat Jabès A, Lavenex PB, Amaral DG, Lavenex P (2011) Postnatal development of the hippocampal formation: a stereological study in macaque monkeys. J Comp Neurol 519(6):1051–1070 Jabès A, Lavenex PB, Amaral DG, Lavenex P (2011) Postnatal development of the hippocampal formation: a stereological study in macaque monkeys. J Comp Neurol 519(6):1051–1070
Zurück zum Zitat Jicha GA, Bowser R, Kazam IG, Davies P (1997) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res 48:128–132 Jicha GA, Bowser R, Kazam IG, Davies P (1997) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res 48:128–132
Zurück zum Zitat Jicha GA, Weaver C, Lane E, Vianna C, Kress Y, Rockwood J, Davies P (1999) cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease. J Neurosci 19(17):7486–7494 Jicha GA, Weaver C, Lane E, Vianna C, Kress Y, Rockwood J, Davies P (1999) cAMP-dependent protein kinase phosphorylations on tau in Alzheimer’s disease. J Neurosci 19(17):7486–7494
Zurück zum Zitat Keuker JI, Luiten PG, Fuchs E (2003) Preservation of hippocampal neuron numbers in aged rhesus monkeys. Neurobiol Aging 24(1):157–165 Keuker JI, Luiten PG, Fuchs E (2003) Preservation of hippocampal neuron numbers in aged rhesus monkeys. Neurobiol Aging 24(1):157–165
Zurück zum Zitat Kim KS, Miller DL, Sapienza VJ, Chen CMJ, Bai C, Grundke-Iqbal I, Wisniewski HM (1988) Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci Res Commun 2(3):121–130 Kim KS, Miller DL, Sapienza VJ, Chen CMJ, Bai C, Grundke-Iqbal I, Wisniewski HM (1988) Production and characterization of monoclonal antibodies reactive to synthetic cerebrovascular amyloid peptide. Neurosci Res Commun 2(3):121–130
Zurück zum Zitat Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Investig 57(2):230–236 Kitamoto T, Ogomori K, Tateishi J, Prusiner SB (1987) Formic acid pretreatment enhances immunostaining of cerebral and systemic amyloids. Lab Investig 57(2):230–236
Zurück zum Zitat Lazarov O, Lee M, Peterson DA, Sisodia SS (2002) Evidence that synaptically released β-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 22(22):9785–9793 Lazarov O, Lee M, Peterson DA, Sisodia SS (2002) Evidence that synaptically released β-amyloid accumulates as extracellular deposits in the hippocampus of transgenic mice. J Neurosci 22(22):9785–9793
Zurück zum Zitat Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. J Psychol Neurol 45:381–438 Lorente de Nó R (1933) Studies on the structure of the cerebral cortex. J Psychol Neurol 45:381–438
Zurück zum Zitat Manns JR, Eichenbaum H (2006) Evolution of declarative memory. Hippocampus 16(9):795–808 Manns JR, Eichenbaum H (2006) Evolution of declarative memory. Hippocampus 16(9):795–808
Zurück zum Zitat Mouton PR (2011) Unbiased stereology: a concise guide. The Johns Hopkins University Press, Baltimore Mouton PR (2011) Unbiased stereology: a concise guide. The Johns Hopkins University Press, Baltimore
Zurück zum Zitat Munger EL, Edler MK, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Raghanti MA (2019) Astrocytic changes with aging and Alzheimer’s disease-type pathology in chimpanzees. J Comp Neurol 527(7):1179–1195 Munger EL, Edler MK, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Raghanti MA (2019) Astrocytic changes with aging and Alzheimer’s disease-type pathology in chimpanzees. J Comp Neurol 527(7):1179–1195
Zurück zum Zitat Pittenger C, Huang YY, Paletzki RF, Bourtchouladze R, Scanlin H, Vronskaya S, Kandel ER (2002) Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34(3):447–462 Pittenger C, Huang YY, Paletzki RF, Bourtchouladze R, Scanlin H, Vronskaya S, Kandel ER (2002) Reversible inhibition of CREB/ATF transcription factors in region CA1 of the dorsal hippocampus disrupts hippocampus-dependent spatial memory. Neuron 34(3):447–462
Zurück zum Zitat Place R, Lykken C, Beer Z, Suh J, McHugh TJ, Tonegawa S, Sauvage MM (2012) NMDA signaling in CA1 mediates selectively the spatial component of episodic memory. Learn Mem 19(4):164–169 Place R, Lykken C, Beer Z, Suh J, McHugh TJ, Tonegawa S, Sauvage MM (2012) NMDA signaling in CA1 mediates selectively the spatial component of episodic memory. Learn Mem 19(4):164–169
Zurück zum Zitat Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58(9):1395–1402 Price JL, Ko AI, Wade MJ, Tsou SK, McKeel DW, Morris JC (2001) Neuron number in the entorhinal cortex and CA1 in preclinical Alzheimer disease. Arch Neurol 58(9):1395–1402
Zurück zum Zitat Rapoport SI (1990) Integrated phylogeny of the primate brain, with special reference to humans and their diseases. Brain Res Rev 15(3):267–294 Rapoport SI (1990) Integrated phylogeny of the primate brain, with special reference to humans and their diseases. Brain Res Rev 15(3):267–294
Zurück zum Zitat Rapoport SI, Nelson PT (2011) Biomarkers and evolution in Alzheimer disease. Prog Neurobiol 95(4):510–513 Rapoport SI, Nelson PT (2011) Biomarkers and evolution in Alzheimer disease. Prog Neurobiol 95(4):510–513
Zurück zum Zitat Rasmussen T, Schliemann T, Sørensen JC, Zimmer J, West MJ (1996) Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Aging 17(1):143–147 Rasmussen T, Schliemann T, Sørensen JC, Zimmer J, West MJ (1996) Memory impaired aged rats: no loss of principal hippocampal and subicular neurons. Neurobiol Aging 17(1):143–147
Zurück zum Zitat Rosen RF, Farberg AS, Gearing M, Dooyema JM, Long P, Anderson DC, Duong TQ (2008) Tauopathy with paired helical filaments in an aged chimpanzee. J Comp Neurol 509(3):259–270 Rosen RF, Farberg AS, Gearing M, Dooyema JM, Long P, Anderson DC, Duong TQ (2008) Tauopathy with paired helical filaments in an aged chimpanzee. J Comp Neurol 509(3):259–270
Zurück zum Zitat Rosen RF, Tomidokoro Y, Farberg AS, Dooyema J, Ciliax B, Preuss TM, Walker LC (2016) Comparative pathobiology of β-amyloid and the unique susceptibility of humans to Alzheimer’s disease. Neurobiol Aging 44:185–196 Rosen RF, Tomidokoro Y, Farberg AS, Dooyema J, Ciliax B, Preuss TM, Walker LC (2016) Comparative pathobiology of β-amyloid and the unique susceptibility of humans to Alzheimer’s disease. Neurobiol Aging 44:185–196
