Skip to main content
Erschienen in: Respiratory Research 1/2020

Open Access 01.12.2020 | Research

Quantitative CT-based structural alterations of segmental airways in cement dust-exposed subjects

verfasst von: Taewoo Kim, Hyun Bin Cho, Woo Jin Kim, Chang Hyun Lee, Kum Ju Chae, So-Hyun Choi, Kyeong Eun Lee, So Hyeon Bak, Sung Ok Kwon, Gong Yong Jin, Jiwoong Choi, Eun-Kee Park, Ching-Long Lin, Eric A. Hoffman, Sanghun Choi

Erschienen in: Respiratory Research | Ausgabe 1/2020

Abstract

Background

Dust exposure has been reported as a risk factor of pulmonary disease, leading to alterations of segmental airways and parenchymal lungs. This study aims to investigate alterations of quantitative computed tomography (QCT)-based airway structural and functional metrics due to cement-dust exposure.

Methods

To reduce confounding factors, subjects with normal spirometry without fibrosis, asthma and pneumonia histories were only selected, and a propensity score matching was applied to match age, sex, height, smoking status, and pack-years. Thus, from a larger data set (N = 609), only 41 cement dust-exposed subjects were compared with 164 non-cement dust-exposed subjects. QCT imaging metrics of airway hydraulic diameter (Dh), wall thickness (WT), and bifurcation angle (θ) were extracted at total lung capacity (TLC) and functional residual capacity (FRC), along with their deformation ratios between TLC and FRC.

Results

In TLC scan, dust-exposed subjects showed a decrease of Dh (airway narrowing) especially at lower-lobes (p < 0.05), an increase of WT (wall thickening) at all segmental airways (p < 0.05), and an alteration of θ at most of the central airways (p < 0.001) compared with non-dust-exposed subjects. Furthermore, dust-exposed subjects had smaller deformation ratios of WT at the segmental airways (p < 0.05) and θ at the right main bronchi and left main bronchi (p < 0.01), indicating airway stiffness.

Conclusions

Dust-exposed subjects with normal spirometry demonstrated airway narrowing at lower-lobes, wall thickening at all segmental airways, a different bifurcation angle at central airways, and a loss of airway wall elasticity at lower-lobes. The airway structural alterations may indicate different airway pathophysiology due to cement dusts.
Hinweise

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
QCT
Quantitative computed tomography
D h
Hydraulic diameter
WT
Wall thickness
θ
Bifurcation angle
TLC
Total lung capacity
FRC
Functional residual capacity
COPD
Chronic obstructive pulmonary disease
FEV1
Forced expiratory volume in one second
Jacobian
Determinant of Jacobian
fSAD%
Percent functional small airway disease
Emph%
Percent emphysema
DE
Dust-exposed
NDE
Non-dust-exposed
KNUH
Kangwon national university hospital
CODA
Chronic obstructive pulmonary disease in dusty areas near cement plants
CNUH
Chonbuk national university hospital
FVC
Forced vital capacity
PSM
Propensity score matching
PFT
Pulmonary function test
BMI
Body mass index
ε Dh
Deformation ratio of Dh
ε WT
Deformation ratio of WT
ε θ
Deformation ratio of θ
RMB
Right main bronchus
LMB
Left main bronchus
RUL
Right upper lobe
RML
Right middle lobe
RLL
Right lower lobe
LUL
Left upper lobe
LLL
Left lower lobe
BronInt
Right intermediate bronchus
TriLLB
Trifurcation of left lower lobe
sRUL
Sub-grouped right upper lobe with branches of RB1 to RB3
sRML
Sub-grouped right middle lobe with branches of RB4 to RB5
sRLL
Sub-grouped right lower lobe with branches of RB6 to RB10
sLUL
Sub-grouped left upper lobe with branches of LB1 to LB5
sLLL
Sub-grouped left lower lobe with branches of LB6, and LB8 to LB10
IC
Inspiratory capacity
SD
Standard deviation
CI
Confidence interval
MESA
Multi-ethnic study of atherosclerosis
SARP
Severe asthma research program

Background

Dust exposure has been reported as a risk factor for pulmonary disease. For example, occupational dust exposure has been significantly associated with chronic obstructive pulmonary disease (COPD) [1]. Exposure to desert dust has been correlated with an increased risk of hospitalization for asthma [2]. An association between dust exposure and lung function has been reported via cytological and spirometry findings. In dusty areas near cement plants, the serum mercury level of blood samples was correlated with a decrease in the forced expiratory volume in 1 s (FEV1) and a risk of obstructive lung disease [3]. In addition, workers exposed to dust working in a cement factory were likely to have a decrease in peak expiratory flow [4]. However, the effects of environmental dust exposure on residents near cement plants have not been studied in detail. In this study, we hypothesize that environmental dust exposure by cements is associated with alterations of quantitative computed tomography (QCT)-based airway structural and functional metrics. Thus, QCT imaging-based variables are used to investigate structural and functional alterations due to dust exposure.
With respect to QCT imaging, few studies have investigated the effects of dust exposure on airway structure and lung function. For instance, coal and gold miners have been found to have a higher prevalence of emphysema compared with control groups [5]. The emphysema score measured by QCT has been associated with construction workers who are heavily exposed to asbestos [6] but not quartz and silica [7, 8]. Many previous studies have been limited regarding fully understanding the effects of dust exposure because they employed only one or a few imaging variables for a small number of subjects. More recently, Marchetti et al. [9] demonstrated that occupational dust-exposed subjects had a greater percentage of emphysema, percentage of air trapping, and wall area. The advanced post-processing of QCT imaging can reveal more airway structure features, such as airway luminal hydraulic diameter (Dh), wall thickness (WT), and bifurcation angle (θ) in proximal airways, as well as parenchymal functional features, including air volume, tissue volume, the determinant of Jacobian (Jacobian), percent functional small airway disease (fSAD%), and percent emphysema (Emph%), through the image registration technique [10]. QCT metrics were able to classify clinically meaningful clusters of asthma [11].
With a comprehensive set of QCT imaging-based metrics, we aim to investigate unique features of airway structure and lung parenchymal function between subjects exposed to cement dust (dust-exposed: DE) and subjects with none or little exposure to cement dust (non-dust-exposed: NDE). The DE and NDE subjects were acquired at two different imaging sites, respectively. Both imaging sites collected two CT images for a subject at functional residual capacity (FRC) and total lung capacity (TLC). To minimize the intersite variability, we employed a fraction-threshold method [10, 12], when estimating parametric response map, i.e., fSAD% and Emph%. Next, to control the intersubject variability due to sex, age, height, smoking history, pack-years, and more, we employed a statistical method, i.e., propensity score matching method [13]. This allows for an objective comparison between two groups.

