Skip to main content
Erschienen in: Angiogenesis 2/2016

Open Access 05.02.2016 | Original Paper

Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury

verfasst von: Eunate Gallardo-Vara, Francisco J. Blanco, Mercè Roqué, Scott L. Friedman, Toru Suzuki, Luisa M. Botella, Carmelo Bernabeu

Erschienen in: Angiogenesis | Ausgabe 2/2016

Abstract

After endothelial injury, the transcription factor Krüppel-like factor 6 (KLF6) translocates into the cell nucleus to regulate a variety of target genes involved in angiogenesis, vascular repair and remodeling, including components of the membrane transforming growth factor beta (TGF-β) receptor complex such as endoglin and activin receptor-like kinase 1. The membrane metalloproteinase 14 (MMP14 or MT1-MMP) targets endoglin to release soluble endoglin and is involved in vascular inflammation and endothelial tubulogenesis. However, little is known about the regulation of MMP14 expression during vascular wounding. In vitro denudation of monolayers of human endothelial cell monolayers leads to an increase in the KLF6 gene transcriptional rate, followed by an upregulation of MMP14 and release of soluble endoglin. Concomitant with this process, MMP14 co-localizes with endoglin in the sprouting endothelial cells surrounding the wound border. MMP14 expression at mRNA and protein levels is increased by ectopic KLF6 and downregulated by KLF6 suppression in cultured endothelial cells. Moreover, after wire-induced endothelial denudation, Klf6 +/− mice show lower levels of MMP14 in their vasculature compared with their wild-type siblings. Ectopic cellular expression of KLF6 results in an increased transcription rate of MMP14, and chromatin immunoprecipitation assays show that KLF6 interacts with MMP14 promoter in ECs, this interaction being enhanced during wound healing. Furthermore, KLF6 markedly increases the transcriptional activity of different reporter constructs of MMP14 gene promoter. These results suggest that KLF6 regulates MMP14 transcription and is a critical player of the gene expression network triggered during endothelial repair.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s10456-016-9495-8) contains supplementary material, which is available to authorized users.

Introduction

The endothelium plays a crucial role in regulating pathophysiological processes like vascular injury, angiogenesis, vascular remodeling, tumor growth, vasoconstriction, vasodilatation, inflammation or blood vessel permeability. During all these processes, proliferation, migration and invasion of endothelial cells (ECs) are essential and the study of the regulatory mechanisms involved in endothelial gene expression is a necessary step in the search of therapeutic targets.
Upon vascular injury, a coordinated gene expression program is triggered among those genes coding for extracellular matrix proteins, growth factors, receptors and proteases. One of these classes of proteins is the transforming growth factor-β (TGF-β) family, which includes TGF-β, activins and bone morphogenetic proteins (BMPs). TGF-βs are angiogenic factors that target ECs during vascular wound healing and signal through the Smad family of transcription factors [1]. Mutations in endothelial components of the TGF-β system are responsible for several inherited vascular diseases [2]. Thus, heterozygous for mutations in the ENG (endoglin), ACVRL1 (activin receptor-like kinase 1; ALK1), GDF2 (BMP9) or SMAD4 genes results in different variants of the familial vascular disorder known as hereditary hemorrhagic telangiectasia (HHT) characterized by an abnormal angiogenesis process where boundaries between arteries and veins are not well established [3, 4]. Endoglin protein is a membrane TGF-β co-receptor expressed primarily in ECs to regulate TGF-β signaling in the cardiovasculature [5, 6]. Endoglin is essential for angiogenesis during development, required for the maintenance of a normal vasculature in the adult, and mice that are homozygous for mutations in Eng die in mid-gestation from vascular defects [79].
The matrix metalloproteases (MMPs) represent an important family of proteins involved in diverse biological processes, including angiogenesis, stroke, vascular repair, inflammation and cancer [1013]. Sustained MMP activity is associated with vascular pathologies such as hypertension, restenosis, vascular malformations and atherosclerosis [14, 15]. During angiogenesis, MMPs play a key role in extracellular matrix degradation, favouring endothelial cell migration and vascular invasion. Among these, MMP14 is a membrane-type MMP (MT-MMP) belonging to the collagenase type I class. In the vascular setting, MMP14 is involved in: (i) capillary tube formation of human ECs using 3D collagen matrices [10, 16]; (ii) the inflammatory response of ECs [17]; (iii) the atherosclerotic plaque vulnerability [1820]; and (iv) the cross-talk between human airway basal cells and ECs [21]. Interestingly, MMP14 is upregulated in wound-derived blood vessels compared with vessels from intact human skin [22]. In addition to degrading the collagen surrounding new vascular cells [23], MMP14 releases latent TGF-β1 from latent TGF-binding protein (LTBP) and activates other MMPs secreted to the medium, such as MMP2, which has a critical role downstream of MMP14 for angiogenesis-mediated tumor invasion [24]. An increased number of MMP14 proteolytic substrates have been described recently, as well as its adhesive role in binding to collagens, glycoproteins, proteoglycans, integrins, cadherins and CD44 [17, 24]. In ECs, membrane endoglin is a proteolytic substrate of MMP14 resulting in the release of soluble endoglin [25, 26], which is associated with systemic hypertension during pregnancy and contributes to the pathogenesis of preeclampsia [2629]. Soluble endoglin antagonizes the functions of its membrane-bound form by inhibiting angiogenesis, capillary tube formation and sprouting, and increasing vascular permeability [25, 27, 30]. However, little is known about the putative release of soluble endoglin during endothelial injury and how MMP14 gene expression is activated to cleave membrane endoglin.
The zinc finger Krüppel-like factor (KLF) family of transcription factors regulates diverse biological processes including proliferation, development, survival and responses to external stress [31, 32]. Several studies support an important role for this family of factors in vascular biology [33]. KLF6 is considered as a damage-response factor that promotes vascular remodeling because of its ability of transactivating several endothelial target genes by direct binding to their promoters [31]. Upon vascular injury, KLF6 expression increases and translocates into the nucleus to specifically enhance the transcriptional activity of endoglin and activin receptor-like kinase 1 (ALK1) [34, 35]; two key TGF-β receptors involved in vascular remodeling and angiogenesis [36]. KLF6 also targets a pool of genes involved in motility and invasion during vascular remodeling and angiogenesis including collagen α1 [37], E-cadherin, MMP9, tissue factor pathway inhibitor-2 (TFPI-2), urokinase plasminogen activator, IL6 and VEGF [31, 33, 34, 38]. Furthermore, KLF6 knock-out mice are embryonic lethal due to a failure of erythropoiesis and yolk sac vascularization [39]. Altogether, these data point to KLF6 as a key regulator of angiogenesis and vascular remodeling.
Here, we have addressed whether gene expression of MMP14 and its proteolytic activity on its substrate endoglin are deregulated upon vascular injury. We have also investigated the possible involvement of the transcription factor KLF6 during this process. Our results demonstrate that on vascular injury, KLF6 transcriptionally upregulates the expression of MMP14 that is associated with increased MMP14 proteolytic activity leading to the release of soluble endoglin from ECs.