Zurück zum Zitat Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198(4314):315–317 Rosene DL, Van Hoesen GW (1977) Hippocampal efferents reach widespread areas of cerebral cortex and amygdala in the rhesus monkey. Science 198(4314):315–317
Zurück zum Zitat Schacter DL, Addis DR, Szpunar KK (2017) Escaping the past: contributions of the hippocampus to future thinking and imagination. In: Hannula DE, Duff MC (eds) The hippocampus from cells to systems: structure, connectivity, and functional contributions to memory and flexible cognition. Springer, Cham, pp 439-465 Schacter DL, Addis DR, Szpunar KK (2017) Escaping the past: contributions of the hippocampus to future thinking and imagination. In: Hannula DE, Duff MC (eds) The hippocampus from cells to systems: structure, connectivity, and functional contributions to memory and flexible cognition. Springer, Cham, pp 439-465
Zurück zum Zitat Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40(3):599–636 Schmidt-Kastner R, Freund TF (1991) Selective vulnerability of the hippocampus in brain ischemia. Neuroscience 40(3):599–636
Zurück zum Zitat Schmitz C, Hof PR (2000) Recommendations for straightforward and rigorous methods of counting neurons based on a computer simulation approach. J Chem Neuroanat 20(1):93–114 Schmitz C, Hof PR (2000) Recommendations for straightforward and rigorous methods of counting neurons based on a computer simulation approach. J Chem Neuroanat 20(1):93–114
Zurück zum Zitat Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130(4):813–831 Schmitz C, Hof PR (2005) Design-based stereology in neuroscience. Neuroscience 130(4):813–831
Zurück zum Zitat Sherwood CC, Subiaul F, Zawidzki TW (2008) A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 212(4):426–454 Sherwood CC, Subiaul F, Zawidzki TW (2008) A natural history of the human mind: tracing evolutionary changes in brain and cognition. J Anat 212(4):426–454
Zurück zum Zitat Šimić G, Kostović I, Winblad B, Bogdanović N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379(4):482–494 Šimić G, Kostović I, Winblad B, Bogdanović N (1997) Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. J Comp Neurol 379(4):482–494
Zurück zum Zitat Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99(2):195–231 Squire LR (1992) Memory and the hippocampus: a synthesis from findings with rats, monkeys, and humans. Psychol Rev 99(2):195–231
Zurück zum Zitat Stephan H, Manolescu J (1980) Comparative investigations on hippocampus in insectivores and primates. Z Mikrosk Anat Forsch 94(6):1025–1050 Stephan H, Manolescu J (1980) Comparative investigations on hippocampus in insectivores and primates. Z Mikrosk Anat Forsch 94(6):1025–1050
Zurück zum Zitat Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800 Thal DR, Rüb U, Orantes M, Braak H (2002) Phases of Aβ-deposition in the human brain and its relevance for the development of AD. Neurology 58(12):1791–1800
Zurück zum Zitat Todorov OS, Weisbecker V, Gilissen E, Zilles K, de Sousa AA (2019) Primate hippocampus size and organization are predicted by sociality but not diet. Proc R Soc B 286(1914):20191712 Todorov OS, Weisbecker V, Gilissen E, Zilles K, de Sousa AA (2019) Primate hippocampus size and organization are predicted by sociality but not diet. Proc R Soc B 286(1914):20191712
Zurück zum Zitat van Dijk RM, Huang SH, Slomianka L, Amrein I (2016) Taxonomic separation of hippocampal networks: principal cell populations and adult neurogenesis. Front Neuroanat 10:22 van Dijk RM, Huang SH, Slomianka L, Amrein I (2016) Taxonomic separation of hippocampal networks: principal cell populations and adult neurogenesis. Front Neuroanat 10:22
Zurück zum Zitat Van Essen DC, Donahue CJ, Glasser MF (2018) Development and evolution of cerebral and cerebellar cortex. Brain Behav Evol 91:158–169 Van Essen DC, Donahue CJ, Glasser MF (2018) Development and evolution of cerebral and cerebellar cortex. Brain Behav Evol 91:158–169
Zurück zum Zitat Vanier DR, Sherwood CC, Smaers JB (2019) Distinct patterns of hippocampal and neocortical evolution in primates. Brain Behav Evol 93(4):171–181 Vanier DR, Sherwood CC, Smaers JB (2019) Distinct patterns of hippocampal and neocortical evolution in primates. Brain Behav Evol 93(4):171–181
Zurück zum Zitat Walker LC, Jucker M (2017) The exceptional vulnerability of humans to Alzheimer’s disease. Trends Mol Med 23(6):534–545 Walker LC, Jucker M (2017) The exceptional vulnerability of humans to Alzheimer’s disease. Trends Mol Med 23(6):534–545
Zurück zum Zitat Waterson R, Lander E, Wilson R (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87 Waterson R, Lander E, Wilson R (2005) Initial sequence of the chimpanzee genome and comparison with the human genome. Nature 437:69–87
Zurück zum Zitat West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14(4):287–293 West MJ (1993) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14(4):287–293
Zurück zum Zitat West MJ, Gundersen HJG (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296(1):1–22 West MJ, Gundersen HJG (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296(1):1–22
Zurück zum Zitat West MJ, Kawas CH, Martin LJ, Troncoso JC (2000) The CA1 region of the human hippocampus is a hot spot in Alzheimer’s disease. Ann N Y Acad Sci 908:255–259 West MJ, Kawas CH, Martin LJ, Troncoso JC (2000) The CA1 region of the human hippocampus is a hot spot in Alzheimer’s disease. Ann N Y Acad Sci 908:255–259
Zurück zum Zitat Witter MP, Amaral DG (1995) Hippocampal formation. In: Paxinos G (ed) The Rat Nervous System. Academic Press, San Diego, pp 635–704 Witter MP, Amaral DG (1995) Hippocampal formation. In: Paxinos G (ed) The Rat Nervous System. Academic Press, San Diego, pp 635–704
Metadaten
Titel
Quantification of neurons in the hippocampal formation of chimpanzees: comparison to rhesus monkeys and humans
verfasst von
Christina N. Rogers Flattery
Rebecca F. Rosen
Aaron S. Farberg
Jeromy M. Dooyema
Patrick R. Hof
Chet C. Sherwood
Lary C. Walker
Todd M. Preuss
Publikationsdatum
09.09.2020
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 8/2020
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-020-02139-x

