Skip to main content
Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology 8/2012

Open Access 01.08.2012 | Letter to the Editor

Reply to letter from Mainster M.A. & Turner P.L. titled “Blue light’s benefits vs blue-blocking intraocular lens chromophores”

verfasst von: James A. Davison, Anil S. Patel, Joao P. Cunha, Jim Schwiegerling, Orkun Muftuoglu

Erschienen in: Graefe's Archive for Clinical and Experimental Ophthalmology | Ausgabe 8/2012

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
Dear Editor,
We are pleased to reply to the letter from Mainster and Turner concerning our review article [1].
We referred to “published” references [2, 3] by Mainster for his preference for violet-blocking intraocular lenses (IOLs). The quote which contradicts their viewpoint [4] is correctly attributed to the patent with Mainster as the principal inventor [5]. Any reader of the patent would reasonably surmise that the principal inventor would have accepted the quoted statements in the patent. AMO OptiBlue IOLs based on this patent were available to Mainster as he comparatively evaluated them [3].
The referred 1986 paper by Mainster suggested only an ideal short wavelength cut-off for 10% transmittance value, which can be met by many possible complete spectral transmittance curves, unlike the specific preference in the patent and his later papers [2, 3, 5].
Views by Mainster and Turner related to circadian rhythm photoentrainment, including unsubstantiated concerns for pediatric patients are in error, since they are based on computations using erroneously constructed action spectra with a peak of 460 nm as published by two investigators in 2001 before the discovery of intrinsically photosensitive retinal ganglion cells (ipRGC) in 2002 [1, 6]. In addition to ipRGC cells, additional contributions by medium wavelength cones as found in animal investigations are also supported by later independent measurement of the light-induced human melatonin suppression which gives a relatively broad peak from 460 to 500 nm [6, 7]. Lack of any concern for circadian photoentrainment for blue light-filtering IOLs, and its validation by the two human sleep studies, is summarized in our review article [1, 6].
Unlike their viewpoint [4] with glaring omissions, our review [1] discusses three scotopic clinical studies showing no clinically detectable disadvantage for blue light-filtering IOLs in scotopic conditions. In patients with early AMD, even with higher simulated blue-light filtering, timed performances of block manipulation by hand and ambulation by walking though two mobility courses under scotopic conditions was the same as for colorless IOLs [8]. While Mainster and Turner state photoreceptive benefits of colorless IOLs, there is no supporting clinical evidence. In addition, blue light-filtering IOLs have been confirmed to be safe in millions of pseudophakic patients since 2003.
Their letter ignores the comparative glare study showing reduced effect of glare disability on simulated driving performance for blue light-filtering IOLs [9].We acknowledge the proof reading error in the Hammond et al. paper where the two bulbs were mislabeled in their figure 3 [10]. Our resultant erroneous sentence should be corrected to state that the Xenon glare source has relatively greater energy from shorter wavelength [1]. But this minor error does not at all affect the study’s scientific validity and key findings related to reduced glare disability, better heterochromatic contrast threshold, and faster recovery from photostress in eyes implanted with blue light-filtering IOLs [1, 10]. In addition, the target and glare sources need not be the same during the day, because natural outdoor backgrounds are more likely to be an atmospheric blue and targets are more likely to be mid-to-long wavelength [10].Their suggestion of wearing sunglasses in dazzling conditions is unrealistic at night to reduce glare or photostress effects while driving against an opposing lane of cars with Xenon headlights.
Unlike their examination of selected epidemiological studies, we reviewed in-vitro, animal, clinical, and epidemiological studies related to photoprotection by blue light-filtering IOLs [1]. In summary, we did not find any validated risk for photoreception by blue light-filtering IOLs, while finding many investigations which suggest their benefits of creating better vision and reduced glare while protecting against retinal phototoxicity and its associated potential risk for AMD.

Financial disclosure statement

None of the authors have any proprietary or commercial interest in any products mentioned or concept discussed in this article. Drs. Davison, Patel and Schwiegerling are consultants to Alcon Laboratories Inc.

Open Access

This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://​creativecommons.​org/​licenses/​by-nc/​2.​0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.
download
DOWNLOAD
print
DRUCKEN

