Skip to main content
Erschienen in: Angiogenesis 2/2016

20.02.2016 | Original Paper

Rasip1 is essential to blood vessel stability and angiogenic blood vessel growth

verfasst von: Yeon Koo, David M. Barry, Ke Xu, Keiji Tanigaki, George E. Davis, Chieko Mineo, Ondine Cleaver

Erschienen in: Angiogenesis | Ausgabe 2/2016

Einloggen, um Zugang zu erhalten

Abstract

Cardiovascular function depends on patent, continuous and stable blood vessel formation by endothelial cells (ECs). Blood vessel development initiates by vasculogenesis, as ECs coalesce into linear aggregates and organize to form central lumens that allow blood flow. Molecular mechanisms underlying in vivo vascular ‘tubulogenesis’ are only beginning to be unraveled. We previously showed that the GTPase-interacting protein called Rasip1 is required for the formation of continuous vascular lumens in the early embryo. Rasip1−/− ECs exhibit loss of proper cell polarity and cell shape, disrupted localization of EC–EC junctions and defects in adhesion of ECs to extracellular matrix. In vitro studies showed that Rasip1 depletion in cultured ECs blocked tubulogenesis. Whether Rasip1 is required in blood vessels after their initial formation remained unclear. Here, we show that Rasip1 is essential for vessel formation and maintenance in the embryo, but not in quiescent adult vessels. Rasip1 is also required for angiogenesis in three models of blood vessel growth: in vitro matrix invasion, retinal blood vessel growth and directed in vivo angiogenesis assays. Rasip1 is thus necessary in growing embryonic blood vessels, postnatal angiogenic sprouting and remodeling, but is dispensable for maintenance of established blood vessels, making it a potential anti-angiogenic therapeutic target.

