Skip to main content
Erschienen in: BMC Nephrology 1/2012

Open Access 01.12.2012 | Research article

Reduced incidence of end stage renal disease among the elderly in Denmark: an observational study

verfasst von: James G Heaf, Sonja Wehberg

Erschienen in: BMC Nephrology | Ausgabe 1/2012

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

Background

A number of studies during the nineties have shown that antihypertensive therapy, particularly using RAS blockade, can reduce uremia progression, and ESRD incidence.

Methods

National incidence rates were studied of end stage renal disease (ESRD) for Denmark between 1990 and 2011, and of national prescription of antihypertensive drugs between 1995 and 2010, in order to investigate whether prescription rates had changed, and whether the expected change in ESRD had materialized. The Danish Nephrology Registry (DNR) is incident and comprehensive. Incidence rates were classified according to renal diagnosis.

Results

ESRD incidence was constant for age groups <60 years. Incidence rates rose during the nineties for all cohorts >60 years. Since 2001 rates for subjects 60–70 years have fallen from 400 ppm/yr to 234, and since 2002 for subjects 70–80 years from 592 to 398. The incidence of patients >80 years has increased to 341. The falling incidence for patients 60–80 years was distributed among a number of diagnoses. Since 1995 national antihypertensive drug therapy has increased from 24.5 defined daily doses (DDD)/citizen/yr to 101.3, and the proportion using renin-angiotensin system (RAS) blockade from 34 to 58%.

Conclusions

This national study has shown a reduction in actively treated ESRD incidence among patients aged 60–80 years. It is possible that this is the result of increased antihypertensive prescription rates, particularly with RAS blockade. If it is assumed that therapeutic intervention is the cause of the observed reduced incidence, ESRD incidence has been reduced by 33.8 ppm/yr, prevalence by 121 ppm, and ESRD expenditure by 6 €/citizen/yr.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1471-2369-13-131) contains supplementary material, which is available to authorized users.

Competing interests

The author(s) declare that they have no competing interests.

Authors’ contributions

JGH: Design, data preparation, article preparation. SW: Data extraction, data analysis, article editing. Both authors read and approved the final manuscript.
Abkürzungen
ACE
Angiotensin converting enzyme
A2B
Angiotensin 2 receptor blockers
CCI
Charlon Comorbidity Index
CKD
Chronic Kidney Disease
DDD
Defined daily dose
DM
Diabetes mellitus
DNR
Danish Nephrology Registry
ESRD
End stage renal disease.

Background

During the nineties, a number of studies were published, showing that antihypertensive therapy in patients with chronic kidney disease (CKD) delayed the progression of uremia. Whether intensive antihypertensive therapy, with the aim of reducing blood pressure to below 130/80 (as opposed to conventional therapy) is per se effective, is still controversial. The original MDRD study [1], comparing low and high intensity antihypertensive therapy, found that beneficial effects were limited to patients with proteinuria >1 g/day, and other large studies, such as the REIN-2 [2] and AASK [3] trials, have failed to demonstrate an overall effect of intensive treatment. However, the ESCAPE trial of 385 children with CKD, demonstrated a 35% reduction in uraemia progression. Anithypertensive therapy, regardless of type, reduces proteinuria [1, 3]. In contrast, there is no doubt that renin-angiotensin system (RAS) blockade has a specific protective effect over and above other antihypertensive agents, presumably because of its extra anti-inflammatory and anti-proteinuric effects. Early studies suggested that uraemia progression could be delayed by 35% [4, 5]. Since then a number of large studies have shown that RAS blockade prevents the development of diabetic nephropathy [6] and reduces uraemia progression by 30-40% [710]. These studies have recently been reviewed [11]. The effect is present both in proteinuric and non-proteinuric diseases, but the effect is greater, the greater the degree of proteinuria and the achieved reduction in proteinuria. We hypothesized that these papers will have led to national antihypertensive prescription changes which would in turn result in a reduction in the incidence of end stage renal disease (ESRD).