Materials and methods

Cell culture

The primary culture of human umbilical vein-derived endothelial cells (HUVEC) was obtained from Lonza. These cells were cultured in early passages (3–10) and exponentially grown onto 0.2 % gelatin (Sigma) pre-coated plates in endothelial basic medium (EBM2) supplemented with endothelial growth medium (EGM2; Lonza). The human embryonic kidney (HEK293T) cell line was cultured in Dulbecco’s modified Eagle’s medium (DMEM; Gibco). Both cell types were cultured at 37 °C in 5 % CO2. All the media were supplemented with 10 % heat inactivated fetal bovine serum (FBS; Gibco), 2 mM l-glutamine, 100 U/mL penicillin and 100 µg/mL streptomycin (Gibco).

Endothelial wound healing assay

For wound healing assays, cells were grown to confluence onto 0.2 % gelatin pre-coated wells. The wound was created by scratching the cell monolayer using a sterile pipette tip. Then, plates were immediately washed twice with PBS to remove the remaining cells and fresh medium was added. Endothelial cell migration into the denuded area was monitored with photographs taken at the time of the wound (0 h) and 2, 4, 6, 8 and 24-h post-wound. The Image J program was used to quantify the wound healing process by measuring the distance between the edges of the denuded area.

Mice and mechanical injury experiments

Generation of Klf6 +/− mice in the C57BL/6 strain has been previously reported [39]. To monitor the expression pattern of MMP14 in a vascular injury, we followed the technique described by Garrido et al. [34]. Briefly, Klf6 +/+ and Klf6 +/− mice were anesthetized and underwent bilateral endoluminal injury to the common femoral artery by passing three times a 0.25-mm-diameter angioplasty guidewire as described [40]. At 28 days post-injury, mice were killed and approximately 2-mm-thick transverse segments were cut at the level of the injury, in previously isolated hind limbs blocks embedded in paraffin. Five-µm cross-sections were obtained throughout the injured fragment.

Inmunohistochemistry

Paraffin embedded sections of femoral arteries were prewarmed at 60 °C and deparaffinized with xylene prior to hydration with a series of ethanol-graded dilutions followed by distilled water. Slides were subjected to antigen retrieval with 0.01 M sodium citrate buffer, pH 6.0 for 45 min at 95 °C in a water bath. The endogenous peroxidase activity of the tissues and unspecific epitopes was blocked with “peroxidase blocking reagent” during 5 min and “protein blocking reagent” during 30 min, respectively. All the reagents used were from NovoLink Polymer Detection System Kit for IHC (Novocastra, Millipore). MMP14 staining was detected with a rabbit monoclonal anti-MMP14 antibody (ab51074, Abcam) incubated overnight at 4 °C. Then, samples were incubated with the secondary antibody biotin-goat anti-rabbit IgG (H + L), followed by incubation with streptavidin–HRP (Cat #21126; Pierce). For development of the peroxidase activity, 3,3′-diaminobenzidine (DAB) chromogen was used. Nuclei were counterstained with Mayer’s hematoxylin 0.02 %, followed by immersion in ammonia water. Finally, slides were mounted in HiMo (05-HM, Bio-Optica, Milano, Italy) for observation with a camera-coupled bright-field microscope.

ELISA of soluble endoglin and IL-6

HUVEC monolayers were scratched with a pipette tip as described above. Culture supernatants were collected at the indicated times and analyzed by ELISA assays. Concentrations of human soluble endoglin and human IL-6 in the cell culture media were determined according to the manufacturer protocol by Quantikine Human Endoglin/CD105 and Quantikine Human IL-6, respectively (DNDG00 and D6050; R&D Systems). Soluble endoglin was also measured in the culture media of HUVECs or HEK293T cells previously transfected with expression vectors, as indicated. All immunoassays were measured in a GloMax multidetection system (Promega) and normalized by the percentage of cells in each control and post-wounded well.

Inmunofluorescence microscopy

In order to monitor the co-localization of MMP14 and endoglin in the membrane during the wound healing process, HUVECs were grown to confluence onto 12-mm-diameter coverslips, previously coated with 0.2 % (v/v) gelatin (Sigma-Aldrich) in PBS. When necessary, HUVECs were nucleofected with KLF6 plasmids and siRNAs for 48 h, prior to the wound healing assay. Then, the endothelial monolayer was disrupted once with a micropipette tip. After 4 and 6 h, cells were fixed with 3 % paraformaldehyde in PBS and blocked with PBS-BSA 1 %, prior to the incubation with the primary antibody mouse antihuman endoglin (P4A4; DHSB). Afterward, samples were washed with PBS twice and incubated with the second primary antibody, monoclonal rabbit antihuman MMP14 (ab51074, Abcam). Then, cells were incubated with two different secondary antibodies: Alexa 488 goat anti-mouse IgG and/or Alexa 647 goat anti-rabbit IgG (Molecular Probes, Invitrogen). To visualize the samples and for nuclear staining, the slides were mounted in Prolong-DAPI reagent (Molecular Probes, Invitrogen). Samples were observed using a fluorescence confocal microscopy Sp5 (DMI6000 CS Leica Microsystems). For the semi-quantification of fluorescence intensity and co-localization of endoglin and MMP14, an analysis of scatter plots (cytofluorograms) was carried out in the central layers of each condition. Data about the distribution of fluorescence signals and specific overlapping pixels were obtained taking into account Pearson’s correlation and setting a common background and threshold for green and red channels. All these measurements were obtained using the Image J and LAS-AF 2.6 software.

In silico analysis of promoter sequences

In silico analysis of GC-boxes containing putative KLF6 and Sp1 motifs in the MMP14 proximal promoter, corresponding to the upstream sequences of human (ID: 4323) and mouse (ID: 17387) genes, was performed by the Genomatix MatInspector software tool (http://​www.​genomatix.​de/​products/​MatInspector).

Flow cytometry

HUVECs were collected at different times (0, 2, 4, 6 and 8 h) after injury for the analysis of MMP14 and endoglin expression levels at the endothelial cell surface. Cells were incubated with a mouse monoclonal antibody against human endoglin (CD105; P4A4) or a rabbit monoclonal antibody against human MMP14 (ab51074, Abcam). A negative control was included using an irrelevant isotype control antibody X63 (IgG1). After washing the cells, they were incubated with Alexa Fluor 488 goat anti-mouse (A-11001 Molecular Probes, Invitrogen) for endoglin detection or Alexa Fluor 488 goat anti-rabbit IgG (11008 Molecular Probes, Invitrogen) for MMP14 detection. When working with nucleofected HUVECs, the expression levels of endoglin and MMP14 were measured by incubation with directly conjugated primary antibodies: Alexa Fluor 488 antihuman MMP14 (#128527; R&D Systems) and APC anti-endoglin/CD105 (#166707; R&D Systems). The fluorescence intensity was estimated with an EPICS XL and FC 500 flow cytometers (Beckman Coulter). A minimum of 10,000 cells were counted for each experimental point.

Metalloproteinase activity

Metalloproteinase activity of HUVECs was determined using the fluorogenic peptide substrate Mca-PLGL-Dpa-AR-NH2 (ES001; R&D Systems). HUVEC monolayers, at control conditions and at different times after wounding, were washed and incubated with 3 µM fluorogenic peptide diluted in DMSO and TNC buffer (50 mM Tris, 0.15 M NaCl, 10 mM CaCl2 and 0.002 % NaN3; pH, 7.5) during 1 h at 37 °C. The reaction was stopped by adding stop solution 10X (100 nM EDTA + 0.02 % NaN3). The fluorescence signal was read with a Varioskan flash spectral scanning multimode reader (Thermo Scientific).

