Skip to main content
Erschienen in: Metabolic Brain Disease 5/2019

16.07.2019 | Original Article

Re-examining the role of ventral tegmental area dopaminergic neurons in motor activity and reinforcement by chemogenetic and optogenetic manipulation in mice

verfasst von: Man-Yi Jing, Xiao Han, Tai-Yun Zhao, Zhi-Yuan Wang, Guan-Yi Lu, Ning Wu, Rui Song, Jin Li

Erschienen in: Metabolic Brain Disease | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten

Abstract

The precise contributions of ventral tegmental area (VTA) dopaminergic (DAergic) neurons to reward-related behaviors are a longstanding hot topic of debate. Whether the activity of VTA DAergic neurons directly modulates rewarding behaviors remains uncertain. In the present study, we investigated the fundamental role of VTA DAergic neurons in reward-related movement and reinforcement by employing dopamine transporter (DAT)-Cre transgenic mice expressing hM3Dq, hM4Di or channelrhodopsin 2 (ChR2) in VTA DAergic neurons through Cre-inducible adeno-associated viral vector transfection. On the one hand, locomotion was tested in an open field to examine motor activity when VTA DAergic neurons were stimulated or inhibited by injection of the hM3Dq or hM4Di ligand clozapine-N-oxide (CNO), respectively. CNO injection to selectively activate or inhibit VTA DAergic neurons significantly increased or decreased locomotor activity, respectively, compared with vehicle injection, indicating that VTA DAergic neuron stimulation is directly involved in the regulation of motor activity. On the other hand, we used the optical intracranial self-stimulation (oICSS) model to investigate the causal link between reinforcement and VTA DAergic neurons. Active poking behavior but not inactive poking behavior was significantly escalated in a frequency- and pulse duration-dependent manner. In addition, microdialysis revealed that the concentration of dopamine (DA) in the nucleus accumbens (NAc) was enhanced by selective optogenetic activation of VTA DAergic neurons. Furthermore, systemic administration of a DA D1 receptor antagonist significantly decreased oICSS reinforcement. Our research profoundly demonstrates a direct regulatory role of VTA DAergic neurons in movement and reinforcement and provides meaningful guidance for the development of novel treatment strategies for neuropsychiatric diseases related to the malfunction of the reward system.
Literatur
Zurück zum Zitat Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, Tourino C, Bonci A, Deisseroth K, de Lecea L (2011) Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 31(30):10829–10835CrossRefPubMedPubMedCentral Adamantidis AR, Tsai HC, Boutrel B, Zhang F, Stuber GD, Budygin EA, Tourino C, Bonci A, Deisseroth K, de Lecea L (2011) Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J Neurosci 31(30):10829–10835CrossRefPubMedPubMedCentral
Zurück zum Zitat Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA (2010) Optogenetic control of striatal dopamine release in rats. J Neurochem 114(5):1344–1352PubMedPubMedCentral Bass CE, Grinevich VP, Vance ZB, Sullivan RP, Bonin KD, Budygin EA (2010) Optogenetic control of striatal dopamine release in rats. J Neurochem 114(5):1344–1352PubMedPubMedCentral
Zurück zum Zitat Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369CrossRefPubMed Berridge KC, Robinson TE (1998) What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev 28(3):309–369CrossRefPubMed
Zurück zum Zitat David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P (2008) Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 33(7):1746–1759CrossRefPubMed David V, Matifas A, Gavello-Baudy S, Decorte L, Kieffer BL, Cazala P (2008) Brain regional Fos expression elicited by the activation of mu- but not delta-opioid receptors of the ventral tegmental area: evidence for an implication of the ventral thalamus in opiate reward. Neuropsychopharmacology 33(7):1746–1759CrossRefPubMed
Zurück zum Zitat Depoortere R, Perrault G, Sanger DJ (1999) Intracranial self-stimulation under a progressive-ratio schedule in rats: effects of strength of stimulation, d-amphetamine, 7-OH-DPAT and haloperidol. Psychopharmacology 142(3):221–229CrossRefPubMed Depoortere R, Perrault G, Sanger DJ (1999) Intracranial self-stimulation under a progressive-ratio schedule in rats: effects of strength of stimulation, d-amphetamine, 7-OH-DPAT and haloperidol. Psychopharmacology 142(3):221–229CrossRefPubMed
Zurück zum Zitat Devine DP, Wise RA (1994) Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J Neurosci 14(4):1978–1984CrossRefPubMedPubMedCentral Devine DP, Wise RA (1994) Self-administration of morphine, DAMGO, and DPDPE into the ventral tegmental area of rats. J Neurosci 14(4):1978–1984CrossRefPubMedPubMedCentral