Results

While the national population only rose by 8.3% during the study period, considerable changes in the age structure were seen. The population aged 60–69 years increased from 492,000 to 683,000 (38.9%), 70–79 years from 367,000 to 386,000 (5.3%), and over 80 from 188,000 to 227,000 (21.5%).
The age of the oldest incident ESRD patient in the registry rose almost linearly from 75.3 years in 1985 to 81.8 in 1990 and 95.1 in 2007, after which it stabilized, an average increase of 7.6 months/year. The average age rose from 51.6 ±15.9 to 61.9 ± 16.1 in 2001 and to 64.5 ±18.2 years in 2010. The Charlson Comorbidity Index remained steady for patients <50 years, but increased significantly for older age groups (Table1, Figure1).
Table 1
Average Charlson Comorbidity Index and age: time trends
 
Year
  
Age
1990
2000
2010
Correlation coefficient
Significance
0-19
2,00 ±0,2a
2,17 ±0,4
2,13 ±0,4
 
NS
20-29
2,97 ±1,3
3,32 ±1,5
2,59 ±1,2
 
NS
30-39
3,96 ±1,6
3,36 ±1,6
3,33 ±1,9
 
NS
40-49
3,18 ±1,7
3,53 ±1,6
3,44 ±1,8
 
NS
50-59
3,47 ±2,0
4,32 ±2,1
4,22 ±2,2
0,11
<0.001
60-69
3,51 ±1,5
4,24 ±2,0
5,01 ±2,4
0,15
<0,001
70-79
3,36 ±1,8
4,20 ±1,9
5,08 ±2,0
0,21
<0,001
≥80
2,67 ±0,8b
4,56 ±2,5
4,86 ±2,0
0,17
<0,001
Data concerning national prescription rates for the four most common antihypertensive drugs were available for 1995–2010 (Figure2). During this period consumption rose from 24.5 to 101.3 DDD/capita/year, a four-fold increase. The proportion of consumption attributed to renin-angiotensin system (RAS) blockers rose from 34 to 59%.
The incidence of ESRD is shown in Table2, and the absolute patient numbers in Table3. The incidence of patients <60 years remained approximately constant during the entire period of observation (Table2). A fall in incidence of 19% between 2001 and 2011 for this group was not significant. Since 2001 the ESRD incidence has fallen by 7% among 40–49 year olds, and 26% among 50-59-year-olds. These changes were not significant. The incidence of patients 60–70 years (Figure3) rose from 167 patients per million of population (ppm) in 1990 to 400 ppm in 2001, and then fell steadily to 234 ppm, a 42% fall (p < 0.01). The incidence of patients 70–80 years rose from 106 ppm in 1990 to 593 in 2002, and then fell to 398, a 33% fall (p < 0.03). Active treatment of patients over 80 years was virtually nonexistent at the beginning of the study period, rose slightly to 58 ppm in 1997, and then rose rapidly to 557 ppm in 2007. It has since fallen to 341 ppm, a 39% fall (NS). The secular trend for incidence for the years 2000–2011 was significant for those aged 60–70 (r = −0.91, p < 0.001), but not for patients 70–80 years (r = −0.45, NS).
Table 2
Incidence of ESRD 1990–2011 according to age, and standardized rate (patients per million, ppm)
 
Age (years)
Standardised
Population (thousand)
Year
0-19
20-29
30-39
40-49
50-59
60-69
70-79
≥80
Rate (ppm)*
 
1990
6
45
32
101
112
167
106
5
64
5,135
1991
9
34
43
75
156
207
140
0
71
5,146
1992
11
24
64
69
150
153
153
5
67
5,162
1993
14
34
56
106
182
262
251
25
95
5,181
1994
7
38
80
71
145
231
225
30
84
5,197
1995
15
47
53
104
136
278
274
39
96
5,216
1996
9
35
60
89
145
281
323
39
96
5,251
1997
8
34
70
86
167
287
357
58
103
5,275
1998
14
32
50
98
162
278
421
116
108
5,295
1999
6
31
64
105
150
383
442
187
122
5,314
2000
10
26
67
120
186
351
479
230
129
5,330
2001
11
28
49
90
191
400
567
300
137
5,349
2002
9
22
60
80
143
366
593
319
130
5,368
2003
6
43
43
96
152
367
565
290
131
5,384
2004
14
35
45
110
153
345
516
343
130
5,398
2005
11
16
48
73
176
303
497
308
117
5,411
2006
13
21
41
84
133
289
509
381
117
5,427
2007
13
26
63
94
184
319
551
557
140
5,447
2008
10
29
32
85
146
268
528
471
120
5,476
2009
16
49
45
82
167
266
507
445
125
5,511
2010
6
27
53
70
154
253
401
422
108
5,535
2011
5
22
53
84
141
234
398
341
102
5,561
*Based on population structure in 1990.
Table 3
Incidence of ESRD 1990–2011 according to age (absolute numbers)
 