Methods

Study population

We employed 311 subjects with cement dust effects collected from Kangwon National University Hospital (KNUH) supported by a Korean research project called the Chronic Obstructive pulmonary disease in Dusty Areas near cement plants (CODA) cohort over approximately 10 years [3, 14, 15]. This project was designed to investigate the effect of cement-dust exposure on patients’ health near cement plants located in the Kangwon and Chungbuk provinces of South Korea considering the distance of cement plants and wind direction based on meteorological data from the National Institute of Environmental Research of the Ministry. The size of cement dust varies between 0.5 and 5 μm [16]. As control data, we employed 298 subjects with none or little exposure to cement dust collected from Chonbuk National University Hospital (CNUH) over 3 years [17]. The control subjects had normal findings on CT imaging, such as an absence of lung lesions or air-trapping, and no known history of lung disease or surgery. Both the KNUH and CNUH studies were approved by the Institutional Review Board at individual sites (KNUH 2019–06-007 and CUH 2016–03–020-005) and used a similar imaging protocol (Table 1).
Table 1
Scanners and scanning protocol used for non-dust-exposed subjects and dust-exposed subjects
 
Non-dust-exposed subjects
Dust-exposed subjects
Institution
CNUH
KNUH
Scanner make
Siemens Definition Flash 128 slices
Siemens Definition AS 64 slices
Scan type
Spiral
Spiral
Rotation time(s)
0.5
0.5
Detector configuration
128 × 0.6 mm
64 × 0.6 mm
Pitch
1
1
Peak kilovoltage, kVp
120
140
mAs
110, Effective
100, Effective
Dose modulation
Care dose OFF
Care dose OFF
Reconstruction algorithm
B35f
B30f
Thickness (mm)
1
0.6
Iterative reconstruction
No selection
No selection
CNUH Chonbuk National University Hospital, KNUH Kangwon National University Hospital, mAs Milliamperage seconds
A flow chart for the subject selection procedure is provided in Fig. 1. To select subjects with normal lung function, we only included subjects with FEV1/forced vital capacity (FVC) ≥ 70% and FVC %predicted value≥80%. In addition, we excluded subjects with any prior diagnosis of fibrosis, asthma and/or pneumonia. This exclusion procedure allows for an objective comparison by eliminating confounding effects caused by pulmonary diseases such as fibrosis, asthma, pneumonia, and COPD. Then propensity score matching (PSM) method was applied for 63 DE and 274 NDE subjects, to reduce the confounding effects of age, sex, height, smoking history, and pack-years. See the subsection Statistical analysis for the PSM method. In this study, pulmonary function tests (PFTs) of DE and NDE subjects were performed according to the American Thoracic Society/European Respiratory Society guideline [18].

QCT-based airway structure and lung function

In both TLC and FRC scans, we derived the luminal hydraulic diameter (Dh, TLC and Dh, FRC), airway wall thickness (WTTLC and WTFRC), and bifurcation angle (θTLC and θFRC) using Apollo software 2.0 (VIDA Diagnostics, Coralville, Iowa, USA), along with an in-house post-process. The bifurcation angle was defined as an angle between two daughter branches of a proximal airway. Dh, WT, and θ could be used to assess airway narrowing, wall thickening, and the alteration of branching structure, respectively.
To assess the deformable features of segmental airways, the deformation ratio ε between TLC to FRC was computed as follows:
$$ {\varepsilon}^{\phi }\ \left(\%\right)=\frac{\phi^{TLC}-{\phi}^{FRC}}{\phi^{FRC}}\times 100, $$
(1)
where ϕ is any structural variable of Dh, WT, and θ, so εDh, εWT, and εθ were derived in this study. To measure the regional features of airways, structural variables were extracted from seven central airways and five subgroup regions. A detailed description of airway labeling is given in Fig. 2. The seven central airways included the trachea, right main bronchus (RMB), bronchus intermedius (BronInt), trifurcation of the right lower lobe (TriRUL), main bronchus (LMB), trifurcation of the left upper lobe (TriLUL), and LLB6. The five subgroup lobes included the right upper lobe (sRUL), right middle lobe (sRML), right lower lobe (sRLL), left upper lobe (sLUL), and left lower lobe (sLLL).
Functional variables included the air volumes at TLC and FRC, inspiratory capacity (IC), and Jacobian between TLC and FRC, respectively. In addition, Emph% and fSAD% were computed using an image registration technique [19]. To minimize the inter-center variability of Emph% and fSAD%, a fraction-threshold [10] method was used. Detailed formulations of these imaging variables are included in the references [10, 11, 20].