Graphical Abstract

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 195(1–2):122–143. doi:10.1159/000331410 CrossRefPubMed Sacharidou A, Stratman AN, Davis GE (2012) Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 195(1–2):122–143. doi:10.​1159/​000331410 CrossRefPubMed
2.
Zurück zum Zitat Bayless KJ, Davis GE (2002) The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci 115(Pt 6):1123–1136PubMed Bayless KJ, Davis GE (2002) The Cdc42 and Rac1 GTPases are required for capillary lumen formation in three-dimensional extracellular matrices. J Cell Sci 115(Pt 6):1123–1136PubMed
7.
Zurück zum Zitat Xu K, Sacharidou A, Fu S, Chong DC, Skaug B, Chen ZF, Davis GE, Cleaver O (2011) Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev Cell 20(4):526–539 Xu K, Sacharidou A, Fu S, Chong DC, Skaug B, Chen ZF, Davis GE, Cleaver O (2011) Blood vessel tubulogenesis requires Rasip1 regulation of GTPase signaling. Dev Cell 20(4):526–539
8.
Zurück zum Zitat Koh W, Mahan RD, Davis GE (2008) Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci 121(Pt 7):989–1001. doi:10.1242/jcs.020693 CrossRefPubMed Koh W, Mahan RD, Davis GE (2008) Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling. J Cell Sci 121(Pt 7):989–1001. doi:10.​1242/​jcs.​020693 CrossRefPubMed
11.
Zurück zum Zitat Mitin NY, Ramocki MB, Zullo AJ, Der CJ, Konieczny SF, Taparowsky EJ (2004) Identification and characterization of rain, a novel Ras-interacting protein with a unique subcellular localization. J Biol Chem 279(21):22353–22361CrossRefPubMed Mitin NY, Ramocki MB, Zullo AJ, Der CJ, Konieczny SF, Taparowsky EJ (2004) Identification and characterization of rain, a novel Ras-interacting protein with a unique subcellular localization. J Biol Chem 279(21):22353–22361CrossRefPubMed
14.
Zurück zum Zitat Wilson CW, Parker LH, Hall CJ, Smyczek T, Mak J, Crow A, Posthuma G, De Maziere A, Sagolla M, Chalouni C, Vitorino P, Roose-Girma M, Warming S, Klumperman J, Crosier PS, Ye W (2013) Rasip1 regulates vertebrate vascular endothelial junction stability through Epac1–Rap1 signaling. Blood 122(22):3678–3690. doi:10.1182/blood-2013-02-483156 CrossRefPubMedPubMedCentral Wilson CW, Parker LH, Hall CJ, Smyczek T, Mak J, Crow A, Posthuma G, De Maziere A, Sagolla M, Chalouni C, Vitorino P, Roose-Girma M, Warming S, Klumperman J, Crosier PS, Ye W (2013) Rasip1 regulates vertebrate vascular endothelial junction stability through Epac1–Rap1 signaling. Blood 122(22):3678–3690. doi:10.​1182/​blood-2013-02-483156 CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66. doi:10.1038/376062a0 CrossRefPubMed Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman ML, Schuh AC (1995) Failure of blood-island formation and vasculogenesis in Flk-1-deficient mice. Nature 376(6535):62–66. doi:10.​1038/​376062a0 CrossRefPubMed
18.
Zurück zum Zitat Hayashi S, Lewis P, Pevny L, McMahon AP (2002) Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 119(Suppl 1):S97–S101CrossRefPubMed Hayashi S, Lewis P, Pevny L, McMahon AP (2002) Efficient gene modulation in mouse epiblast using a Sox2Cre transgenic mouse strain. Mech Dev 119(Suppl 1):S97–S101CrossRefPubMed
19.
20.
Zurück zum Zitat Monvoisin A, Alva JA, Hofmann JJ, Zovein AC, Lane TF, Iruela-Arispe ML (2006) VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev Dyn 235(12):3413–3422. doi:10.1002/dvdy.20982 CrossRefPubMed Monvoisin A, Alva JA, Hofmann JJ, Zovein AC, Lane TF, Iruela-Arispe ML (2006) VE-cadherin-CreERT2 transgenic mouse: a model for inducible recombination in the endothelium. Dev Dyn 235(12):3413–3422. doi:10.​1002/​dvdy.​20982 CrossRefPubMed
21.
Zurück zum Zitat Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244(2):305–318. doi:10.1006/dbio.2002.0597 CrossRefPubMed Hayashi S, McMahon AP (2002) Efficient recombination in diverse tissues by a tamoxifen-inducible form of Cre: a tool for temporally regulated gene activation/inactivation in the mouse. Dev Biol 244(2):305–318. doi:10.​1006/​dbio.​2002.​0597 CrossRefPubMed
22.
Zurück zum Zitat Barry DM, Xu K, Meadows SM, Zheng Y, Norden PR, Davis GE, Cleaver O (2015) Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Development 142(17):3058–3070. doi:10.1242/dev.125260 CrossRefPubMed Barry DM, Xu K, Meadows SM, Zheng Y, Norden PR, Davis GE, Cleaver O (2015) Cdc42 is required for cytoskeletal support of endothelial cell adhesion during blood vessel formation in mice. Development 142(17):3058–3070. doi:10.​1242/​dev.​125260 CrossRefPubMed
26.