Age (years)
Total
Year
0-19
20-29
30-39
40-49
50-59
60-69
70-79
≥80
 
1990
9
36
24
77
60
82
39
1
328
1991
11
27
32
58
85
100
52
0
365
1992
14
19
48
55
83
73
57
1
350
1993
17
28
42
83
104
124
93
5
496
1994
9
30
61
56
86
108
83
6
439
1995
18
37
41
81
83
129
101
8
498
1996
11
28
47
68
96
130
119
8
507
1997
11
26
56
66
113
134
131
12
549
1998
17
25
42
72
114
130
154
24
578
1999
8
24
53
79
108
182
161
39
654
2000
12
21
55
91
138
168
174
48
707
2001
14
20
41
67
144
195
204
63
748
2002
11
15
49
61
108
183
210
69
706
2003
8
31
37
72
116
189
200
63
716
2004
19
23
36
85
116
185
182
75
721
2005
14
11
40
57
133
170
174
68
667
2006
17
13
32
68
99
170
179
85
663
2007
18
16
48
75
134
198
197
125
811
2008
14
18
24
69
105
172
193
106
701
2009
21
33
34
67
121
179
188
102
745
2010
8
19
41
60
112
175
157
104
676
2011
7
14
39
68
101
160
154
78
621
The contributions of risk reduction population structure changes and population number changes is shown in Table4. For all groups, a fall in incidence was noted, which was independent of changes in population number and structure. The fall was greatest for patients 60–80 years.
Table 4
RiskDiff analysis of contributing factors to changes in incidence 2001 vs. 2011
 
ESRD incidence (p.p.m)
Total change
Contributing factor
     
Change in risk
Change in population structure
Change in population size
Age group (years)
2001
2011
No.
%
No.
%
No.
%
No.
%
0-110
140
112
−127
−17.0
−213
−28.5
62
8.3
24
3.2
0-80
133
102
−142
−20.7
−223
−32.6
61
8.9
20
2.9
0-60
67
54
−57
−19.9
−53
−18.4
−3
−1.0
−1.5
−0.5
60-80
472
294
−85
−21.3
−142
−35.6
−9
−2.2
66
16.5
In order to analyze which renal diagnoses had experienced the highest fall in incidence, incidence rates for the years 2000–01 were compared with the years 2009–2010 for common renal diagnoses. The results are shown in Table5. Improvements were seen over a wide range of diagnoses, with no clear distinction between proteinuric (e.g. diabetic nephropathy and glomerulonephritis) and non-proteinuric (e.g. CIN and polycystic renal disease). A post-hoc analysis of sub-diagnoses in the diagnosis group “Other”, showed falls in most subgroups, but the number of patients in each subgroup did not permit statistical analysis. However, the incidence of patients with vasculitis (ICD-10 codes M30.x and M31.x) among patients aged 60–79 fell 58% from 20.8 ppm/year to 8.7 (p < 0.03).
Table 5
Incidence of ESRD (ppm/year) in 2000–01 compared to 2009–10, according to age group and renal diagnosis
Renal diagnosis
Age group
2000-01
2009-10
% Change
Sig.
  
No.
Incidence
No.
Incidence
  
Small
60-69
72
74.5
94
70.7
−5
NS
 
70-79
119
165.3
100
134.0
−19
NS
 
Combined
191
113.3
194
93.4
−18
NS
Glomerulonephritis
60-69
41
42.4
35
26.3
−38
NS
 
70-79
16
22.2
17
22.8
3
NS
 
Combined
57
33.8
52
25.0
−25
NS
Chronic Interstitial
60-69
48
49.7
44
33.1
−34
NS
 