Statistical analysis

We used the PSM method to reduce the bias between two groups of DE and NDE subjects. A propensity score is the predicted probability of belonging to the treatment group, and would be calculated for each subject in the study [13]. The propensity scores were estimated by multiple logistic regression analysis using the age and height variables stratified sex and smoking status. Matching was done using the Greedy 1–4 matching within a caliper, 0.2 times standard error of propensity scores. To validate PSM we used standardized difference, defined balance as an absolute value less than 10 [21]. PSM method was conducted using SAS 9.4 software.
One sample t-tests were performed for the subjects matched by PSM method to compare the difference of QCT imaging-based metrics. The values are represented by means and the standard deviation (SD) in Tables 2, 3 and 4 and means and the confidence interval (CI) in Figs. 3, 4, 5 and 6. A significance level of p = 0.05 was chosen for a total of 135 comparison tests, resulting in a false discovery rate of 8.2%. Statistical analyses were conducted using R software.
Table 2
Propensity score matching before and after data using demographic (sex, age, height, smoking status, and pack-years) information for non-dust-exposed subjects and dust-exposed subjects
 
Before propensity score matching
After propensity score matching (1:4)
NDE subjects
DE subjects
St.Diff.
NDE subjects
DE subjects
St.Diff.
(N = 255)
(N = 63)
(N = 164)
(N = 41)
N
(%)
N
(%)
N
(%)
N
(%)
Sex
 Male
99
(38.8)
45
(68.2)
61.6
80
(48.8)
20
(48.8)
0.0
 Female
156
(61.2)
21
(31.8)
 
84
(51.2)
21
(51.2)
 
Age
 mean ± std
51.0
±15.1
70.5
±7.5
±1.6
49.7
±15.4
70.0
±8.0
±1.7
Height
 mean ± std
161.4
±9.6
159.9
±10.1
±0.2
162.9
±9.7
157.9
±11.3
±0.5
Smoking
 Non/Former Smoking Participants
224
(87.8)
57
(86.4)
4.4
144
(87.8)
36
(87.8)
0.0
 Current Smoking Participants
31
(12.2)
9
(13.6)
 
20
(12.2)
5
(12.2)
 
Pack-years
 mean ± std
4.6
±13.2
14.7
±21.9
±0.6
4.4
±12.3
10.4
±22.7
±0.3
BMI
 mean ± std
24.4
±3.3
24.1
±2.8
0.372*
19 subjects were excluded by missing values of pack-years in NDE subjects. NDE Non-dust exposed, DE Dust exposed, St. Diff. Standardized differences; *, P-value obtained by one-sample t-test
Table 3
Comparison of deformation ratios of the bifurcation angle (εθ) between non-dust-exposed subjects and dust-exposed subjects
Region
NDE subjects(n = 164)
DE subjects(n = 41)
P value
Trachea
−2.713
(7.232)
−1.713
(5.389)
0.191
RMB
14.51
(10.44)
8.172
(6.396)
< 0.001
TriRUL
1.290
(12.31)
4.194
(7.858)
< 0.05
BronInt
−2.171
(13.53)
−1.849
(11.07)
0.815
LMB
11.29
(10.40)
7.728
(12.39)
< 0.01
TriLUL
6.366
(9.857)
2.708
(9.361)
< 0.005
LLB6
6.505
(13.91)
5.084
(10.14)
0.266
Values are presented as mean (SD); BronInt Bronchus intermedius, LMB Left main bronchus, RMB Right main bronchus, TriRUL Trifurcation of right lower lobe, TriLUL Trifurcation of left upper lobe, εθ Deformation ratio of bifurcation angle
Table 4
QCT-based lung functions between non-dust-exposed subjects and dust-exposed subjects
QCT-based lung functions
NDE subjects (n = 164)
DE subjects (n = 41)
P value
TLC, liter
3.902
(1.030)
3.477
(0.970)
< 0.001
FRC, liter
2.163
(0.705)
1.977
(0.741)
< 0.05
IC, liter
1.794
(0.842)
1.543
(0.723)
< 0.005
Jacobian
Total
1.690
(0.364)
1.617
(0.348)
0.058
LUL
1.601
(0.346)
1.558
(0.355)
0.258
LLL
1.884
(0.452)
1.900
(0.469)
0.734
RUL
1.581
(0.338)
1.440
(0.268)
< 0.001
RML
1.465
(0.256)
1.391
(0.224)
< 0.005
RLL
1.861
(0.436)
1.834
(0.414)
0.562
Emph%
0.017
(0.023)
0.010
(0.013)
< 0.005
fSAD%
0.087
(0.116)
0.080
(0.106)
0.554
Values are presented as mean (SD); Emph% Percent emphysema; FRC Functional residual volume, fSAD% Percent functional small airway disease, IC Inspiratory capacity, TLC Total lung capacity, QCT Quantitative computed tomography, LLL Left lower lobe, LUL Left upper lobe, RLL Right lower lobe, RML Right middle lobe, RUL Right upper lobe; The values are presented with absolute values in TLC, FRC, and IC, not predicted values

Results

Demographics information

Table 2 shows the demographic information for DE and NDE subjects in the before- and after- propensity score based matched data. The standardized differences of sex and smoking status were zero, indicating an exact matching. Standardized differences of continuous metrics, i.e., age, height, and pack-years were 1.4, 0.5, and 0.3, respectively. Note that the value of standardized difference smaller than 10 is considered as well-balanced. After matching the continuous metrics, body mass index (BMI) of two groups is also shown to be balanced.