Quantitative real-time PCR

Total mRNA was isolated with the SpeedTools Total RNA Extraction Kit (Biotools). A total of 1 µg of RNA was retrotranscribed with a high capacity cDNA reverse transcription kit (170-8891; iScript cDNA Synthesis kit; BioRad). The resulting cDNA was used as a template for quantitative real-time PCR (qRT-PCR) performed using LightCycler 480 PCR Master SYBR Green (Roche Applied Biosciences). Oligonucleotides for selected genes were designed using Roche software for qRT-PCR. The following forward (Fw) and reverse (Rv) primers were used: hENG, Fw 5′-GCCCCGAGAGGTGCTTCT-3′ and Rv 5′-TGCAGGAAGACACTGCTGTTTAC-3′; hKLF6, Fw 5′-CGGACGCACACAGGAGAAAA-3′ and Rv 5′-CGGTGTGCTTTCGGAAGTG-3′; hIL6, Fw 5′-GAAGGCAGCAGGCAACAC-3′ and Rv 5′-CAGGAGCCCAGCTATGAACT-3′; hMMP14, Fw 5′-CGATGTGGTGTTCCAGACAA-3′ and Rv 5′-TGGATGCAGAAAGTGATTTC-3′. As an internal control, mRNA levels of 18S were measured using primers Fw 5′-CTCAACACGGGAAACCTCAC-3′ and Rv 5′-CGCTCCACCAACTAAGAACG-3′. Amplicons were detected using a LightCycler 480 System II-384 (Roche Applied Biosciences). The specificity of the PCR products was assessed by melting curve analyses which showed only single amplified products. Assays were done in triplicate, and the results were normalized according to the expression levels of 18S rRNA.

Cell transfection, plasmids and reporter assays

Transient HEK293T transfections and HUVECs nucleofections were carried out using Lipofectamine 2000 (Invitrogen) and Amaxa HUVEC Nucleofector kit (VPB-1002, Lonza), respectively, according to the manufacturer’s instructions. Cells were analyzed 48 h later for protein and mRNA expression by flow cytometry or qRT-PCR. Human KLF6 was overexpressed by the encoding vector pCiNeo/KLF6 [35]. The siRNA-mediated KLF6 knock-down was carried out using a pool of five siRNAs targeting human KLF6 (sc-38021; Santa Cruz Biotechnology) and scrambled siRNA (Universal negative control SIC001; Sigma), as a negative control. The pMax-GFP vector (Amaxa Biosystems) was used as a control to assess transfection efficiency. For MMP14-luciferase reporter assays, three different 5′-serial constructs (−1544/+235; −800/+235; −300/+235) of the MMP14 promoter (pMT1) were chemically synthesized and cloned (BioNova Cientifica SL) into the pGL2-luc basic reporter plasmid (Promega). HEK293T cells were co-transfected with 1 µg/well of pGL2-luc basic promoter, pGL2-luc-pMT1-1544, pGL2-luc-pMT1-800 or pGL2-luc-pMT1-300 and Mock or pCIneo-KLF6 expression vector [34] for each condition. Forty-eight hours after transfection, cell lysates were analyzed using dual-luciferase reporter assay system (Promega) in a GloMax multidetection system luminometer (Promega). Transfection efficiency was normalized to β-galactosidase luciferase activity.

Chromatin inmunoprecipitation assays (ChIP)

ChIP experiments were performed with ChIP-IT Express Enzymatic kit (#53009; Active Motif) in HUVECs, as described by Garrido et al. [34]. Briefly, aliquots of the final sheared chromatin were used as “input chromatin” and the rest was incubated with protein G magnetic beads and 10 μg of rabbit polyclonal antibody antihuman KLF6 (#R-173; sc-7158, Santa Cruz Biotechnology), rabbit polyclonal antibody anti-histone H3K4me2 (#39141; Active Motif) or control rabbit IgG (#sc-2027; Santa Cruz Biotechnology). Protein G magnetic beads bound to the immune complexes were pelleted, washed and eluted. Then, cross-linking was reversed and samples were incubated with proteinase K and precipitated prior to resuspension in TE buffer. Binding of KLF6 was analyzed by PCR using primer pairs of four main KLF6-sites rich regions in the MMP14 promoter sequence. The first region encompasses from −1142 to −857 (285-bp), the second one from −783 to −569 (214-bp), the third one from −107 to +72 (179-bp) and the fourth one from −7 to + 233 (240 bp). Sequences of primer pairs were: first region, Fwd 5′-AGACTTCTATTCTTCTGCCA-3′ and Rev 5′-ATAAAGCTGACCGTGAGA-3′; second region, Fwd 5′-CTTTAAGAATTGCCTCCTTT-3′ and Rev 5′-CCAACCTTTGTAGAAAGACA-3′; third region, Fwd 5′-GGCTAAAACAACCACGTC-3′ and Rev 5′-GTGCCTGTTTGCTCTTCT-3′; and fourth region, Fwd 5′-AGGGAACCAGACCCCAGTTCG-3′ and Rev 5′-TCCGAGACCACCGGGTCA-3′. For negative and positive control PCRs, primers from ChIP-IT control human kit (#53010; Active Motif) were used.

Statistics

Data were subjected to statistical analysis, and the results are shown as mean ± SD. Differences in mean values were analyzed using Student’s t test. In figures, statistically significant values are marked with asterisks (*p < 0.05; **p < 0.01; ***p < 0.005; ns not significant).

Results

MMP14 and endoglin protein expression increases during endothelial denudation

We have previously demonstrated that following endothelial injury, KLF6 expression increases and translocates into the nucleus to specifically enhance the transcriptional activity of membrane-bound endoglin [35]. Because MMP14 can target membrane endoglin to release soluble endoglin [25, 26], we wondered whether MMP-14 expression was also modulated during endothelial wound healing. After denudation injury experiments performed in human umbilical vein endothelial cells (HUVECs) (Fig. 1a), MMP14 and endoglin expression was upregulated at mRNA (Fig. 1b) and cell surface protein (Fig. 2a, b) levels during the central hours (4–6 h) of the healing process. As expected, KLF6, a primary response gene to injury, was upregulated at early stages (2 h; Fig. 1c) of the wound healing process, an interval that is compatible with its transcriptional involvement in the subsequent increased expression of endoglin [35]. Interestingly, suppression of KLF6 in HUVECs (Fig. 1d) markedly inhibited the injury-induced expression of MMP14 and endoglin at mRNA (Fig. 1e, f) and protein (Fig. 2c, d) levels. The upregulation of MMP14 suggests an active role for its catalytic activity during the wound healing process. Indeed, using a fluorogenic peptide as a substrate, the proteolytic activity of MMP14 was steadily increased during the endothelial repair process (Fig. 2e, f). Among others, the proteolytic activity of MMP14 may contribute to degrade extracellular matrix proteins, as a typical collagenase that, in turn, could facilitate the associated endothelial cell migration during the wound healing process [25, 41, 42]. Accordingly, we found that suppression of MMP14 leads to a significantly decreased rate of wound closure in HUVEC monolayers upon denudation (Supplementary Fig. 1a–d).