70-79
49
68.1
34
45.6
−33
NS
 
Combined
97
57.5
78
37.6
−35
NS
Polycystic
60-69
25
25.9
21
15.8
−39
<0.05
 
70-79
12
16,7
11
14.7
−12
NS
 
Combined
37
21.9
32
15.4
−30
NS
Hypertensive
60-69
40
41,4
32
24.1
−42
NS
 
70-79
46
63,9
53
71.0
11
NS
 
Combined
86
51.0
85
40.9
−20
NS
Type 1 DM
60-69
28
29.0
20
15.0
−48
NS
 
70-79
15
20.8
11
14.7
−29
NS
 
Combined
43
25.5
31
14.9
−42
NS
Type 2 DM
60-69
53
54,9
71
53.4
−3
NS
 
70-79
51
70,8
62
83.1
17
NS
 
Combined
103
61.7
133
64.1
4
NS
Other
60-69
59
61.1
31
23.3
−62
<0.002
 
70-79
70
97.2
52
69.7
−28
NS
 
Combined
129
76.5
83
40.0
−48
<0.001
Total
60-69
366
378.9
348
261.7
−31
<0.001
 
70-79
378
525.0
340
455.8
−13
NS
 
Combined
744
441.3
688
331.4
−25
<0.001

Discussion

The incidence of actively treated ESRD has increased continuously since the start of maintenance dialysis therapy in the sixties. This has been largely driven by a steady increase in take-on rates. There are two reasons for this. Firstly, economic growth and a steady reduction in the costs of dialysis, mean that health services have been able to afford treating more patients. Secondly, the results of treating patients of increasingly high age and morbidity, in particular DM, have improved, such that active treatment of marginal groups is justified. This pattern can be seen in this national survey. During the period, a linear increase in the age of the oldest patient in the registry was seen, and the age-adjusted morbidity increased. This increase, approximating 6 months per year, was far greater than the increase in expected life expectancy of the background population. During the nineties, increased incidence rates for 60-80-year-olds and diabetics [12] were seen. After 2000, in response to encouraging treatment results [13], the incidence of 80-year-olds rapidly increased, while the incidence of diabetics stabilized [12]. Thus, it is highly likely that the initial rise in incidence in elderly age groups is an expression of these secular trends. The increase in incidence rates for Type 2 diabetics over the age of 70 after 2001 is probably also part of this trend. One would therefore expect that incidence rates at some point would stabilize at a higher level.
The present study shows that ESRD incidence among patients <40 years has remained stable for 20 years. Since 2001 the ESRD incidence has fallen by 7% among 40–49 year olds, and 26% among 50-59-year-olds. These changes were not significant. Since 2001 the ESRD incidence among 60-70-year-olds has fallen by 42%, and 70-80-year-olds since 2002 by 33%. The Riskdiff analysis (Table4) shows that these changes are independent of population structure. A recent fall in incidence since 2007 of 39% among patients older than 80 years is too recent to be meaningful. It could be due to a real increase in incidence similar to the 60–80 year-olds, or a waning enthusiasm by primary health carers for referring these often frail patients for treatment. This is in contrast with other national results [14, 15] which have merely showed a stabilization in these age groups. We believe this to be one of the first cases of a national reduction in ESRD incidence in the absence of social or economic unrest. As a direct result the number of prevalent dialysis patients in Denmark has now fallen by 5% since 2008. Taiwan has also noted a fall in ESRD incidence from 432 to 384 ppm between 2005 and 2008; this has not however yet resulted in a fall in prevalence [15].
During the nineties, a number of possibly modifiable factors in the progression of uraemia were identified. Aggressive treatment of hypertension is probably important [1, 16]. RAS blockade by ACE-I and A2A were shown to have specific nephroprotective properties, in particular in patients with diabetes and proteinuria [4, 5, 9, 10, 17, 18]. A protective effect of protein restriction has been suggested [19], as has a nephrotoxic effect of tobacco [20]. Increased use of these prophylactic measures would be expected to reduce ESRD incidence. Figure2 shows that the prevalence of antihypertensive therapy, and in particular RAS blockade in the general population has indeed increased substantially, to a level of 0.27 DDDs/capita/year. The percentage of non-smokers (or irregular) has increased from 58 to 77% between 1995 and 2008 [7]. There is no evidence that the incidence of hypertension has increased in Denmark; thus the increased drug use is probably an expression of more intensive individual therapy. This study has only documented an increase in general antihypertensive therapy, in particular RAS blockade, and a reduction in ESRD incidence among the elderly. This being an observational study, any discussion about causality must be purely speculative, but it is possible that the observed decrease in ESRD incidence is an expected consequence of the intensified prophylaxis. If this is so, there appears to be a lag time of at least 5 years between a change in antihypertensive therapy and a decrease in incidence. This is not surprising: in order to delay ESRD significantly, treatment has to be initiated while the patient still has a significant renal function. During the period of observation, there were no governmental changes in the organization or financing of ESRD treatment. All patients are treated at hospital-based, publicly financed nephrology centers. There has been an increased awareness of the importance of predialysis nephrology care, and today all patients with a GFR below 30 ml/min are recommended specialist care. This may have contributed to the fall in ESRD rates, independently of concurrent antihypertensive therapy and RAS blockade. In common with international trends, there has probably been a tendency to start dialysis at a higher level of GFR since 2000; this would a priori increase the number of ESRD patients slightly.
Considerable changes have occurred in the background population between 1990 and 2011. The average longevity has increased from 72.2 to 77.8 years for males, and 77.3 to 81.6 for females [21]. While increased longevity will of course be expected to increase the absolute numbers of elderly patients, it will not in itself affect the incidence, expressed as a fraction of the population at risk. The Riskdiff analysis shows that the observed changes are real and independent of any change in population structure. It shows that the evolution of the population 60–80 years would have lead to a rise of incidence of 16% while the observed incidence was −21%. The underlying risk fell by 36%. Ischaemic heart disease as a cause of death fell from 25.6% of all deaths to 9.2%, and cerebrovascular disease from 9.1% to 6.9%. These changes could also partly be related to more intensive antihypertensive therapy. It is difficult to predict how these changes might affect ESRD incidence: on the one hand, since cardiac and renal disease are often related, with common etiologies such as diabetes, atherosclerosis and hypertension, a better cardiac survival might lead to more patients surviving to renal failure; on the other hand, the prophylactic treatments that reduce the incidence of heart disease might also reduce the incidence of renal disease.
Two findings were surprising. The fall in incidence was distributed between different renal diagnoses, without any clear distinction between proteinuric and non-proteinuric diseases. A change in coding practices during the period of observation cannot be excluded, but since the diagnoses were made by a small group of nephrologists, using standard ERA-EDTA definitions, we consider this unlikely. Also, the fall in incidence was mainly confined to patients over the age of 60. While ESRD incidence was lower for patients aged 30–59 was lower in 2011 than 2001, the difference was smaller and non-significant, partly because of the small number of patients in these age groups. There are several possible explanations for this apparent difference: some diagnoses, common among younger patients, such as polycystic renal disease and hereditary disorders, may be less amenable to prophylaxis; early diagnosis and prophylaxis may be rarer among younger patients; it is possible that long-term therapy is required to make a noticeable difference. Antihypertensive therapy has been shown in the ESCAPE study to also be effective in children [16]. This is a recent study, which cannot have affected previous therapy; no data is available concerning antihypertensive therapy among children in this population. A further disadvantage of this study is that data concerning antihypertensive use was only available after 1995, and only as DDDs, rather than number of patients being treated.
Not all health indicators have moved in the right direction. The number of obese adults (body mass index >30 kg/m2) has risen from 5.5% in 1987 to 7.6% in 1994 and to 13.4% in 2010. It is thus all the more remarkable that the expected epidemic in diabetic nephropathy has not occurred, and that the incidence of type 2 diabetic nephropathy is stabilised. Thus, the theory that intensive prophylactic intervention can reduce the incidence of diabetic nephropathy seems to have been justified in practice.
It is possible that unidentified factors could have contributed to the fall, e.g. a reduction in consumption of nephrotoxic drugs or an improvement in the urological treatment of patients with post-renal uremia. Improvements in immunosuppressive therapy may have contributed to the fall in vasculitis incidence. It is even possible that the initial increase in incidence seen among patients over 70 years is partly caused by a postponement of ESRD among patients 60–70 years to a later age, the real fall in incidence thereby being exaggerated.
If one assumes that there is a causal connection and that, without intervention, incidence among 60-70-year-olds would have remained at 400 ppm and among 70-80-year-olds at 592, a rough estimate of the possible economic benefits of prophylaxis can be made. Further assumptions are required for this calculation: the mean survival after ESRD is 4.3 and 2.5 years respectively (DNR average 2000–2010); the average cost is €50,000/year. It then follows that ESRD incidence has been reduced by 33.8 ppm/year, ESRD prevalence by 121 ppm and ESRD expenditure by approximately €6 per capita/year. Drug expenditure needs to be subtracted from this to calculate the net economic benefit. For commonly used ACE inhibitors this is however less than 10 cents/day.