Segmental airways of dust-exposed subjects at TLC and FRC

Figure 3 shows the generational (left column) and regional (middle and right columns) differences in Dh between DE and NDE subjects from TLC scans (Dh, TLC; top row) and FRC scans (Dh, FRC; bottom row). Relative to NDE subjects, the Dh, TLC and Dh, FRC of DE subjects were smaller in the airways at RMB, TriLUL, and TriRUL (Fig. 3b and e). The significant difference of Dh was observed especially at all lobes in TLC (P < 0.05). Except for these airways, there were no or little statistical difference of the Dh, TLC and Dh, FRC.
Figure 4 then shows the generational and regional differences of WT from TLC (top row) and FRC (bottom row) scans. DE subjects had increased WT in all regions except for RMB and LMB at the TLC scan and all regions except for LLB6 at the FRC scan. Consequently, WT was significantly increased from 2nd to 5th generation (P < 0.001), being different from Dh. Compared with NDE subjects, the θTLC, and θFRC of the trachea and TriRUL were increased, and the θTLC of RMB, LMB, TriLUL and LLB6 was decreased in DE subjects (Fig. 5a, b). Similarly, the θFRC of DE subjects were decreased in RMB, TriLUL, and LLB6 compared with that of NDE subjects (Fig. 5b).
Regarding the deformation ratio of DhDh), there was no statistical difference between the two groups (not reported here). On the other hand, the εWT of the 4th–5th generations and all subgrouped lobes except sRUL and sLLL, namely segmental airways, were significantly smaller in DE subjects than NDE subjects (Fig. 6). Next, DE subjects had significantly smaller εθ in the RMB, LMB, and TriLUL (Table 3). Based upon WT and θ, DE subjects were found to have smaller deformations in bronchial structures when they breathe between TLC and FRC. The quantities possibly indicate an increase in airway stiffness of DE subjects. For instance, Fig. 7 supports this trend of bifurcation angle change at RMB between TLC and FRC in a DE subject (male; 74 years; BMI = 28) and an NDE subject (male; 67 years; BMI = 25).

Functional features of dust-exposed subjects

Table 4 shows the differences of QCT-based functional metrics between NDE and DE subjects. The values of TLC, FRC, and IC were presented with absolute values, rather than % predicted values, because sex, age, and height of the data were already balanced by PSM method. Regarding air volumes, both TLC and FRC of DE subjects were smaller, and IC was also smaller in DE subjects than those of NDE subjects. The Jacobian indicating volume change ratio was decreased in DE subjects at right upper lobe and right middle lobe, consistent with IC. Emph% of DE subjects was lower than that of NDE subjects. However, fSAD% of DE subjects was not significantly different from that of NDE subjects. A figure was displayed to demonstrate parenchymal features of Emph% and fSAD% (Fig. 8).