Zurück zum Zitat Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278CrossRefPubMedPubMedCentral Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85(14):5274–5278CrossRefPubMedPubMedCentral
Zurück zum Zitat Emilien G, Maloteaux JM, Geurts M, Hoogenberg K, Cragg S (1999) Dopamine receptors--physiological understanding to therapeutic intervention potential. Pharmacol Ther 84(2):133–156CrossRefPubMed Emilien G, Maloteaux JM, Geurts M, Hoogenberg K, Cragg S (1999) Dopamine receptors--physiological understanding to therapeutic intervention potential. Pharmacol Ther 84(2):133–156CrossRefPubMed
Zurück zum Zitat Ericson M, Lof E, Stomberg R, Chau P, Soderpalm B (2008) Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol-induced elevation of accumbal dopamine levels. J Pharmacol Exp Ther 326(1):76–82CrossRefPubMed Ericson M, Lof E, Stomberg R, Chau P, Soderpalm B (2008) Nicotinic acetylcholine receptors in the anterior, but not posterior, ventral tegmental area mediate ethanol-induced elevation of accumbal dopamine levels. J Pharmacol Exp Ther 326(1):76–82CrossRefPubMed
Zurück zum Zitat Franklin KBJ, Paxinos G (2007) The Mouse Brain in Stereotaxic Coordinates. New York, the United States, Academic Press Franklin KBJ, Paxinos G (2007) The Mouse Brain in Stereotaxic Coordinates. New York, the United States, Academic Press
Zurück zum Zitat Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379(6566):606–612CrossRefPubMed Giros B, Jaber M, Jones SR, Wightman RM, Caron MG (1996) Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 379(6566):606–612CrossRefPubMed
Zurück zum Zitat Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4):651–656CrossRefPubMed Horvitz JC (2000) Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events. Neuroscience 96(4):651–656CrossRefPubMed
Zurück zum Zitat Kim KM, Baratta MV, Yang A, Lee D, Boyden ES, Fiorillo CD (2012) Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One 7(4):e33612CrossRefPubMedPubMedCentral Kim KM, Baratta MV, Yang A, Lee D, Boyden ES, Fiorillo CD (2012) Optogenetic mimicry of the transient activation of dopamine neurons by natural reward is sufficient for operant reinforcement. PLoS One 7(4):e33612CrossRefPubMedPubMedCentral
Zurück zum Zitat McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101(2):129–152CrossRefPubMed McBride WJ, Murphy JM, Ikemoto S (1999) Localization of brain reinforcement mechanisms: intracranial self-administration and intracranial place-conditioning studies. Behav Brain Res 101(2):129–152CrossRefPubMed
Zurück zum Zitat Minogianis EA, Shams WM, Mabrouk OS, Wong JT, Brake WG, Kennedy RT, du Souich P, Samaha AN (2018) Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum. Federation of European Neuroscience Societies and John Wiley & Sons Publishing Eur J Neurosci. https://doi.org/10.1111/ejn.13941. Accessed 14 May 2018 Minogianis EA, Shams WM, Mabrouk OS, Wong JT, Brake WG, Kennedy RT, du Souich P, Samaha AN (2018) Varying the rate of intravenous cocaine infusion influences the temporal dynamics of both drug and dopamine concentrations in the striatum. Federation of European Neuroscience Societies and John Wiley & Sons Publishing Eur J Neurosci. https://​doi.​org/​10.​1111/​ejn.​13941. Accessed 14 May 2018
Zurück zum Zitat Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22:123–144CrossRefPubMed Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson's disease. Annu Rev Neurosci 22:123–144CrossRefPubMed
Zurück zum Zitat Pascoli V, Terrier J, Hiver A, Luscher C (2015) Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88(5):1054–1066CrossRefPubMed Pascoli V, Terrier J, Hiver A, Luscher C (2015) Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88(5):1054–1066CrossRefPubMed
Zurück zum Zitat Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90(4):894–903CrossRefPubMed Robinson DL, Wightman RM (2004) Nomifensine amplifies subsecond dopamine signals in the ventral striatum of freely-moving rats. J Neurochem 90(4):894–903CrossRefPubMed
Zurück zum Zitat Rossi MA, Sukharnikova T, Hayrapetyan VY, Yang L, Yin HH (2013) Operant self-stimulation of dopamine neurons in the substantia nigra. PLoS One 8(6):e65799CrossRefPubMedPubMedCentral Rossi MA, Sukharnikova T, Hayrapetyan VY, Yang L, Yin HH (2013) Operant self-stimulation of dopamine neurons in the substantia nigra. PLoS One 8(6):e65799CrossRefPubMedPubMedCentral