Conclusions

During the period of observation, a significant fall in ESRD incidence in the population between 60–80 years age was seen, and also an increase in prescription rates for antihypertensive drugs, particularly RAS blockade. It is possible that these two phenomena are connected. The findings suggest that ESRD is a preventable disease.

Methods

All patients resident in Denmark, and thus possessing a national identity number, starting active treatment for ESRD between 1.1.1990 and 31.12.2011 were included in the study. Their data were extracted from the following databases:
1)
The Danish Nephrology Registry (DNR) contains data from all patients starting active treatment in Denmark. The database is incident, prospective and has been comprehensive since 1.1.1990. Cross-checks with performed dialyses registered in the National Patient Registry show that >99% of all patients with ESRD are included. A patient is regarded as having ESRD if (a) the nephrologist considers him/her to have ESRD on the day of first active treatment or later; (b) a renal transplant is performed; (c) there is some doubt regarding the reversibility of the uraemia (e.g. crescentic glomerulonephritis, acute tubulointerstitial nephropathy), but the patient has received at least 90 days of dialysis. A recent quality assessment study has shown that the risk of not being included in the registry is less than 1% ( [22]). Patient sex, renal diagnosis, and age at ESRD were noted.
 
2)
Discharge diagnoses for all admissions to hospital between 1977–2010 were extracted from the National Patient Registry (LPR). The Charlson Comorbidity Index (CCI) [23] at ESRD was calculated. All patients received two CCI points for uremia/ESRD regardless of whether they had previously been admitted for this condition.
 