Discussion

In this study, with the aid of advanced QCT imaging analysis, we have investigated alterations of the airway structure and lung function at multiscale levels in subjects exposed to cement dust. Most similar studies [15, 8, 9] included patients with pulmonary diseases such as COPD and asthma, whereas for an objective comparison, this study excluded patients with pneumonia, asthma, and COPD to minimize confounding effects due to the pulmonary diseases. We also employed a robust statistical method of propensity score matching to control demographic confounders such as age, sex, height, smoking history, and pack-years. It has been known that imaging protocols between different centers are sensitive when estimating density-based imaging metrics such as Emph%, and fSAD% [22], whereas they are less sensitive on airway size parameters [20]. Therefore, we employed a fraction threshold method to compute the Emph% and fSAD%.
With sensitive QCT imaging metrics, we demonstrated that the airway structures of DE subjects had different features from those of NDE subjects. The DE subjects are characterized by phenotypes of airway narrowing (Dh) at lower-lobes, wall thickening (WT) at all segmental airways, and alteration of branching structure (θ) at central airways. These findings were similarly observed in a previous study where individuals with occupational exposure had an increased airway wall thickness [9]. In the meantime, a multicenter study of former and current smokers using the multi-ethnic study of atherosclerosis (MESA) COPD data reveals that COPD subjects caused by mainly smoking have thinner airway walls [23]. The subjects in this study could be also progressed into COPD later, but these subjects exposed by cement dusts have thickened airway walls. A previous study has reported that exposure to cement dust leads to an increase in airway inflammation [24]. Thus, the distinguished phenotypes on airway walls are likely to indicate different airway pathophysiology.
A recent asthma study by Shim et al. [25] using severe asthma research program (SARP) data has demonstrated an association of airway lumen change between TLC and FRC with a corticosteroid treatment, but there were no investigations of wall thickness and branching angle changes between TLC and FRC. In this study, we computed strains for airway hydraulic diameter, wall thickness, and branching angle. To our best knowledge, this is the first effort of estimating strains at bronchial levels between TLC and FRC. As a result, the DE subjects were found to have the increased stiffness of wall thickness (εWT) and bifurcation angle (εθ) which could be affected by lung fibrosis and atelectasis, possibly due to the airway inflammation. In particular, the stiffened airways were likely to affect the prevention of airway deformation from FRC to TLC, sustaining the airway skeletal structure at FRC.
Regarding parenchymal functional variables (Table 4), lung volume at TLC, lung volume at FRC, IC, and Jacobian in DE subjects were smaller than NDE subjects. The decreased IC and Jacobian in DE subjects also could indicate a reduction of lung deformation. Especially, the reduction of Jacobian was found to be significantly correlated with εθ at RMB (Spearman test R = 0.416, P < 0.005). Based upon our analysis, we presume that the significantly reduced lung volume at TLC was caused by a reduced volume change (Jacobian). This is also possibly correlated with an increased stiffness of airways estimated by εWT and εθ (Table 3 and Fig. 6). In this study, fSAD% of DE subjects was similar with NDE subject, and Emph% of DE subjects was even lower than NDE subjects (Table 4). This is possibly due to the subgrouping by normal lung function, and also indicates that structural alterations of segmental airways begin earlier than parenchymal functional alterations.
Compared with lung functional metrics, airway structural variables provided very clear differences between the DE and NDE subjects. This implies that dust exposure due to cements was significantly associated with bronchial alterations in segmental scales rather than in parenchymal levels. As the size of cement dust ranges from 0.5 to 5 μm [16], cement particles may be deposited in segmental airways [24, 26, 27]. These features are different from the characteristics of cigarette smoke particles. Sahu et al. [28] demonstrated that the deposition rate of cigarette smoke particles was greater in parenchymal regions than in segmental regions due to the small size of the particles (ranging from 0.01 to 1 μm). A previous study found that smokers with normal spirometry were more susceptible to parenchymal alteration associated with the emphysema score [29, 30]. Whether the structural alterations observed here progress to parenchymal levels, leading to severe air-trapping and emphysema, has yet to be confirmed with a longitudinal study.
This study has several limitations. It was retrospectively designed by utilizing CT images collected at two respective sites. Thus, the findings obtained here were possibly influenced by intersite variability, such as scanner difference. However, as shown in Table 1, the two centers used the same scanner make (Siemens), same inspiratory maneuver (TLC), same expiratory maneuver (FRC), and similar reconstruction algorithms (B30f from KNUH and B35f from CNUH), so consistent regional attenuation, airway diameter, and wall thickness between the two groups are expected [31, 32]. In addition, the percent emphysema and percent fSAD were derived from the method using a fraction-threshold [10] that is a density variation-free method. Therefore, these results were not significantly influenced by scanner differences. In the previous study [20, 33], we already confirmed that different scanner had little confounding effect for QCT analysis with data derived from different sites. Furthermore, dust-exposed subjects could suffer from several pulmonary diseases such as interstitial lung disease and fibrosis which were not indicated by FEV1 and FVC. Therefore, it was better to include DLCO for the criterion when choosing subjects with normal lung function. Unfortunately, DLCO was not collected in this project, but we excluded any noticeable parenchymal diseases such as fibrosis, asthma, and pneumonia, so we believe that the current features in cement dust exposed subjects remained the same.

Conclusions

In conclusion, with QCT imaging metrics, we demonstrated that DE subjects had unique features of airway structure, especially in segmental airways, compared with NDE subjects. In structural variables, DE subjects showed airway narrowing at lower-lobes, wall thickening at all segmental airways, a different bifurcation angle at central airways, and a loss of airway wall elasticity at lower-lobes compared with NDE subjects. Unlike segmental airways, parenchymal changes were relatively marginal at this stage for subjects with normal spirometry, which may be associated with the large size of cement dust. It has yet to be investigated if airway structural changes are associated with flow structure and particle distribution and deposition, so a future study with computational fluid dynamics is needed.

Acknowledgements

Not applicable.
Both the KNUH and CNUH studies were approved by the Institutional Review Board at individual sites (KNUH 2019–06-007 and CUH 2016–03–020-005).
Not applicable.