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Gräfes Archiv

Online-Abonnement

Literatur
1.
Zurück zum Zitat Davison JA, Patel AS, Cunha JP, Schwiegerling J, Muftuoglu O (2011) Recent studies provide an updated clinical perspective on blue light-filtering IOLs. Graefe’s Arch Clin Exp Ophthalmol 249(7):957–968PubMedCrossRef Davison JA, Patel AS, Cunha JP, Schwiegerling J, Muftuoglu O (2011) Recent studies provide an updated clinical perspective on blue light-filtering IOLs. Graefe’s Arch Clin Exp Ophthalmol 249(7):957–968PubMedCrossRef
2.
Zurück zum Zitat Mainster MA (2005) Intraocular lenses should block UV radiation and violet but not blue light. Arch Ophthalmol 123:550–555PubMedCrossRef Mainster MA (2005) Intraocular lenses should block UV radiation and violet but not blue light. Arch Ophthalmol 123:550–555PubMedCrossRef
3.
Zurück zum Zitat Mainster MA (2006) Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. Br J Ophthalmol 90:784–792PubMedCrossRef Mainster MA (2006) Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. Br J Ophthalmol 90:784–792PubMedCrossRef
4.
Zurück zum Zitat Mainster MA, Turner PL (2010) Blue-blocking IOLs decrease photoreception without providing significant photoprotection. [Viewpoints]. Surv Ophthalmol 55:272–289PubMedCrossRef Mainster MA, Turner PL (2010) Blue-blocking IOLs decrease photoreception without providing significant photoprotection. [Viewpoints]. Surv Ophthalmol 55:272–289PubMedCrossRef
5.
Zurück zum Zitat Mainster MA, Lang AJ, Lowery MD, Pearson JC, Weaver MA, Fleischer JC, King GA (2007) Ophthalmic devices having a highly selective violet light transmissive filter and related methods. US patent No: 7,278,737 B2 Mainster MA, Lang AJ, Lowery MD, Pearson JC, Weaver MA, Fleischer JC, King GA (2007) Ophthalmic devices having a highly selective violet light transmissive filter and related methods. US patent No: 7,278,737 B2
6.
Zurück zum Zitat Patel AS, Dacey DM (2009) Relative effectiveness of a blue light-filtering lens for photoentrainment of the circadian rhythm. J Cataract Refract Surg 35:529–539PubMedCrossRef Patel AS, Dacey DM (2009) Relative effectiveness of a blue light-filtering lens for photoentrainment of the circadian rhythm. J Cataract Refract Surg 35:529–539PubMedCrossRef
8.
Zurück zum Zitat Kiser AK, Deschler EK, Dagnelie G (2008) Visual function and performance with blue-light blocking filters in age-related macular degeneration. Clin Exp Ophthalmol 36:514–520CrossRef Kiser AK, Deschler EK, Dagnelie G (2008) Visual function and performance with blue-light blocking filters in age-related macular degeneration. Clin Exp Ophthalmol 36:514–520CrossRef
9.
Zurück zum Zitat Gray R, Perkins SA, Suryakumar R, Neuman B, Maxwell WA (2011) Reduced effects of glare disability on driving performance in patients with blue light filtering intraocular lenses. J Cataract Surg 37:38–44CrossRef Gray R, Perkins SA, Suryakumar R, Neuman B, Maxwell WA (2011) Reduced effects of glare disability on driving performance in patients with blue light filtering intraocular lenses. J Cataract Surg 37:38–44CrossRef
10.
Zurück zum Zitat Hammond BR, Renzi LM, Sachak S, Brint SF (2010) Contralateral comparison of blue-filtering and non-blue-filtering intraocular lenses: glare disability, heterochromatic contrast, and photostress recovery. Clin Ophthalmol 4:1465–1473PubMedCrossRef Hammond BR, Renzi LM, Sachak S, Brint SF (2010) Contralateral comparison of blue-filtering and non-blue-filtering intraocular lenses: glare disability, heterochromatic contrast, and photostress recovery. Clin Ophthalmol 4:1465–1473PubMedCrossRef
Metadaten
Titel
Reply to letter from Mainster M.A. & Turner P.L. titled “Blue light’s benefits vs blue-blocking intraocular lens chromophores”
verfasst von
James A. Davison
Anil S. Patel
Joao P. Cunha
Jim Schwiegerling
Orkun Muftuoglu
Publikationsdatum
01.08.2012
Verlag
Springer-Verlag
Erschienen in
Graefe's Archive for Clinical and Experimental Ophthalmology / Ausgabe 8/2012
Print ISSN: 0721-832X
Elektronische ISSN: 1435-702X
DOI
https://doi.org/10.1007/s00417-011-1749-y

Weitere Artikel der Ausgabe 8/2012

Graefe's Archive for Clinical and Experimental Ophthalmology 8/2012 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Ophthalmika in der Schwangerschaft

Die Verwendung von Ophthalmika in der Schwangerschaft und Stillzeit stellt immer eine Off-label-Anwendung dar. Ein Einsatz von Arzneimitteln muss daher besonders sorgfältig auf sein Risiko-Nutzen-Verhältnis bewertet werden. In der vorliegenden …

Operative Therapie und Keimnachweis bei endogener Endophthalmitis

Vitrektomie Originalie

Die endogene Endophthalmitis ist eine hämatogen fortgeleitete, bakterielle oder fungale Infektion, die über choroidale oder retinale Gefäße in den Augapfel eingeschwemmt wird [ 1 – 3 ]. Von dort infiltrieren die Keime in die Netzhaut, den …

Bakterielle endogene Endophthalmitis

Vitrektomie Leitthema

Eine endogene Endophthalmitis stellt einen ophthalmologischen Notfall dar, der umgehender Diagnostik und Therapie bedarf. Es sollte mit geeigneten Methoden, wie beispielsweise dem Freiburger Endophthalmitis-Set, ein Keimnachweis erfolgen. Bei der …

So erreichen Sie eine bestmögliche Wundheilung der Kornea

Die bestmögliche Wundheilung der Kornea, insbesondere ohne die Ausbildung von lichtstreuenden Narben, ist oberstes Gebot, um einer dauerhaften Schädigung der Hornhaut frühzeitig entgegenzuwirken und die Funktion des Auges zu erhalten.   

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.