3)
National population statistics were extracted from the National Population Registry (Statistics Denmark).
 
4)
National prescription rates for antihypertensive drugs, excluding diuretics, between the years 1995–2010 were extracted from the Danish Medicines Agency. Prescriptions were classified as β-blockers, calcium antagonists, angiotensin converting enzyme inhibitors (ACE-I) and angiotensin receptor blockers (A2A). Consumption of other antihypertensive classes was minimal. Consumption was assessed as number of defined daily doses (DDD) 1000 citizens/day.
 
ESRD incidence rates were calculated for different age groups and renal diagnoses. Renal diagnoses up to 31.12.2010 were categorized as shrunken kidneys (ICD-10 code N18.x, Q60.5), chronic glomerulonephritis (N02.x-N07.x), chronic interstitial nephritis (CIN) (N11.x-N15.x, N20.x, N31.9, Q62.x), polycystic renal disease (Q61.x) hypertensive (I12.x), type 1 diabetic (DM) (E10.x), type 2 diabetic (E11.x), other.

Statistics

Incidence rates between years were compared using the χ2 test. Secular trends were analysed using Pearsson product–moment correlation.
A post-hoc analysis was performed to compare incidence rates between 2001 and 2011. The RiskDiff program [24] is a tool can be useful to study the differences in the incidence or mortality observed in two given situations (such as time points, geographical areas, or males versus females). The method performed splits the observed differences into three components: (1) the risk itself, (2) difference attributed to changes in the population size and (3) difference attributed to changes in population structure.

Author details

1vHerlev Hospital, University of Copenhagen, Graevlingestien 9, 2880, Bagsvaerd, Denmark. 2Research Unit of Clinical Epidemiology, Centre for National Clinical Databases – South, University of Southern Denmark and Odense University Hospital, Odense, Denmark.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The author(s) declare that they have no competing interests.

Authors’ contributions

JGH: Design, data preparation, article preparation. SW: Data extraction, data analysis, article editing. Both authors read and approved the final manuscript.
Anhänge