Competing interests

Eric A. Hoffman is a shareholder in VIDA diagnostics, a company that is commercializing lung image analysis software derived by the University of Iowa lung imaging group. He is also a member of the Siemens CT advisory board.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Fishwick D, Bradshaw LM, D'SOUZA W, Town I, Armstrong R, Pearce N, et al. Chronic bronchitis, shortness of breath, and airway obstruction by occupation in New Zealand. Am J Respir Crit Care Med. 1997;156(5):1440–6.PubMed Fishwick D, Bradshaw LM, D'SOUZA W, Town I, Armstrong R, Pearce N, et al. Chronic bronchitis, shortness of breath, and airway obstruction by occupation in New Zealand. Am J Respir Crit Care Med. 1997;156(5):1440–6.PubMed
2.
Zurück zum Zitat Kanatani KT, Ito I, Al-Delaimy WK, Adachi Y, Mathews WC, Ramsdell JW. Desert dust exposure is associated with increased risk of asthma hospitalization in children. Am J Respir Crit Care Med. 2010;182(12):1475–81.PubMedPubMedCentral Kanatani KT, Ito I, Al-Delaimy WK, Adachi Y, Mathews WC, Ramsdell JW. Desert dust exposure is associated with increased risk of asthma hospitalization in children. Am J Respir Crit Care Med. 2010;182(12):1475–81.PubMedPubMedCentral
3.
Zurück zum Zitat Heo J, Park HS, Hong Y, Park J, Hong S-H, Bang CY, et al. Serum heavy metals and lung function in a chronic obstructive pulmonary disease cohort. Toxicol Environ Heal Sci. 2017;9(1):30–5. Heo J, Park HS, Hong Y, Park J, Hong S-H, Bang CY, et al. Serum heavy metals and lung function in a chronic obstructive pulmonary disease cohort. Toxicol Environ Heal Sci. 2017;9(1):30–5.
4.
Zurück zum Zitat Zeleke ZK, Moen BE, Bråtveit M. Cement dust exposure and acute lung function: a cross shift study. BMC Pulmonary Med. 2010;10(1):19. Zeleke ZK, Moen BE, Bråtveit M. Cement dust exposure and acute lung function: a cross shift study. BMC Pulmonary Med. 2010;10(1):19.
5.
Zurück zum Zitat Garshick E, Schenker MB, Dosman JA. Occupationally induced airways obstruction. Med Clinics. 1996;80(4):851–78. Garshick E, Schenker MB, Dosman JA. Occupationally induced airways obstruction. Med Clinics. 1996;80(4):851–78.
6.
Zurück zum Zitat Huuskonen O, Kivisaari L, Zitting A, Kaleva S, Vehmas T. Emphysema findings associated with heavy asbestos-exposure in high resolution computed tomography of finnish construction workers. J Occup Health. 2004;46(4):266–71.PubMed Huuskonen O, Kivisaari L, Zitting A, Kaleva S, Vehmas T. Emphysema findings associated with heavy asbestos-exposure in high resolution computed tomography of finnish construction workers. J Occup Health. 2004;46(4):266–71.PubMed
7.
Zurück zum Zitat Meijer E, Nij ET, Kraus T, van der Zee J, van Delden O, van Leeuwen M, et al. Pneumoconiosis and emphysema in construction workers: results of HRCT and lung function findings. Occup Environ Med. 2011;68(7):542–6.PubMed Meijer E, Nij ET, Kraus T, van der Zee J, van Delden O, van Leeuwen M, et al. Pneumoconiosis and emphysema in construction workers: results of HRCT and lung function findings. Occup Environ Med. 2011;68(7):542–6.PubMed
8.
Zurück zum Zitat Gevenois P-A, Sergent G, De Maertelaer V, Gouat F, Yernault JC, De Vuyst P. Micronodules and emphysema in coal mine dust or silica exposure: relation with lung function. Eur Respir J. 1998;12(5):1020–4.PubMed Gevenois P-A, Sergent G, De Maertelaer V, Gouat F, Yernault JC, De Vuyst P. Micronodules and emphysema in coal mine dust or silica exposure: relation with lung function. Eur Respir J. 1998;12(5):1020–4.PubMed
9.
Zurück zum Zitat Marchetti N, Garshick E, Kinney GL, McKenzie A, Stinson D, Lutz SM, et al. Association between occupational exposure and lung function, respiratory symptoms, and high-resolution computed tomography imaging in COPDGene. Am J Respir Crit Care Med. 2014;190(7):756–62.PubMedPubMedCentral Marchetti N, Garshick E, Kinney GL, McKenzie A, Stinson D, Lutz SM, et al. Association between occupational exposure and lung function, respiratory symptoms, and high-resolution computed tomography imaging in COPDGene. Am J Respir Crit Care Med. 2014;190(7):756–62.PubMedPubMedCentral
10.
Zurück zum Zitat Choi S, Hoffman EA, Wenzel SE, Tawhai MH, Yin Y, Castro M, et al. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics. J Appl Physiol. 2013;115(5):730–42.PubMedPubMedCentral Choi S, Hoffman EA, Wenzel SE, Tawhai MH, Yin Y, Castro M, et al. Registration-based assessment of regional lung function via volumetric CT images of normal subjects vs. severe asthmatics. J Appl Physiol. 2013;115(5):730–42.PubMedPubMedCentral
11.
Zurück zum Zitat Choi S, Hoffman EA, Wenzel SE, Castro M, Fain S, Jarjour N, et al. Quantitative computed tomographic imaging–based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. J Allergy Clin Immunol. 2017;140(3):690–700. e8.PubMedPubMedCentral Choi S, Hoffman EA, Wenzel SE, Castro M, Fain S, Jarjour N, et al. Quantitative computed tomographic imaging–based clustering differentiates asthmatic subgroups with distinctive clinical phenotypes. J Allergy Clin Immunol. 2017;140(3):690–700. e8.PubMedPubMedCentral
12.