Zurück zum Zitat Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Developmental biology 230(2):230–242. doi:10.1006/dbio.2000.0106 CrossRefPubMed Kisanuki YY, Hammer RE, Miyazaki J, Williams SC, Richardson JA, Yanagisawa M (2001) Tie2-Cre transgenic mice: a new model for endothelial cell-lineage analysis in vivo. Developmental biology 230(2):230–242. doi:10.​1006/​dbio.​2000.​0106 CrossRefPubMed
27.
Zurück zum Zitat Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Luthi U, Barberis A, Benjamin LE, Makinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486. doi:10.1038/nature09002 CrossRefPubMed Wang Y, Nakayama M, Pitulescu ME, Schmidt TS, Bochenek ML, Sakakibara A, Adams S, Davy A, Deutsch U, Luthi U, Barberis A, Benjamin LE, Makinen T, Nobes CD, Adams RH (2010) Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature 465(7297):483–486. doi:10.​1038/​nature09002 CrossRefPubMed
28.
Zurück zum Zitat Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, Seaward MR, Willett KL, Aderman CM, Guerin KI, Hua J, Lofqvist C, Hellstrom A, Smith LE (2010) The mouse retina as an angiogenesis model. Investig Ophthalmol Vis Sci 51(6):2813–2826. doi:10.1167/iovs.10-5176 CrossRef Stahl A, Connor KM, Sapieha P, Chen J, Dennison RJ, Krah NM, Seaward MR, Willett KL, Aderman CM, Guerin KI, Hua J, Lofqvist C, Hellstrom A, Smith LE (2010) The mouse retina as an angiogenesis model. Investig Ophthalmol Vis Sci 51(6):2813–2826. doi:10.​1167/​iovs.​10-5176 CrossRef
29.
Zurück zum Zitat Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177CrossRefPubMedPubMedCentral Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D, Betsholtz C (2003) VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol 161(6):1163–1177CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, Zheng W, Franco CA, Murtomaki A, Aranda E, Miura N, Yla-Herttuala S, Fruttiger M, Makinen T, Eichmann A, Pollard JW, Gerhardt H, Alitalo K (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13(10):1202–1213. doi:10.1038/ncb2331 CrossRefPubMedPubMedCentral Tammela T, Zarkada G, Nurmi H, Jakobsson L, Heinolainen K, Tvorogov D, Zheng W, Franco CA, Murtomaki A, Aranda E, Miura N, Yla-Herttuala S, Fruttiger M, Makinen T, Eichmann A, Pollard JW, Gerhardt H, Alitalo K (2011) VEGFR-3 controls tip to stalk conversion at vessel fusion sites by reinforcing Notch signalling. Nat Cell Biol 13(10):1202–1213. doi:10.​1038/​ncb2331 CrossRefPubMedPubMedCentral
31.
Zurück zum Zitat Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660. doi:10.1038/nature07083 CrossRefPubMed Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, Waltari M, Hellstrom M, Schomber T, Peltonen R, Freitas C, Duarte A, Isoniemi H, Laakkonen P, Christofori G, Yla-Herttuala S, Shibuya M, Pytowski B, Eichmann A, Betsholtz C, Alitalo K (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454(7204):656–660. doi:10.​1038/​nature07083 CrossRefPubMed
32.
36.
Zurück zum Zitat Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG (2003) TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114(2):171–180CrossRefPubMed Seo DW, Li H, Guedez L, Wingfield PT, Diaz T, Salloum R, Wei BY, Stetler-Stevenson WG (2003) TIMP-2 mediated inhibition of angiogenesis: an MMP-independent mechanism. Cell 114(2):171–180CrossRefPubMed
37.
Zurück zum Zitat Napoli C, Giordano A, Casamassimi A, Pentimalli F, Ignarro LJ, De Nigris F (2011) Directed in vivo angiogenesis assay and the study of systemic neoangiogenesis in cancer. Int J Cancer 128(7):1505–1508. doi:10.1002/ijc.25743 CrossRefPubMed Napoli C, Giordano A, Casamassimi A, Pentimalli F, Ignarro LJ, De Nigris F (2011) Directed in vivo angiogenesis assay and the study of systemic neoangiogenesis in cancer. Int J Cancer 128(7):1505–1508. doi:10.​1002/​ijc.​25743 CrossRefPubMed
40.
Zurück zum Zitat Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780CrossRefPubMed Hellstrom M, Phng LK, Hofmann JJ, Wallgard E, Coultas L, Lindblom P, Alva J, Nilsson AK, Karlsson L, Gaiano N, Yoon K, Rossant J, Iruela-Arispe ML, Kalen M, Gerhardt H, Betsholtz C (2007) Dll4 signalling through Notch1 regulates formation of tip cells during angiogenesis. Nature 445(7129):776–780CrossRefPubMed
Metadaten
Titel
Rasip1 is essential to blood vessel stability and angiogenic blood vessel growth
verfasst von
Yeon Koo
David M. Barry
Ke Xu
Keiji Tanigaki
George E. Davis
Chieko Mineo
Ondine Cleaver
Publikationsdatum
20.02.2016
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 2/2016
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-016-9498-5

Weitere Artikel der Ausgabe 2/2016

Angiogenesis 2/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.