Authors’ original submitted files for images

Literatur
1.
Zurück zum Zitat Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, et al: The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994, 330: 877-884. 10.1056/NEJM199403313301301.CrossRefPubMed Klahr S, Levey AS, Beck GJ, Caggiula AW, Hunsicker L, Kusek JW, et al: The effects of dietary protein restriction and blood-pressure control on the progression of chronic renal disease. Modification of Diet in Renal Disease Study Group. N Engl J Med. 1994, 330: 877-884. 10.1056/NEJM199403313301301.CrossRefPubMed
2.
Zurück zum Zitat Ruggenenti P, Perna A, Loriga G, Ganeva M, Ene-Iordache B, Turturro M, et al: Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet. 2005, 365: 939-946. 10.1016/S0140-6736(05)71082-5.CrossRefPubMed Ruggenenti P, Perna A, Loriga G, Ganeva M, Ene-Iordache B, Turturro M, et al: Blood-pressure control for renoprotection in patients with non-diabetic chronic renal disease (REIN-2): multicentre, randomised controlled trial. Lancet. 2005, 365: 939-946. 10.1016/S0140-6736(05)71082-5.CrossRefPubMed
3.
Zurück zum Zitat Wright JT, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al: Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002, 288: 2421-2431. 10.1001/jama.288.19.2421.CrossRefPubMed Wright JT, Bakris G, Greene T, Agodoa LY, Appel LJ, Charleston J, et al: Effect of blood pressure lowering and antihypertensive drug class on progression of hypertensive kidney disease: results from the AASK trial. JAMA. 2002, 288: 2421-2431. 10.1001/jama.288.19.2421.CrossRefPubMed
4.
Zurück zum Zitat Kamper AL, Strandgaard S, Leyssac PP: Effect of enalapril on the progression of chronic renal failure. A randomized controlled trial. Am J Hypertens. 1992, 5: 423-430.PubMed Kamper AL, Strandgaard S, Leyssac PP: Effect of enalapril on the progression of chronic renal failure. A randomized controlled trial. Am J Hypertens. 1992, 5: 423-430.PubMed
5.
Zurück zum Zitat Kamper AL, Strandgaard S, Leyssac PP: Late outcome of a controlled trial of enalapril treatment in progressive chronic renal failure. Hard end-points and influence of proteinuria. Nephrol Dial Transplant. 1995, 10: 1182-1188.PubMed Kamper AL, Strandgaard S, Leyssac PP: Late outcome of a controlled trial of enalapril treatment in progressive chronic renal failure. Hard end-points and influence of proteinuria. Nephrol Dial Transplant. 1995, 10: 1182-1188.PubMed
6.
Zurück zum Zitat Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P: The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001, 345: 870-878. 10.1056/NEJMoa011489.CrossRefPubMed Parving HH, Lehnert H, Brochner-Mortensen J, Gomis R, Andersen S, Arner P: The effect of irbesartan on the development of diabetic nephropathy in patients with type 2 diabetes. N Engl J Med. 2001, 345: 870-878. 10.1056/NEJMoa011489.CrossRefPubMed
7.
Zurück zum Zitat Brenner BM, Cooper ME, De ZD, Keane WF, Mitch WE, Parving HH, et al: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001, 345: 861-869. 10.1056/NEJMoa011161.CrossRefPubMed Brenner BM, Cooper ME, De ZD, Keane WF, Mitch WE, Parving HH, et al: Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001, 345: 861-869. 10.1056/NEJMoa011161.CrossRefPubMed
8.
Zurück zum Zitat Hou FF, Zhang X, Zhang GH, Xie D, Chen PY, Zhang WR, et al: Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med. 2006, 354: 131-140. 10.1056/NEJMoa053107.CrossRefPubMed Hou FF, Zhang X, Zhang GH, Xie D, Chen PY, Zhang WR, et al: Efficacy and safety of benazepril for advanced chronic renal insufficiency. N Engl J Med. 2006, 354: 131-140. 10.1056/NEJMoa053107.CrossRefPubMed
9.
Zurück zum Zitat The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia): Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet. 1997, 349: 1857-1863.CrossRef The GISEN Group (Gruppo Italiano di Studi Epidemiologici in Nefrologia): Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet. 1997, 349: 1857-1863.CrossRef
10.
Zurück zum Zitat Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M, et al: Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med. 1996, 334: 939-945. 10.1056/NEJM199604113341502.CrossRefPubMed Maschio G, Alberti D, Janin G, Locatelli F, Mann JF, Motolese M, et al: Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. The Angiotensin-Converting-Enzyme Inhibition in Progressive Renal Insufficiency Study Group. N Engl J Med. 1996, 334: 939-945. 10.1056/NEJM199604113341502.CrossRefPubMed
11.
Zurück zum Zitat Wuhl E, Schaefer F: Managing kidney disease with blood-pressure control. Nat Rev Nephrol. 2011, 7: 434-444. 10.1038/nrneph.2011.73.CrossRefPubMed Wuhl E, Schaefer F: Managing kidney disease with blood-pressure control. Nat Rev Nephrol. 2011, 7: 434-444. 10.1038/nrneph.2011.73.CrossRefPubMed
12.
Zurück zum Zitat Sorensen VR, Hansen PM, Heaf J, Feldt-Rasmussen B: Stabilized incidence of diabetic patients referred for renal replacement therapy in Denmark. Kidney Int. 2006, 70: 187-191. 10.1038/sj.ki.5001516.CrossRefPubMed Sorensen VR, Hansen PM, Heaf J, Feldt-Rasmussen B: Stabilized incidence of diabetic patients referred for renal replacement therapy in Denmark. Kidney Int. 2006, 70: 187-191. 10.1038/sj.ki.5001516.CrossRefPubMed
13.