Zurück zum Zitat Choi S, Haghighi B, Choi J, Hoffman EA, Comellas AP, Newell JD, et al. Differentiation of quantitative CT imaging phenotypes in asthma versus COPD. BMJ Open Respir Re. 2017;4(1):e000252. Choi S, Haghighi B, Choi J, Hoffman EA, Comellas AP, Newell JD, et al. Differentiation of quantitative CT imaging phenotypes in asthma versus COPD. BMJ Open Respir Re. 2017;4(1):e000252.
13.
Zurück zum Zitat Parsons L. Reducing bias in a propensity score matched-pair sample using greedy matching techniques, Proceedings of the twenty-sixth Annual SAS users group international conference 2001. Cary: SAS Institute Inc; 2001. p. 214–26. Parsons L. Reducing bias in a propensity score matched-pair sample using greedy matching techniques, Proceedings of the twenty-sixth Annual SAS users group international conference 2001. Cary: SAS Institute Inc; 2001. p. 214–26.
14.
Zurück zum Zitat Kim S, Lim M-N, Hong Y, Han S-S, Lee S-J, Kim WJ. A cluster analysis of chronic obstructive pulmonary disease in dusty areas cohort identified three subgroups. BMC Pulmonary Med. 2017;17(1):209. Kim S, Lim M-N, Hong Y, Han S-S, Lee S-J, Kim WJ. A cluster analysis of chronic obstructive pulmonary disease in dusty areas cohort identified three subgroups. BMC Pulmonary Med. 2017;17(1):209.
15.
Zurück zum Zitat Han Y, Heo Y, Hong Y, Kwon SO, Kim WJ. Correlation between physical activity and lung function in dusty areas: results from the chronic obstructive pulmonary disease in dusty areas (CODA) cohort. Tuberc Respir Dis. 2019;82(4):311–8. Han Y, Heo Y, Hong Y, Kwon SO, Kim WJ. Correlation between physical activity and lung function in dusty areas: results from the chronic obstructive pulmonary disease in dusty areas (CODA) cohort. Tuberc Respir Dis. 2019;82(4):311–8.
16.
Zurück zum Zitat Kalačić I. Chronic nonspecific lung disease in cement workers. Arch Environ Health. 1973;26(2):78–83.PubMed Kalačić I. Chronic nonspecific lung disease in cement workers. Arch Environ Health. 1973;26(2):78–83.PubMed
17.
Zurück zum Zitat Kim SS, Jin GY, Li YZ, Lee JE, Shin HS. CT quantification of lungs and airways in normal Korean subjects. Korean J Radiol. 2017;18(4):739–48.PubMedPubMedCentral Kim SS, Jin GY, Li YZ, Lee JE, Shin HS. CT quantification of lungs and airways in normal Korean subjects. Korean J Radiol. 2017;18(4):739–48.PubMedPubMedCentral
18.
Zurück zum Zitat Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.PubMed Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J. 2005;26(2):319–38.PubMed
19.
Zurück zum Zitat Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, et al. Computed tomography–based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18(11):1711.PubMedPubMedCentral Galbán CJ, Han MK, Boes JL, Chughtai KA, Meyer CR, Johnson TD, et al. Computed tomography–based biomarker provides unique signature for diagnosis of COPD phenotypes and disease progression. Nat Med. 2012;18(11):1711.PubMedPubMedCentral
20.
Zurück zum Zitat Choi S, Hoffman EA, Wenzel SE, Castro M, Fain SB, Jarjour NN, et al. Quantitative assessment of multiscale structural and functional alterations in asthmatic populations. J Appl Physiol. 2015;118(10):1286–98.PubMedPubMedCentral Choi S, Hoffman EA, Wenzel SE, Castro M, Fain SB, Jarjour NN, et al. Quantitative assessment of multiscale structural and functional alterations in asthmatic populations. J Appl Physiol. 2015;118(10):1286–98.PubMedPubMedCentral
21.
Zurück zum Zitat Zhang Z, Kim HJ, Lonjon G, Zhu Y. Balance diagnostics after propensity score matching. Ann Transl Med. 2019;7(1):16.PubMedPubMedCentral Zhang Z, Kim HJ, Lonjon G, Zhu Y. Balance diagnostics after propensity score matching. Ann Transl Med. 2019;7(1):16.PubMedPubMedCentral
22.
Zurück zum Zitat Choi S, Hoffman EA, Wenzel SE, Castro M, Lin C-L. Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study. J Appl Physiol. 2014;117(6):593–603.PubMedPubMedCentral Choi S, Hoffman EA, Wenzel SE, Castro M, Lin C-L. Improved CT-based estimate of pulmonary gas trapping accounting for scanner and lung-volume variations in a multicenter asthmatic study. J Appl Physiol. 2014;117(6):593–603.PubMedPubMedCentral
23.
Zurück zum Zitat Smith BM, Hoffman EA, Rabinowitz D, Bleecker E, Christenson S, Couper D, et al. Comparison of spatially matched airways reveals thinner airway walls in COPD. The multi-ethnic study of atherosclerosis (MESA) COPD study and the subpopulations and intermediate outcomes in COPD study (SPIROMICS). Thorax. 2014;69(11):987–96.PubMedPubMedCentral Smith BM, Hoffman EA, Rabinowitz D, Bleecker E, Christenson S, Couper D, et al. Comparison of spatially matched airways reveals thinner airway walls in COPD. The multi-ethnic study of atherosclerosis (MESA) COPD study and the subpopulations and intermediate outcomes in COPD study (SPIROMICS). Thorax. 2014;69(11):987–96.PubMedPubMedCentral
24.
Zurück zum Zitat Fell AKM, Notø H, Skogstad M, Nordby K-C, Eduard W, Svendsen MV, et al. A cross-shift study of lung function, exhaled nitric oxide and inflammatory markers in blood in Norwegian cement production workers. Occup Environ Med. 2011;68(11):799–805.PubMedPubMedCentral Fell AKM, Notø H, Skogstad M, Nordby K-C, Eduard W, Svendsen MV, et al. A cross-shift study of lung function, exhaled nitric oxide and inflammatory markers in blood in Norwegian cement production workers. Occup Environ Med. 2011;68(11):799–805.PubMedPubMedCentral