Endothelial injury induces co-localization of MMP14 and endoglin and the release of soluble endoglin

The parallel increase in MMP14 and endoglin protein levels, as well as the enhanced MMP14 proteolytic activity observed during the wound healing process, prompted us to test whether MMP14 could target membrane endoglin to release its soluble form. Supporting this hypothesis, co-localization of MMP14 and endoglin in the plasma membrane of HUVECs under basal conditions and after 4 and 6 h of denudation was observed by confocal microscopy (Fig. 3a). In agreement with Fig. 2, an increased expression of both proteins was detected at 4–6 h after wounding, a time period associated with an active cellular migration. Immunostaining of MMP14 was observed in the membrane of those cells close to the edge of the wound. Some of these cells showed a clear co-localization of MMP14 and endoglin, as depicted in the merged images (yellow staining). Control staining in the absence of primary antibodies did not show any positive signal (data not shown), excluding a potential trapping of the immunofluorescent secondary antibodies, especially by the cell monolayer in the front of advance. In addition, a parallel distribution of MMP14 and endoglin was found along a drawing line above the edge of the wound after 4 and 6 h of injury, whereas an irregular distribution was found in the resting condition of the confluent HUVEC monolayer (Fig. 3b). A scatter plot (cytofluorogram) analysis of both fluorescent signals also showed an increased co-localization area/area foreground (or total fluorescence area) at 4 h and 6 h after wounding with respect to time 0 (Fig. 3c, d). Moreover, suppression of KLF6 with siRNA led to a decrease in the MMP14 and endoglin co-localization rate after wounding associated with a marked decrease in their basal expression (Supplementary Fig. 2). Further support for the association between endoglin and MMP14 was provided by co-immunoprecipitation studies (Supplementary Fig. 3). Thus, endoglin was detected by Western blot analysis after immunoprecipitation with anti-MMP14 antibodies in HUVECs, and this endoglin signal was enhanced at 6 h after wounding or upon ectopic expression of KLF6 (Supplementary Fig. 3a). By contrast, the intensity of the MMP14-associated endoglin band was decreased upon silencing of KLF6 with siRNA (Supplementary Fig. 3b).
Next, we assessed whether the co-localization of MMP14 and endoglin was associated with an increased shedding of soluble endoglin. Indeed, levels of soluble endoglin were markedly increased in the culture medium of HUVEC monolayers at different time points after denudation, showing the maximum endoglin shedding at 8 h after wounding (Fig. 4a). Furthermore, suppression of MMP14 in HUVEC monolayers led to significantly decreased levels of soluble endoglin at 6 and 8 h after wounding compared to controls (Supplementary Fig. 1e, f). In agreement with a recent report [34], IL6 levels were also induced upon endothelial denudation, showing a similar kinetics as soluble endoglin (Fig. 4b).

KLF6 upregulates expression of MMP14 after endothelial injury

KLF6 is a common transcription factor that is upregulated at the beginning of the activation phase in the endothelial injury model, as shown in Fig. 1c, in agreement with previous reports [34, 35]. This kinetics induction of KLF6 is compatible with the subsequent increase in MMP14 protein levels. To assess the effect of Klf6 suppression in vivo, MMP14 expression was studied in heterozygous Klf6 +/− and wild-type mice, using a model of wire-induced endothelial injury. Four weeks after removal of the tunica intima (endothelial layer) from the hindlimb femoral artery, the presence of MMP14 was examined by immunohistochemistry (Fig. 5a, b; Supplementary Fig. 4). In uninjured vessels from wild-type and KLF6 heterozygous littermates, the presence of MMP14 was almost undetectable. By contrast, expression of MMP14 was clearly increased after injury compared with uninjured femoral arteries of wild-type mice. On vascular injury, MMP14 was mainly localized in ECs of the hyperplasic neointima and in the thicker tunica media, composed mainly by vascular smooth muscle cells (vSMCs) (Fig. 5a). Interestingly, MMP14 staining in injured vessels of Klf6 +/− mice was significantly decreased relative to control wild-type littermates (Fig. 5a, b). These results suggest that KLF6 regulates the expression of MMP14.

MMP14 gene is a transcriptional target of KLF6

To assess whether MMP14 is a transcriptional target of KLF6, transient transfection experiments were performed in HEK293T cells (Fig. 5c, d). Ectopic expression of KLF6 led to a clear increase in the levels of endogenous MMP14 transcripts, as quantified by qRT-PCR (Fig. 5d). Also, the simultaneous overexpression of KLF6 and full length endoglin was associated with an increase in the levels of soluble endoglin (Fig. 5e). Furthermore, overexpression of KLF6 in HUVECs increased the levels of endogenous endoglin and MMP14 transcripts (Fig. 5f–h), as well as the amount of soluble endoglin under basal conditions and after endothelial denudation for 6 h (Fig. 5i). By contrast, suppression of KLF6 in HUVECs (Fig. 1d) decreased the levels of soluble endoglin induced during the wound healing process (Fig. 5j). These results suggest that the upregulated MMP14 proteolytically targets membrane endoglin releasing its soluble form to the culture media.
To analyze whether the MMP14 gene promoter contains putative binding motifs for KLF6, an in silico analysis of the proximal 5′-MMP14 promoter region with Genomatix MatInspector software was carried out (Fig. 6). All proteins of the KLF family are characterized by a highly conserved DNA binding domain, which preferentially recognizes sequences designated as Sp1 sites, i.e., “GC-box” or “CACCC elements” of diverse target genes [32]. We found several GC-rich domains along the −1444/+235 fragment of the MMP14 promoter (Fig. 6), and consensus motifs for KLF6 were identified at positions −1067, −1048, −718, −635, −86, −65, +83, +152 and +175 (Fig. 6b, c). Next, the physical interaction between KLF6 and the putative KLF6 binding motifs on the MMP14 promoter was examined by chromatin immunoprecipitation. HUVEC monolayers were subjected to endothelial denudation, and chromatin immunoprecipitation experiments were assayed using an anti-KLF6 antibody, both in control situation and after 3 h of endothelial denudation. KLF6-immunoprecipitated chromatin was subjected to polymerase chain reaction using different couples of primers, encompassing the four clusters of KLF6 motifs present in the MMP14 promoter sequence. As shown in Fig. 7a, KLF6 binding to MMP14 promoter was detected in the four amplified fragments (−1142/−857, −783/−569, −107/+72 and −7/+233) under basal conditions. Moreover, on endothelial wounding, the binding of KLF6 to MMP14 promoter was enhanced, as shown in the corresponding densitometric analysis (Fig. 7a). These results indicate that at least one KLF6 motif within each cluster is bound to the MMP14 promoter. To study the functional effect of this interaction, transcriptional experiments using MMP14 promoter (pMT1) constructs were performed. Transient co-transfections in HEK293T cells with three different luciferase-pMT1 deletion constructs, all of them including putative binding sites for KLF6 (−1544/+247; −800/+247; and −300/+247), showed a marked activation (~8–14-fold) upon KLF6 overexpression (Fig. 7b). The highest stimulation (14-fold) was obtained with the longest construct (−1544/+247), which contains all the identified consensus KLF6 motifs. These results demonstrate that KLF6 is able to functionally interact with the proximal −1544/+247 fragment of the MMP14 promoter, stimulating its transcriptional activity.