Zurück zum Zitat Salahpour A, Medvedev IO, Beaulieu JM, Gainetdinov RR, Caron MG (2007) Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol Psychiatry 61(1):65–69CrossRefPubMed Salahpour A, Medvedev IO, Beaulieu JM, Gainetdinov RR, Caron MG (2007) Local knockdown of genes in the brain using small interfering RNA: a phenotypic comparison with knockout animals. Biol Psychiatry 61(1):65–69CrossRefPubMed
Zurück zum Zitat Schrantee A, Tamminga HG, Bouziane C, Bottelier MA, Bron EE, Mutsaerts HJ, Zwinderman AH, Groote IR, Rombouts SA, Lindauer RJ, Klein S, Niessen WJ, Opmeer BC, Boer F, Lucassen PJ, Andersen SL, Geurts HM, Reneman L (2016) Age-dependent effects of methylphenidate on the human dopaminergic system in young vs adult patients with attention-deficit/hyperactivity disorder: a randomized clinical trial. JAMA Psychiatry 73(9):955–962CrossRefPubMedPubMedCentral Schrantee A, Tamminga HG, Bouziane C, Bottelier MA, Bron EE, Mutsaerts HJ, Zwinderman AH, Groote IR, Rombouts SA, Lindauer RJ, Klein S, Niessen WJ, Opmeer BC, Boer F, Lucassen PJ, Andersen SL, Geurts HM, Reneman L (2016) Age-dependent effects of methylphenidate on the human dopaminergic system in young vs adult patients with attention-deficit/hyperactivity disorder: a randomized clinical trial. JAMA Psychiatry 73(9):955–962CrossRefPubMedPubMedCentral
Zurück zum Zitat Sikstrom S, Soderlund G (2007) Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol Rev 114(4):1047–1075CrossRefPubMed Sikstrom S, Soderlund G (2007) Stimulus-dependent dopamine release in attention-deficit/hyperactivity disorder. Psychol Rev 114(4):1047–1075CrossRefPubMed
Zurück zum Zitat Spielewoy C, Gonon F, Roubert C, Fauchey V, Jaber M, Caron MG, Roques BP, Hamon M, Betancur C, Maldonado R, Giros B (2000) Increased rewarding properties of morphine in dopamine-transporter knockout mice. Eur J Neurosci 12(5):1827–1837CrossRefPubMedPubMedCentral Spielewoy C, Gonon F, Roubert C, Fauchey V, Jaber M, Caron MG, Roques BP, Hamon M, Betancur C, Maldonado R, Giros B (2000) Increased rewarding properties of morphine in dopamine-transporter knockout mice. Eur J Neurosci 12(5):1827–1837CrossRefPubMedPubMedCentral
Zurück zum Zitat Steinberg EE, Janak PH (2013) Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Res 1511:46–64CrossRefPubMed Steinberg EE, Janak PH (2013) Establishing causality for dopamine in neural function and behavior with optogenetics. Brain Res 1511:46–64CrossRefPubMed
Zurück zum Zitat Steinberg EE, Boivin JR, Saunders BT, Witten IB, Deisseroth K, Janak PH (2014) Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS One 9(4):e94771CrossRefPubMedPubMedCentral Steinberg EE, Boivin JR, Saunders BT, Witten IB, Deisseroth K, Janak PH (2014) Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS One 9(4):e94771CrossRefPubMedPubMedCentral
Zurück zum Zitat Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084CrossRefPubMedPubMedCentral Tsai HC, Zhang F, Adamantidis A, Stuber GD, Bonci A, de Lecea L, Deisseroth K (2009) Phasic firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324(5930):1080–1084CrossRefPubMedPubMedCentral
Zurück zum Zitat Wang S, Tan Y, Zhang JE, Luo M (2013) Pharmacogenetic activation of midbrain dopaminergic neurons induces hyperactivity. Neurosci Bull 29(5):517–524CrossRefPubMedPubMedCentral Wang S, Tan Y, Zhang JE, Luo M (2013) Pharmacogenetic activation of midbrain dopaminergic neurons induces hyperactivity. Neurosci Bull 29(5):517–524CrossRefPubMedPubMedCentral
Zurück zum Zitat Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD, Tye KM, Janak PH, Deisseroth K (2011) Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72(5):721–733CrossRefPubMedPubMedCentral Witten IB, Steinberg EE, Lee SY, Davidson TJ, Zalocusky KA, Brodsky M, Yizhar O, Cho SL, Gong S, Ramakrishnan C, Stuber GD, Tye KM, Janak PH, Deisseroth K (2011) Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72(5):721–733CrossRefPubMedPubMedCentral
Zurück zum Zitat Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79(6):945–955CrossRefPubMed Xu M, Hu XT, Cooper DC, Moratalla R, Graybiel AM, White FJ, Tonegawa S (1994) Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 79(6):945–955CrossRefPubMed
Metadaten
Titel
Re-examining the role of ventral tegmental area dopaminergic neurons in motor activity and reinforcement by chemogenetic and optogenetic manipulation in mice
verfasst von
Man-Yi Jing
Xiao Han
Tai-Yun Zhao
Zhi-Yuan Wang
Guan-Yi Lu
Ning Wu
Rui Song
Jin Li
Publikationsdatum
16.07.2019
Verlag
Springer US
Erschienen in
Metabolic Brain Disease / Ausgabe 5/2019
Print ISSN: 0885-7490
Elektronische ISSN: 1573-7365
DOI
https://doi.org/10.1007/s11011-019-00442-z

Weitere Artikel der Ausgabe 5/2019

Metabolic Brain Disease 5/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.