Skip to main content
Erschienen in: Medical Microbiology and Immunology 3-4/2018

Open Access 08.05.2018 | Original Investigation

Serum cytokine responses in Rickettsia felis infected febrile children, Ghana

verfasst von: Jessica Rauch, Peter Sothmann, Cassandra Aldrich, Ben Hogan, Ellis Owusu-Dabo, Jürgen May, Daniel Eibach, Dennis Tappe

Erschienen in: Medical Microbiology and Immunology | Ausgabe 3-4/2018

download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN

Abstract

The intracellular pathogen Rickettsia felis causes flea-borne spotted fever and is increasingly recognized as an emerging cause of febrile illness in Africa, where co-infection with Plasmodium falciparum is common. Rickettsiae invade endothelial cells. Little is known, however, about the early immune responses to infection. In this study, we characterize for the first time the cytokine profile in the acute phase of illness caused by R. felis infection, as well as in plasmodial co-infection, using serum from 23 febrile children < 15 years of age and 20 age-matched healthy controls from Ghana. Levels of IL-8 (interleukin-8), IP-10 (interferon-γ-induced protein-10), MCP-1 (monocyte chemotactic protein-1), MIP-1α (macrophage inflammatory protein-1α) and VEGF (vascular endothelial growth factor) were significantly elevated in R. felis mono-infection; however, IL-8 and VEGF elevation was not observed in plasmodial co-infections. These results have important implications in understanding the early immune responses to R. felis and suggest a complex interplay in co-infections.
Hinweise
Jessica Rauch and Peter Sothmann contributed equally to this work.

Introduction

Rickettsia felis causes flea-borne spotted fever (FBSF), an acute febrile illness commonly involving headache, myalgia and rash and potentially leading to severe neurological and respiratory complications [1]. While distributed worldwide, R. felis infection is increasingly reported in Africa, where prevalence rates of 3–15% in acute fever episodes suggest an emerging importance as a cause of febrile illness [25]. The obligate intracellular pathogen R. felis belongs to the transitional group of rickettsiae, as it shares phenotypic characteristics with members of the spotted fever group (SFG) and the typhus group (TG) [2]. Rickettsiae cause endothelial cell (EC) infection which can lead to vasculitis and bacterial dissemination [6]. The vascular permeability observed in clinical cases seems to be mediated at least in part by inflammatory cells and their mediators [7]. ECs, that are besides macrophages the major target cells for rickettsial infections [812], react to infection with TG and SFG rickettsia with the production of proinflammatory cytokines like IL-1 (interleukin-1), IL-6 and TNFα (tumor necrosis factor-α), chemokines like IL-8, IP-10 (interferon-γ induced protein-10) and MCP-1 (monocyte chemotactic protein-1) and other mediators in vitro that lead to activation and recruitment of immune cells to the site of infection [8, 1317]. IL-8, for example, promotes the recruitment of neutrophils to the site of infection and mediates angiogenesis [1820]. IP-10 and MCP-1 are involved in the recruitment of monocytes and activated NK cells and T cells which further lead to potentiation of the inflammatory response to rickettsial infection and its clearance [2123]. Mouse models of rickettsial infections further help to understand the role of cytokines in vivo. IFNγ (interferon-γ) and TNFα have protective properties during rickettsial infection of susceptible mouse strains [2429]. IFNγ and TNFα activate intracellular bactericidal mechanisms; it was shown that IFNγ inhibits the growth of rickettsia in various host cells [2833]. However, in humans, the early host immune responses have not been well-characterized. In this study, we investigated serum cytokine responses in febrile children from Ghana with acute R. felis infection.