Discussion

An abnormal process of vascular remodeling may lead to pathological vascular lesions. Therefore, identification of molecular mediators implicated in the response to vascular injury is key to understand the mechanisms involved in vascular repair. Accumulated evidence in recent years implicates the transcription factor KLF6 in orchestrating the gene expression response of ECs to vascular injury [31, 33]. Endothelial expression of KLF6 is upregulated upon vascular injury and is responsible for the transcriptional activation of several genes involved in vascular remodeling, including endoglin, ALK1, urokinase plasminogen activator, collagen α1(I), TGF-β1 and TGF-β receptor type I [34, 35, 38]. Here, we provide evidence supporting the inclusion of MMP14 in the list of vascular genes regulated by KLF6. Using in vitro and in vivo models, we show that MMP14 is upregulated at the surface of ECs after vascular injury. Following endothelial wound healing, we found a temporal relationship between MMP14 and KLF6 transcript upregulation that is compatible with a transcriptional involvement of KLF6 in MMP14 gene expression regulation. Supporting this observation, MMP14 protein levels are much lower in injured femoral arteries of Klf6 +/− mice than those of wild-type animals. Also, suppression of KLF6 in cultured ECs decreases MMP14 expression and the subsequent release of soluble endoglin. Furthermore, ectopic expression of KLF6 is able to markedly transactivate the MMP14 gene promoter construct specifically designed and generated for this purpose. Previous reports have postulated that E2F and Ets families of transcription factors play a role in cancer through regulation of MMP14 gene promoter activity [43, 44]. In addition, transcription factors Egr-1, Sp1 and Sp3 are involved in the regulated expression of MMP14 in endothelial cells driven by hemodynamic forces and extracellular matrix contacts [4547]. To our knowledge, this is the first study that analyzes the transcriptional activity of an MMP14 gene promoter construct in response to endothelial injury. Our results prompted us to explore the potential regulation by KLF6 of the MMP14 gene. An in silico analysis of the proximal MMP14 promoter sequence revealed the presence of nine putative consensus binding sites for KLF6 along the −1544/+247 pMT1 fragment. The motifs are located at positions −1067, −1048, −718, −635, −86, −65, +83, +152 and +175. By chromatin immunoprecipitation, we demonstrate not only that KLF6 binds to four different KLF6 clusters (−1142/−857, −783/−569, −107/+72 and −7/+233) of the MMP14 promoter, but we also show that this binding is increased on endothelial injury in vitro. This finding agrees with the functional effect of KLF6 in transcriptional experiments using several MMP14 promoter constructs. Indeed, all constructs, including putative binding sites for KLF6 (−1544/+247; −800/+247; and −300/+247), showed a marked activation upon ectopic expression of KLF6. Together, these results demonstrate that KLF6 is able to functionally interact with the MMP14 promoter, stimulating its transcriptional activity. Importantly, many of the KLF6 motifs in the proximal MMP14 promoter are located at GC-rich regions where they overlap, or are surrounded by, consensus binding sites for the transcription factor Sp1 (Fig. 6). The physical proximity between KLF6 and Sp1 motifs suggests a synergistic collaboration of both transcription factors in the transcriptional machinery complex of MMP14. Supporting this interpretation, we have previously demonstrated the direct physical interaction and functional cooperation between Sp1 and KLF6 on endoglin and ALK1 gene promoters, in response to vascular injury [34, 35, 48].
Here, we report for the first time that endothelial denudation in vitro leads to an increase in soluble endoglin levels. Interestingly, MMP14 co-localizes with and targets membrane-bound endoglin to proteolytically release soluble endoglin. Overall, the functional link between MMP14 and endoglin in their parallel gene expression in response to endothelial damage supports their coordinated involvement in the molecular events triggered by a vascular injury to recover the endothelial homeostasis. While the role of MMP14 in vascular remodeling and the cellular processes involved has been previously described [17, 4951], little is known about the role of soluble endoglin in this specific setting. Circulating levels of soluble endoglin are elevated in preeclampsia, hypercholesterolemia, diabetes, atherosclerosis, severe pulmonary arterial hypertension, acute myocardial infarction and some types of solid cancers [2729, 5254]. Of note, many of these pathologies are associated with cardiovascular damage. At variance with the pro-angiogenic role of membrane-bound endoglin, soluble endoglin displays an anti-angiogenic activity [25, 27, 30], which has been postulated as a pathogenic contributor in preeclampsia [27]. In the context of cardiovascular repair after injury, active angiogenesis and endothelial cell proliferation are expected to occur in order to reestablish the proper circulation in the tissues. KLF6, an upstream trigger of soluble endoglin, is strongly expressed in ECs of highly vascularized tissues such as placenta and lung, and promotes vascular remodeling [31]. Thus, it is intriguing the role of the anti-angiogenic activity associated with soluble endoglin during the vascular repair process. Probably, the release of soluble endoglin constitutes an early response to vascular damage that halts angiogenesis, followed by a second phase involving the upregulation of membrane-bound endoglin and active angiogenesis [6, 35, 55]. In this regard, the release of soluble endoglin may have important consequences at the cellular level as it is associated with the decrease in the surface endoglin, which may lead to the downregulation of the ALK1/endoglin-dependent signaling pathway, a route that in ECs promotes angiogenesis [6, 36]. Further studies are necessary to elucidate the exact role of soluble endoglin, and the associated downregulation of membrane-bound endoglin, on the vascular repair process.
Although we have focused our MMP14 studies on its endothelial expression and function, MMP14 can be expressed by other cell types including vSMCs [49, 50]. This is in agreement with the expression of MMP14 in the layer of vSMCs surrounding the tunica intima after endothelial denudation of the femoral artery as seen in Fig. 5a. Of note, vSMCs can also express the MMP14 substrate endoglin in pathological vessels [56]. At variance with ECs, vSMCs are not directly injured in this animal model. Thus, a cross-talk between endothelial and smooth muscle cell layers appears necessary to explain the upregulated expression of MMP14 in vSMCs on vascular injury. In this line, an increase in IL-6 along the in vitro wounding process of ECs has been reported [34]. Moreover, KLF6 regulates the transcriptional activity of IL6 gene, suggesting that IL6 is a putative candidate to contribute to the paracrine effect on vSMCs surrounding the endothelium [34]. Supporting the involvement of IL6 in the vascular repair process is the finding that IL-6 KO mice take three times longer to heal than wild-type animals [57]. Thus, it can be postulated that the release of soluble factors, such as IL-6, from the injured endothelium would serve to expand the repair signal from the inner to the more distant layers of the vessel. This coordinated cross-talk between vSMCs and ECs [50] and the upregulated expression of MMP14 in vSMCs upon vascular damage are in agreement with the critical role that vSMCs play during pathologic vascular remodeling. Thus, VSMCs embedded within the collagen-rich matrix of the artery wall mobilize and activate MMP14 to degrade and infiltrate 3D barriers of interstitial collagen, including the arterial wall. In fact, genetic deletion of MMP14 affords mice with a protected status against neointimal hyperplasia and lumen narrowing in vivo [49].
In summary, our studies demonstrate for the first time a functional relationship between the transcription factor KLF6 and MMP14 expression (Fig. 8). Also, after vascular injury, KLF6 is responsible for the increased expression of membrane endoglin in endothelial cells and the subsequent MMP14-dependent release of soluble endoglin. The levels of IL6, a proangiogenic and proinflamatory cytokine, are also increased, as a consequence of KLF6 activation. Both IL6 and soluble endoglin could contribute to the cross-talk between ECs and vSMCs, which is involved in the mechanism of wound healing. Overall, these results suggest that KLF6 is a master regulator during vascular injury, repair and migration, and can play a role in physiological and pathological processes of the blood vessels.