25.
Zurück zum Zitat Shim SS, Schiebler ML, Evans MD, Jarjour N, Sorkness RL, Denlinger LC, et al. Lumen area change (Delta Lumen) between inspiratory and expiratory multidetector computed tomography as a measure of severe outcomes in asthmatic patients. J Allergy Clin Immunol. 2018;142(6):1773–80. e9.PubMedPubMedCentral Shim SS, Schiebler ML, Evans MD, Jarjour N, Sorkness RL, Denlinger LC, et al. Lumen area change (Delta Lumen) between inspiratory and expiratory multidetector computed tomography as a measure of severe outcomes in asthmatic patients. J Allergy Clin Immunol. 2018;142(6):1773–80. e9.PubMedPubMedCentral
26.
Zurück zum Zitat Lambert AR, O'shaughnessy PT, Tawhai MH, Hoffman EA, Lin C-L. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Sci Technol. 2011;45(1):11–25.PubMedPubMedCentral Lambert AR, O'shaughnessy PT, Tawhai MH, Hoffman EA, Lin C-L. Regional deposition of particles in an image-based airway model: large-eddy simulation and left-right lung ventilation asymmetry. Aerosol Sci Technol. 2011;45(1):11–25.PubMedPubMedCentral
27.
Zurück zum Zitat Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of β2-agonist particle size. Am J Respir Crit Care Med. 2005;172(12):1497–504.PubMed Usmani OS, Biddiscombe MF, Barnes PJ. Regional lung deposition and bronchodilator response as a function of β2-agonist particle size. Am J Respir Crit Care Med. 2005;172(12):1497–504.PubMed
28.
Zurück zum Zitat Sahu S, Tiwari M, Bhangare R, Pandit G. Particle size distribution of mainstream and exhaled cigarette smoke and predictive deposition in human respiratory tract. Aerosol Air Qual Res. 2013;13(1):324–32. Sahu S, Tiwari M, Bhangare R, Pandit G. Particle size distribution of mainstream and exhaled cigarette smoke and predictive deposition in human respiratory tract. Aerosol Air Qual Res. 2013;13(1):324–32.
29.
Zurück zum Zitat Hoesein FAM, de Hoop B, Zanen P, Gietema H, Kruitwagen CL, van Ginneken B, et al. CT-quantified emphysema in male heavy smokers: association with lung function decline. Thorax. 2011;66(9):782–7. Hoesein FAM, de Hoop B, Zanen P, Gietema H, Kruitwagen CL, van Ginneken B, et al. CT-quantified emphysema in male heavy smokers: association with lung function decline. Thorax. 2011;66(9):782–7.
30.
Zurück zum Zitat Ashraf H, Lo P, Shaker SB, de Bruijne M, Dirksen A, Tønnesen P, et al. Short-term effect of changes in smoking behaviour on emphysema quantification by CT. Thorax. 2011;66(1):55–60.PubMed Ashraf H, Lo P, Shaker SB, de Bruijne M, Dirksen A, Tønnesen P, et al. Short-term effect of changes in smoking behaviour on emphysema quantification by CT. Thorax. 2011;66(1):55–60.PubMed
31.
Zurück zum Zitat Kim N, Seo JB, Song K-S, Chae EJ, Kang S-H. Semi-automatic measurement of the airway dimension by computed tomography using the full-width-half-maximum method: a study on the measurement accuracy according to the CT parameters and size of the airway. Korean J Radiol. 2008;9(3):226–35.PubMedPubMedCentral Kim N, Seo JB, Song K-S, Chae EJ, Kang S-H. Semi-automatic measurement of the airway dimension by computed tomography using the full-width-half-maximum method: a study on the measurement accuracy according to the CT parameters and size of the airway. Korean J Radiol. 2008;9(3):226–35.PubMedPubMedCentral
32.
Zurück zum Zitat Sieren JP, Newell JD Jr, Barr RG, Bleecker ER, Burnette N, Carretta EE, et al. SPIROMICS protocol for multicenter quantitative computed tomography to phenotype the lungs. Am J Respir Crit Care Med. 2016;194(7):794–806.PubMedPubMedCentral Sieren JP, Newell JD Jr, Barr RG, Bleecker ER, Burnette N, Carretta EE, et al. SPIROMICS protocol for multicenter quantitative computed tomography to phenotype the lungs. Am J Respir Crit Care Med. 2016;194(7):794–806.PubMedPubMedCentral
33.
Zurück zum Zitat Cho HB, Chae KJ, Jin GY, Choi J, Lin C-L, Hoffman EA, et al. Structural and functional features on quantitative chest computed tomography in the Korean Asian versus the white American healthy non-smokers. Korean J Radiol. 2019;20(7):1236–45.PubMedPubMedCentral Cho HB, Chae KJ, Jin GY, Choi J, Lin C-L, Hoffman EA, et al. Structural and functional features on quantitative chest computed tomography in the Korean Asian versus the white American healthy non-smokers. Korean J Radiol. 2019;20(7):1236–45.PubMedPubMedCentral
Metadaten
Titel
Quantitative CT-based structural alterations of segmental airways in cement dust-exposed subjects
verfasst von
Taewoo Kim
Hyun Bin Cho
Woo Jin Kim
Chang Hyun Lee
Kum Ju Chae
So-Hyun Choi
Kyeong Eun Lee
So Hyeon Bak
Sung Ok Kwon
Gong Yong Jin
Jiwoong Choi
Eun-Kee Park
Ching-Long Lin
Eric A. Hoffman
Sanghun Choi
Publikationsdatum
01.12.2020
Verlag
BioMed Central
Erschienen in
Respiratory Research / Ausgabe 1/2020
Elektronische ISSN: 1465-993X
DOI
https://doi.org/10.1186/s12931-020-01399-9

Weitere Artikel der Ausgabe 1/2020

Respiratory Research 1/2020 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.