Patients and methods

Serum cytokines and chemokines were analyzed by bead-based LEGENDplex assay (BioLegend, London) from 23 febrile children < 15 years of age (age range 0–7 years, median: 2 years) with molecularly confirmed R. felis infection seen at St. Michael’s Hospital, Pramso, Ghana [3]. The detection limits of the LEGENDplex assay for the analyzed cytokines were as follows: bFGF (basic fibroblast growth factor: 5.03 pg/mL), G-CSF (granulocyte colony stimulating factor: 8.77 pg/mL), GM-CSF (granulocyte–macrophage colony stimulating factor: 9.44 pg/mL), IFNγ (3.08 pg/mL), IL-1ß (N/A), IL-2 (3.34 pg/mL), IL-4 (4.46 pg/mL), IL-5 (3.61 pg/mL), IL-6 (2.86 pg/mL), IL-8 (5.13 pg/mL), IL-9 (1.27 pg/mL), IL-10 (2.97 pg/mL), IL-12p70 (30.33 pg/mL), IL-13 (N/A), IL-17A (4.29 pg/mL), IL-17F (4.24 pg/mL), IL-21 (1.37 pg/mL), IL-22 (5.74 pg/mL), IP-10 (N/A), MCP-1 (N/A), MIP-1α (macrophage inflammatory protein-1α: 4.53 pg/mL), MIP-1β (macrophage inflammatory protein-1ß: 5.47 pg/mL), PDGF-BB (platelet derived growth factor: N/A), RANTES (regulated on activation, normal T cell expressed and secreted: N/A), TNFα (1.78 pg/mL), VEGF (vascular endothelial growth factor: 7.41 pg/mL).
Blood samples were taken within the first week after onset of fever (≥ 38 °C tympanic). Malaria microscopy and blood cultures were performed as described previously [34]. Blood cultures from the participants of this study remained sterile. A pan-rickettsial PCR targeting the glt A gene was performed on samples from patients with negative blood culture (ct-values ranged from 29 to 40). In all of these samples R. felis was identified by sequencing of amplicons and BLAST analysis. Details on the molecular methods are described elsewhere [3]. Eight children had a P. falciparum co-infection as evidenced by thin and thick blood films.
20 serum samples from age-matched healthy controls from the same geographical area were analyzed in comparison by the LEGENDplex assay. Thin and thick blood films for malaria, as well as PCR examinations for Plasmodium sp. and rickettsiae were negative from the control group. Both the R. felis infected group and the control group were serologically screened by indirect immunofluorescence tests for IgM and IgG antibodies against R. felis. The indirect immunofluorescence tests were performed using R. felis (strain California 2) grown in XTC-2 cells. None of the subjects or controls were positive.
Statistical analysis was performed with GraphPad Prism 7 software (GraphPad Software Inc., La Jolla, USA). For comparison between the analyzed groups, 1 way ANOVA and subsequent Tukey’s multiple comparisons test were used. To evaluate the fold change of cytokine concentrations between infected patients and healthy controls, the median of the cytokine concentrations from the mono-infected group and co-infected group, respectively, was divided by the median of the cytokine concentrations of the control group. In addition, ct-values of R. felis specific DNA was compared to cytokine concentrations of G-CSF, IL-8, IL-6, IL-10, IP-10, MCP-1, MIP-1α, PDGF-BB and VEGF (Spearman correlation).

Results

Serum levels of IL-8, IP-10, MCP-1, MIP-1α and VEGF were significantly increased in R. felis mono-infections in comparison with healthy controls (Fig. 1; Table 1). Of note, the measured cytokine concentrations did not correlate with the detected R. felis DNA concentrations. When groups of R. felis infected and P. falciparum co-infected children were compared, no significant differences were observed in the expression of IP-10, MCP-1 and MIP-1α. In contrast, significantly lower levels of IL-8 and VEGF were found in plasmodial co-infections compared to R. felis mono-infections.
Table 1
Cytokine changes in infected patients in comparison to healthy controls
Cytokine
Median cytokine concentration (pg/mL) (fold change to healthy control)
Healthy control
R. felis infected
R. felis infected + malaria
IL-6
0
284.6 (NC)
169.0 (NC)
IL-8
6.2
873.6 (141.0)
39.3 (6.3)
IL-10
0
7.6 (NC)
1409.0 (NC)
IP-10
71.6
2042.4 (28.5)
3443.7 (48.1)
G-CSF
0
85.1 (NC)
259.1 (NC)
MCP-1
256.1
1491.8 (5.8)
2949.0 (11.5)
MIP-1α
0
135.5 (NC)
27.5 (NC)
PDGF-BB
9419.8
9418.9 (1.0)
4337.8 (0.5)
VEGF
10.8
104.5 (9.7)
28.4 (2.6)
The median cytokine concentrations and the changes between healthy controls and patients were calculated
NC not calculable
IL-6, IL-10 and G-CSF showed smaller, non-significant elevations in R. felis mono-infection when compared to healthy controls. The expression of these cytokines was further increased, significantly for G-CSF and IL-10, in co-infected patients compared to both mono-infected patients and healthy controls. Of note, these cytokine concentrations positively correlated with the P. falciparum parasitemia [Spearman rank rs(IL-6) = 0.571, p = 0.151; rs(IL-10) = 0.476, p = 0.243; rs(G-CSF) = 0.619, p = 0.115].
PDGF levels were not found to be elevated in mono-infected patients but were significantly reduced in co-infected patients compared to healthy controls.
Serum concentrations of GM-CSF, IL-1ß, IL-2, IL-4, IL-5, IL-9, IL-12p70, IL-13, IL-17A, IL-17F, IL-21, IL-22, IFN-γ, TNF-α, MIP-1ß, RANTES, and bFGF were similar in both patient groups and controls (data not shown).