Acknowledgments

We thank Drs. Eva Garrido-Martin and Alicia Garcia Arroyo for helpful comments and Carmen Langa for excellent technical assistance. This study was funded by grants from Ministerio de Economia y Competitividad of Spain (SAF2013-43421-R to CB and SAF2011-23475 to LMB), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER; ISCIII-CB06/07/0038 and ER16PIAC707 to CB), Red de Investigación Cooperativa en Salud (RD12/0042/0006 to MR), National Institutes of Health (NIH; DK37340 and DK56621 to SLF) and FEDER funds. CIBERER is an initiative of the Instituto de Salud Carlos III (ISCIII) of Spain.

Compliance with ethical standards

Ethical approval

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that they have no conflict of interest.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

Die Chirurgie

Print-Titel

Das Abo mit mehr Tiefe

Mit der Zeitschrift Die Chirurgie erhalten Sie zusätzlich Online-Zugriff auf weitere 43 chirurgische Fachzeitschriften, CME-Fortbildungen, Webinare, Vorbereitungskursen zur Facharztprüfung und die digitale Enzyklopädie e.Medpedia.

Bis 30. April 2024 bestellen und im ersten Jahr nur 199 € zahlen!

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Innere Medizin

Kombi-Abonnement

Mit e.Med Innere Medizin erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes Innere Medizin, den Premium-Inhalten der internistischen Fachzeitschriften, inklusive einer gedruckten internistischen Zeitschrift Ihrer Wahl.

Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Literatur
1.
8.
Zurück zum Zitat Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, Charlton R et al (2000) Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol 217(1):42–53. doi:10.1006/dbio.1999.9534 CrossRefPubMed Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, Charlton R et al (2000) Endoglin, an ancillary TGFbeta receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol 217(1):42–53. doi:10.​1006/​dbio.​1999.​9534 CrossRefPubMed
16.
Zurück zum Zitat Haas TL, Davis SJ, Madri JA (1998) Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J Biol Chem 273(6):3604–3610. doi:10.1074/jbc.273.6.3604 CrossRefPubMed Haas TL, Davis SJ, Madri JA (1998) Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J Biol Chem 273(6):3604–3610. doi:10.​1074/​jbc.​273.​6.​3604 CrossRefPubMed
17.
Zurück zum Zitat Koziol A, Gonzalo P, Mota A, Pollán Á, Lorenzo C, Colomé N, Montaner D, Dopazo J, Arribas J, Canals F, Arroyo AG (2012) The protease MT1-MMP drives a combinatorial proteolytic program in activated endothelial cells. FASEB J 26(11):4481–4494. doi:10.1096/fj.12-205906 CrossRefPubMed Koziol A, Gonzalo P, Mota A, Pollán Á, Lorenzo C, Colomé N, Montaner D, Dopazo J, Arribas J, Canals F, Arroyo AG (2012) The protease MT1-MMP drives a combinatorial proteolytic program in activated endothelial cells. FASEB J 26(11):4481–4494. doi:10.​1096/​fj.​12-205906 CrossRefPubMed
19.
Zurück zum Zitat Li C, Jin XP, Zhu M, Chen QL, Wang F, Hu XF, Wang WF et al (2014) Positive association of MMP 14 gene polymorphism with vulnerable carotid plaque formation in a Han Chinese population. Scand J Clin Lab Invest 74(3):248–253. doi:10.3109/00365513.2013.879731 CrossRefPubMed Li C, Jin XP, Zhu M, Chen QL, Wang F, Hu XF, Wang WF et al (2014) Positive association of MMP 14 gene polymorphism with vulnerable carotid plaque formation in a Han Chinese population. Scand J Clin Lab Invest 74(3):248–253. doi:10.​3109/​00365513.​2013.​879731 CrossRefPubMed
20.
Zurück zum Zitat Johnson JL, Jenkins NP, Huang WC, Di Gregoli K, Sala-Newby GB, Scholtes VP, Moll FL et al (2014) Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Mediators Inflamm 2014:276457. doi:10.1155/2014/276457 CrossRefPubMedPubMedCentral Johnson JL, Jenkins NP, Huang WC, Di Gregoli K, Sala-Newby GB, Scholtes VP, Moll FL et al (2014) Relationship of MMP-14 and TIMP-3 expression with macrophage activation and human atherosclerotic plaque vulnerability. Mediators Inflamm 2014:276457. doi:10.​1155/​2014/​276457 CrossRefPubMedPubMedCentral
21.
Zurück zum Zitat Ding BS, Gomi K, Rafii S, Crystal RG, Walters MS (2015) Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells. J Cell Sci 128(16):2983–2988. doi:10.1242/jcs.168179 CrossRefPubMed Ding BS, Gomi K, Rafii S, Crystal RG, Walters MS (2015) Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells. J Cell Sci 128(16):2983–2988. doi:10.​1242/​jcs.​168179 CrossRefPubMed
24.
Zurück zum Zitat Lu H, Hu L, Yu L, Wang X, Urvalek AM, Li T, Shen C, Mukherjee D, Lahiri SK, Wason MS, Zhao J (2014) KLF8 and FAK cooperatively enrich the active MMP14 on the cell surface required for the metastatic progression of breast cancer. Oncogene 33(22):2909–2917. doi:10.1038/onc.2013.247 CrossRefPubMedPubMedCentral Lu H, Hu L, Yu L, Wang X, Urvalek AM, Li T, Shen C, Mukherjee D, Lahiri SK, Wason MS, Zhao J (2014) KLF8 and FAK cooperatively enrich the active MMP14 on the cell surface required for the metastatic progression of breast cancer. Oncogene 33(22):2909–2917. doi:10.​1038/​onc.​2013.​247 CrossRefPubMedPubMedCentral
25.
Zurück zum Zitat Hawinkels LJ, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E, Sier CF, ten Dijke P (2010) Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res 70(10):4141–4150. doi:10.1158/0008-5472.CAN-09-4466 CrossRefPubMed Hawinkels LJ, Kuiper P, Wiercinska E, Verspaget HW, Liu Z, Pardali E, Sier CF, ten Dijke P (2010) Matrix metalloproteinase-14 (MT1-MMP)-mediated endoglin shedding inhibits tumor angiogenesis. Cancer Res 70(10):4141–4150. doi:10.​1158/​0008-5472.​CAN-09-4466 CrossRefPubMed
26.
Zurück zum Zitat Valbuena-Diez AC, Blanco FJ, Oujo B, Langa C, Gonzalez-Nuñez M, Llano E, Pendas AM, Díaz M, Castrillo A, Lopez-Novoa JM, Bernabeu C (2012) Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation 126(22):2612–2624. doi:10.1161/CIRCULATIONAHA.112.101261 CrossRefPubMed Valbuena-Diez AC, Blanco FJ, Oujo B, Langa C, Gonzalez-Nuñez M, Llano E, Pendas AM, Díaz M, Castrillo A, Lopez-Novoa JM, Bernabeu C (2012) Oxysterol-induced soluble endoglin release and its involvement in hypertension. Circulation 126(22):2612–2624. doi:10.​1161/​CIRCULATIONAHA.​112.​101261 CrossRefPubMed
27.
Zurück zum Zitat Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12(6):642–649. doi:10.1038/nm1429 CrossRefPubMed Venkatesha S, Toporsian M, Lam C, Hanai J, Mammoto T, Kim YM, Bdolah Y, Lim KH, Yuan HT, Libermann TA, Stillman IE, Roberts D, D’Amore PA, Epstein FH, Sellke FW, Romero R, Sukhatme VP, Letarte M, Karumanchi SA (2006) Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat Med 12(6):642–649. doi:10.​1038/​nm1429 CrossRefPubMed
29.
Zurück zum Zitat Oujo B, Perez-Barriocanal F, Bernabeu C, Lopez-Novoa JM (2013) Membrane and soluble forms of endoglin in preeclampsia. Curr Mol Med 13(8):1345–1357CrossRefPubMed Oujo B, Perez-Barriocanal F, Bernabeu C, Lopez-Novoa JM (2013) Membrane and soluble forms of endoglin in preeclampsia. Curr Mol Med 13(8):1345–1357CrossRefPubMed
30.
Zurück zum Zitat Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, Sako D, Pearsall RS, Underwood KW, Seehra J, Kumar R, Grinberg AV (2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 286(34):30034–30046. doi:10.1074/jbc.M111.260133 CrossRefPubMedPubMedCentral Castonguay R, Werner ED, Matthews RG, Presman E, Mulivor AW, Solban N, Sako D, Pearsall RS, Underwood KW, Seehra J, Kumar R, Grinberg AV (2011) Soluble endoglin specifically binds bone morphogenetic proteins 9 and 10 via its orphan domain, inhibits blood vessel formation, and suppresses tumor growth. J Biol Chem 286(34):30034–30046. doi:10.​1074/​jbc.​M111.​260133 CrossRefPubMedPubMedCentral
34.
Zurück zum Zitat Garrido-Martín EM, Blanco FJ, Roquè M, Novensà L, Tarocchi M, Lang UE, Suzuki T, Friedman SL, Botella LM, Bernabéu C (2013) Vascular injury triggers Krüppel-like factor 6 mobilization and cooperation with specificity protein 1 to promote endothelial activation through upregulation of the activin receptor-like kinase 1 gene. Circ Res 112(1):113–127. doi:10.1161/CIRCRESAHA.112.275586 CrossRefPubMedPubMedCentral Garrido-Martín EM, Blanco FJ, Roquè M, Novensà L, Tarocchi M, Lang UE, Suzuki T, Friedman SL, Botella LM, Bernabéu C (2013) Vascular injury triggers Krüppel-like factor 6 mobilization and cooperation with specificity protein 1 to promote endothelial activation through upregulation of the activin receptor-like kinase 1 gene. Circ Res 112(1):113–127. doi:10.​1161/​CIRCRESAHA.​112.​275586 CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Botella LM, Sánchez-Elsner T, Sanz-Rodriguez F, Kojima S, Shimada J, Guerrero-Esteo M, Cooreman MP, Ratziu V, Langa C, Vary CP, Ramirez JR, Friedman S, Bernabéu C (2002) Transcriptional activation of endoglin and transforming growth factor-beta signaling components by cooperative interaction between Sp1 and KLF6: their potential role in the response to vascular injury. Blood 100(12):4001–4010. doi:10.1182/blood.V100.12.4001 CrossRefPubMed Botella LM, Sánchez-Elsner T, Sanz-Rodriguez F, Kojima S, Shimada J, Guerrero-Esteo M, Cooreman MP, Ratziu V, Langa C, Vary CP, Ramirez JR, Friedman S, Bernabéu C (2002) Transcriptional activation of endoglin and transforming growth factor-beta signaling components by cooperative interaction between Sp1 and KLF6: their potential role in the response to vascular injury. Blood 100(12):4001–4010. doi:10.​1182/​blood.​V100.​12.​4001 CrossRefPubMed
37.
Zurück zum Zitat Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q, Kim SJ, Friedman SL (1998) Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem 273(50):33750–33758. doi:10.1074/jbc.273.50.33750 CrossRefPubMed Kim Y, Ratziu V, Choi SG, Lalazar A, Theiss G, Dang Q, Kim SJ, Friedman SL (1998) Transcriptional activation of transforming growth factor beta1 and its receptors by the Kruppel-like factor Zf9/core promoter-binding protein and Sp1. Potential mechanisms for autocrine fibrogenesis in response to injury. J Biol Chem 273(50):33750–33758. doi:10.​1074/​jbc.​273.​50.​33750 CrossRefPubMed