Zurück zum Zitat Schaefer K, Rohrich B: The dilemma of renal replacement therapy in patients over 80 years of age. Dialysis should not be withheld. Nephrol Dial Transplant. 1999, 14: 35-36.CrossRefPubMed Schaefer K, Rohrich B: The dilemma of renal replacement therapy in patients over 80 years of age. Dialysis should not be withheld. Nephrol Dial Transplant. 1999, 14: 35-36.CrossRefPubMed
14.
Zurück zum Zitat Kramer A, Stel V, Zoccali C, Heaf J, Ansell D, Gronhagen-Riska C, et al: An update on renal replacement therapy in Europe: ERA-EDTA Registry data from 1997 to 2006. Nephrol Dial Transplant. 2009, 24: 3557-3566. 10.1093/ndt/gfp519.CrossRefPubMed Kramer A, Stel V, Zoccali C, Heaf J, Ansell D, Gronhagen-Riska C, et al: An update on renal replacement therapy in Europe: ERA-EDTA Registry data from 1997 to 2006. Nephrol Dial Transplant. 2009, 24: 3557-3566. 10.1093/ndt/gfp519.CrossRefPubMed
15.
Zurück zum Zitat U.S. Renal Data System, USRDS 2010 Anual Data Report. 2011, Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Disease, 2-388. U.S. Renal Data System, USRDS 2010 Anual Data Report. 2011, Bethesda, MD: National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Disease, 2-388.
16.
Zurück zum Zitat Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, et al: Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009, 361: 1639-1650.CrossRefPubMed Wuhl E, Trivelli A, Picca S, Litwin M, Peco-Antic A, Zurowska A, et al: Strict blood-pressure control and progression of renal failure in children. N Engl J Med. 2009, 361: 1639-1650.CrossRefPubMed
17.
Zurück zum Zitat Ihle BU, Whitworth JA, Shahinfar S, Cnaan A, Kincaid-Smith PS, Becker GJ: Angiotensin-converting enzyme inhibition in nondiabetic progressive renal insufficiency: a controlled double-blind trial. Am J Kidney Dis. 1996, 27: 489-495. 10.1016/S0272-6386(96)90158-4.CrossRefPubMed Ihle BU, Whitworth JA, Shahinfar S, Cnaan A, Kincaid-Smith PS, Becker GJ: Angiotensin-converting enzyme inhibition in nondiabetic progressive renal insufficiency: a controlled double-blind trial. Am J Kidney Dis. 1996, 27: 489-495. 10.1016/S0272-6386(96)90158-4.CrossRefPubMed
18.
Zurück zum Zitat Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M, et al: Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet. 1999, 354: 359-364. 10.1016/S0140-6736(98)10363-X.CrossRefPubMed Ruggenenti P, Perna A, Gherardi G, Garini G, Zoccali C, Salvadori M, et al: Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet. 1999, 354: 359-364. 10.1016/S0140-6736(98)10363-X.CrossRefPubMed
19.
Zurück zum Zitat Effects of dietary protein restriction on the progression of moderate renal disease in the Modification of Diet in Renal Disease Study. J Am Soc Nephrol. 1996, 7: 2616-2626. Effects of dietary protein restriction on the progression of moderate renal disease in the Modification of Diet in Renal Disease Study. J Am Soc Nephrol. 1996, 7: 2616-2626.
20.
Zurück zum Zitat Sawicki PT, Didjurgeit U, Muhlhauser I, Bender R, Heinemann L, Berger M: Smoking is associated with progression of diabetic nephropathy. Diabetes Care. 1994, 17: 126-131. 10.2337/diacare.17.2.126.CrossRefPubMed Sawicki PT, Didjurgeit U, Muhlhauser I, Bender R, Heinemann L, Berger M: Smoking is associated with progression of diabetic nephropathy. Diabetes Care. 1994, 17: 126-131. 10.2337/diacare.17.2.126.CrossRefPubMed
22.
Zurück zum Zitat Hommel K, Rasmussen S, Madsen M, Kamper AL: The Danish Registry on Regular Dialysis and Transplantation: completeness and validity of incident patient registration. Nephrol Dial Transplant. 2010, 25: 947-951. 10.1093/ndt/gfp571.CrossRefPubMed Hommel K, Rasmussen S, Madsen M, Kamper AL: The Danish Registry on Regular Dialysis and Transplantation: completeness and validity of incident patient registration. Nephrol Dial Transplant. 2010, 25: 947-951. 10.1093/ndt/gfp571.CrossRefPubMed
23.
Zurück zum Zitat Charlson ME, Pompei P, Ales KL, MacKenzie CR: A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987, 40: 373-383. 10.1016/0021-9681(87)90171-8.CrossRefPubMed Charlson ME, Pompei P, Ales KL, MacKenzie CR: A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987, 40: 373-383. 10.1016/0021-9681(87)90171-8.CrossRefPubMed
24.
Zurück zum Zitat Valls J, Cleries R, Galvez J, Moreno V, Gispert R, Borras JM, et al: RiskDiff: a web tool for the analysis of the difference due to risk and demographic factors for incidence or mortality data. BMC Public Health. 2009, 9: 473-10.1186/1471-2458-9-473.CrossRefPubMedPubMedCentral Valls J, Cleries R, Galvez J, Moreno V, Gispert R, Borras JM, et al: RiskDiff: a web tool for the analysis of the difference due to risk and demographic factors for incidence or mortality data. BMC Public Health. 2009, 9: 473-10.1186/1471-2458-9-473.CrossRefPubMedPubMedCentral
Metadaten
Titel
Reduced incidence of end stage renal disease among the elderly in Denmark: an observational study
verfasst von
James G Heaf
Sonja Wehberg
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
BMC Nephrology / Ausgabe 1/2012
Elektronische ISSN: 1471-2369
DOI
https://doi.org/10.1186/1471-2369-13-131

Weitere Artikel der Ausgabe 1/2012

BMC Nephrology 1/2012 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.