Weitere Artikel der Ausgabe 8/2020

Brain Structure and Function 8/2020 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Schützt Olivenöl vor dem Tod durch Demenz?

10.05.2024 Morbus Alzheimer Nachrichten

Konsumieren Menschen täglich 7 Gramm Olivenöl, ist ihr Risiko, an einer Demenz zu sterben, um mehr als ein Vierten reduziert – und dies weitgehend unabhängig von ihrer sonstigen Ernährung. Dafür sprechen Auswertungen zweier großer US-Studien.

Bluttest erkennt Parkinson schon zehn Jahre vor der Diagnose

10.05.2024 Parkinson-Krankheit Nachrichten

Ein Bluttest kann abnorm aggregiertes Alpha-Synuclein bei einigen Menschen schon zehn Jahre vor Beginn der motorischen Parkinsonsymptome nachweisen. Mit einem solchen Test lassen sich möglicherweise Prodromalstadien erfassen und die Betroffenen früher behandeln.

Darf man die Behandlung eines Neonazis ablehnen?

08.05.2024 Gesellschaft Nachrichten

In einer Leseranfrage in der Zeitschrift Journal of the American Academy of Dermatology möchte ein anonymer Dermatologe bzw. eine anonyme Dermatologin wissen, ob er oder sie einen Patienten behandeln muss, der eine rassistische Tätowierung trägt.

Wartezeit nicht kürzer, aber Arbeit flexibler

Psychotherapie Medizin aktuell

Fünf Jahren nach der Neugestaltung der Psychotherapie-Richtlinie wurden jetzt die Effekte der vorgenommenen Änderungen ausgewertet. Das Hauptziel der Novellierung war eine kürzere Wartezeit auf Therapieplätze. Dieses Ziel wurde nicht erreicht, es gab jedoch positive Auswirkungen auf andere Bereiche.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.