38.
Zurück zum Zitat Kojima S, Hayashi S, Shimokado K, Suzuki Y, Shimada J, Crippa MP, Friedman SL (2000) Transcriptional activation of urokinase by the Krüppel-like factor Zf9/COPEB activates latent TGF-beta1 in vascular endothelial cells. Blood 95(4):1309–1316PubMed Kojima S, Hayashi S, Shimokado K, Suzuki Y, Shimada J, Crippa MP, Friedman SL (2000) Transcriptional activation of urokinase by the Krüppel-like factor Zf9/COPEB activates latent TGF-beta1 in vascular endothelial cells. Blood 95(4):1309–1316PubMed
40.
Zurück zum Zitat Roque M, Fallon JT, Badimon JJ, Zhang WX, Taubman MB, Reis ED (2000) Mouse model of femoral artery denudation injury associated with the rapid accumulation of adhesion molecules on the luminal surface and recruitment of neutrophils. Arterioscler Thromb Vasc Biol 20(2):335–342. doi:10.1161/01.ATV.20.2.335 CrossRefPubMed Roque M, Fallon JT, Badimon JJ, Zhang WX, Taubman MB, Reis ED (2000) Mouse model of femoral artery denudation injury associated with the rapid accumulation of adhesion molecules on the luminal surface and recruitment of neutrophils. Arterioscler Thromb Vasc Biol 20(2):335–342. doi:10.​1161/​01.​ATV.​20.​2.​335 CrossRefPubMed
43.
Zurück zum Zitat Izumiyama Y, Ohiro Y, Higashino F, Yoshida K, Taguchi K, Todo S, Kohgo T, Totsuka Y, Shindoh M (2005) E1AF expression is closely correlated with malignant phenotype of tongue squamous cell carcinoma through activation of MT1-MMP gene promoters. Oncol Rep 13(4):715–720. doi:10.3892/or.13.4.715 PubMed Izumiyama Y, Ohiro Y, Higashino F, Yoshida K, Taguchi K, Todo S, Kohgo T, Totsuka Y, Shindoh M (2005) E1AF expression is closely correlated with malignant phenotype of tongue squamous cell carcinoma through activation of MT1-MMP gene promoters. Oncol Rep 13(4):715–720. doi:10.​3892/​or.​13.​4.​715 PubMed
45.
46.
Zurück zum Zitat Yun S, Dardik A, Haga M, Yamashita A, Yamaguchi S, Koh Y, Madri JA, Sumpio BE (2002) Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1-matrix metalloproteinase expression in endothelium. J Biol Chem 277(38):34808–34814. doi:10.1074/jbc.M205417200 CrossRefPubMed Yun S, Dardik A, Haga M, Yamashita A, Yamaguchi S, Koh Y, Madri JA, Sumpio BE (2002) Transcription factor Sp1 phosphorylation induced by shear stress inhibits membrane type 1-matrix metalloproteinase expression in endothelium. J Biol Chem 277(38):34808–34814. doi:10.​1074/​jbc.​M205417200 CrossRefPubMed
47.
Zurück zum Zitat Yamaguchi S, Yamaguchi M, Yatsuyanagi E, Yun SS, Nakajima N, Madri JA, Sumpio BE (2002) Cyclic strain stimulates early growth response gene product 1-mediated expression of membrane type 1 matrix metalloproteinase in endothelium. Lab Invest 82(7):949–956CrossRefPubMed Yamaguchi S, Yamaguchi M, Yatsuyanagi E, Yun SS, Nakajima N, Madri JA, Sumpio BE (2002) Cyclic strain stimulates early growth response gene product 1-mediated expression of membrane type 1 matrix metalloproteinase in endothelium. Lab Invest 82(7):949–956CrossRefPubMed
48.
Zurück zum Zitat Garrido-Martin EM, Blanco FJ, Fernandez-L A, Langa C, Vary CP, Lee UE, Friedman SL, Botella LM, Bernabeu C (2010) Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1) promoter and its regulation by Sp1. BMC Mol Biol 11:51. doi:10.1186/1471-2199-11-51 CrossRefPubMedPubMedCentral Garrido-Martin EM, Blanco FJ, Fernandez-L A, Langa C, Vary CP, Lee UE, Friedman SL, Botella LM, Bernabeu C (2010) Characterization of the human Activin-A receptor type II-like kinase 1 (ACVRL1) promoter and its regulation by Sp1. BMC Mol Biol 11:51. doi:10.​1186/​1471-2199-11-51 CrossRefPubMedPubMedCentral
49.
Zurück zum Zitat Filippov S, Koenig GC, Chun TH, Hotary KB, Ota I, Bugge TH, Roberts JD, Fay WP, Birkedal-Hansen H, Holmbeck K, Sabeh F, Allen ED, Weiss SJ (2005) MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J Exp Med 202(5):663–671. doi:10.1084/jem.20050607 CrossRefPubMedPubMedCentral Filippov S, Koenig GC, Chun TH, Hotary KB, Ota I, Bugge TH, Roberts JD, Fay WP, Birkedal-Hansen H, Holmbeck K, Sabeh F, Allen ED, Weiss SJ (2005) MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J Exp Med 202(5):663–671. doi:10.​1084/​jem.​20050607 CrossRefPubMedPubMedCentral
50.
Zurück zum Zitat Yana I, Sagara H, Takaki S, Takatsu K, Nakamura K, Nakao K, Katsuki M, Taniguchi S, Aoki T, Sato H, Weiss SJ, Seiki M (2007) Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J Cell Sci 120(Pt 9):1607–1614. doi:10.1242/jcs.000679 CrossRefPubMed Yana I, Sagara H, Takaki S, Takatsu K, Nakamura K, Nakao K, Katsuki M, Taniguchi S, Aoki T, Sato H, Weiss SJ, Seiki M (2007) Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells. J Cell Sci 120(Pt 9):1607–1614. doi:10.​1242/​jcs.​000679 CrossRefPubMed
51.
53.
Zurück zum Zitat Blázquez-Medela AM, García-Ortiz L, Gómez-Marcos MA, Recio-Rodríguez JI, Sánchez-Rodríguez A, López-Novoa JM, Martínez-Salgado C (2010) Increased plasma soluble endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic patients. BMC Med 8:86. doi:10.1186/1741-7015-8-86 CrossRefPubMedPubMedCentral Blázquez-Medela AM, García-Ortiz L, Gómez-Marcos MA, Recio-Rodríguez JI, Sánchez-Rodríguez A, López-Novoa JM, Martínez-Salgado C (2010) Increased plasma soluble endoglin levels as an indicator of cardiovascular alterations in hypertensive and diabetic patients. BMC Med 8:86. doi:10.​1186/​1741-7015-8-86 CrossRefPubMedPubMedCentral
54.
Zurück zum Zitat Ikemoto T, Hojo Y, Kondo H, Takahashi N, Hirose M, Nishimura Y, Katsuki T, Shimada K, Kario K (2012) Plasma endoglin as a marker to predict cardiovascular events in patients with chronic coronary artery diseases. Heart Vessels 27(4):344–351. doi:10.1007/s00380-011-0163-z CrossRefPubMed Ikemoto T, Hojo Y, Kondo H, Takahashi N, Hirose M, Nishimura Y, Katsuki T, Shimada K, Kario K (2012) Plasma endoglin as a marker to predict cardiovascular events in patients with chronic coronary artery diseases. Heart Vessels 27(4):344–351. doi:10.​1007/​s00380-011-0163-z CrossRefPubMed
55.
Zurück zum Zitat Torsney E, Charlton R, Parums D, Collis M, Arthur HM (2002) Inducible expression of human endoglin during inflammation and wound healing in vivo. Inflamm Res 51(9):464–470CrossRefPubMed Torsney E, Charlton R, Parums D, Collis M, Arthur HM (2002) Inducible expression of human endoglin during inflammation and wound healing in vivo. Inflamm Res 51(9):464–470CrossRefPubMed
56.
Zurück zum Zitat Conley BA, Smith JD, Guerrero-Esteo M, Bernabeu C, Vary CP (2000) Endoglin, a TGF-beta receptor-associated protein, is expressed by smooth muscle cells in human atherosclerotic plaques. Atherosclerosis 153(2):323–335. doi:10.1016/S0021-9150(00)00422-6 CrossRefPubMed Conley BA, Smith JD, Guerrero-Esteo M, Bernabeu C, Vary CP (2000) Endoglin, a TGF-beta receptor-associated protein, is expressed by smooth muscle cells in human atherosclerotic plaques. Atherosclerosis 153(2):323–335. doi:10.​1016/​S0021-9150(00)00422-6 CrossRefPubMed
57.
Zurück zum Zitat Gallucci RM, Simeonova PP, Matheson JM, Kommineni C, Guriel JL, Sugawara T, Luster MI (2000) Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. FASEB J 14(15):2525–2531. doi:10.1096/fj.00-0073com CrossRefPubMed Gallucci RM, Simeonova PP, Matheson JM, Kommineni C, Guriel JL, Sugawara T, Luster MI (2000) Impaired cutaneous wound healing in interleukin-6-deficient and immunosuppressed mice. FASEB J 14(15):2525–2531. doi:10.​1096/​fj.​00-0073com CrossRefPubMed
Metadaten
Titel
Transcription factor KLF6 upregulates expression of metalloprotease MMP14 and subsequent release of soluble endoglin during vascular injury
verfasst von
Eunate Gallardo-Vara
Francisco J. Blanco
Mercè Roqué
Scott L. Friedman
Toru Suzuki
Luisa M. Botella
Carmelo Bernabeu
Publikationsdatum
05.02.2016
Verlag
Springer Netherlands
Erschienen in
Angiogenesis / Ausgabe 2/2016
Print ISSN: 0969-6970
Elektronische ISSN: 1573-7209
DOI
https://doi.org/10.1007/s10456-016-9495-8

Weitere Artikel der Ausgabe 2/2016

Angiogenesis 2/2016 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.