Discussion

Only a few studies on cytokines and other inflammatory mediators exist for rickettsial diseases in humans. We hereby report the first data on systemic inflammatory responses in the acute phase of FBSF. Although DNA of R. felis has also been found on the skin of healthy individuals [35] and in blood specimens from afebrile persons [36, 37], the negative blood cultures in all R. felis infected children examined in our study and the negative blood films for malaria in the specified R. felis mono-infected subgroup of our investigation underscore that R. felis is the causative agent of illness in our study participants. The fact that R. felis plays a role as a pathogen in humans is, also, confirmed by various reports [3841]. The absence of rickettsial antibodies in the children examined here has been repeatedly reported in patients with PCR-diagnosed R. felis infection and is in line with findings of late seroconversion in rickettsial disease in general [4045].
Levels of IL-8, IP-10, MCP-1, MIP-1α and VEGF were significantly elevated in R. felis mono-infection. These chemokines attract immune cells to sites of infection and likely reflect initial host responses to R. felis. In line with that, elevations of IL-8 and MIP-1α have been reported in the acute phase of African tick-bite fever (ATBF) and Mediterranean spotted fever (MSF) caused by R. africae and R. coronii, respectively [4648]. IL-8, and also IL-6, may play a role in the development of vasculitis resulting from the infection of endothelial cells by mediating the production of acute phase proteins [49]. The levels of IL-6, IL-10 and G-CSF were elevated in mono-infection and increased further in co-infection. Since both IL-6 and IL-10 have been found to be up-regulated in ATBF and MSF as well as IL-10 in malaria, these results suggest common effects of R. felis and P. falciparum [47, 48, 50, 51]. In contrast, significantly lower levels of IL-8 and VEGF in plasmodial co-infections as compared to R. felis mono-infections may indicate opposing effects of R. felis and P. falciparum. Increased IFN-γ and TNF-α levels, as reported in patients with Japanese spotted fever, ATBF and MSF [6, 47, 48, 52], were not detectable in R. felis infected patients. However, this does not exclude a role for IFN-γ or TNF-α in clearing R. felis infection at a later point in time.
In our study, immune responses of children towards an infection were determined. Several studies have demonstrated not only diminished humoral responses in children [53] but have also suggested that cell-mediated immunity is not fully developed in children [54]. Furthermore, cytokine production was shown to be reduced in children compared to adults. Keeping this in consideration and the opportunity that children in the median age of 2 years are infected for the first time with these pathogens, immune responses in adults could markedly differ from those of the children. Since children represent a particular vulnerable group, it is even more important to be able to make an early diagnosis to treat them adequately.
The data presented, characterizing cytokine profiles during the first week of infection with R. felis, offer new insights in understanding early host immune responses in FBSF and suggest a complex interplay in R. felis and P. falciparum co-infections. Further studies, such as T cell and antibody analyses are needed to shed more light on the immune responses during R. felis infection.

Acknowledgements

We thank Doris Winter for her excellent technical assistance.

Compliance with ethical standards

Conflict of interest

All authors declare no conflicts of interest. No author has a commercial or other association that might pose a conflict of interest (e.g., pharmaceutical stock ownership, consultancy, advisory board membership, relevant patents, or research funding).

Ethical approval

For this type of study formal consent is not required.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

Literatur
1.
Zurück zum Zitat Angelakis E, Mediannikov O, Parola P, Raoult D (2016) Rickettsia felis: the complex journey of an emergent human pathogen. Trends Parasitol 32(7):554–64CrossRefPubMed Angelakis E, Mediannikov O, Parola P, Raoult D (2016) Rickettsia felis: the complex journey of an emergent human pathogen. Trends Parasitol 32(7):554–64CrossRefPubMed
3.
Zurück zum Zitat Sothmann P, Keller C, Krumkamp R, Kreuels B, Aldrich C, Sarpong N et al (2017) Rickettsia felis infection in febrile children, Ghana. Am J Trop Med Hyg 96(4):783–785PubMedPubMedCentral Sothmann P, Keller C, Krumkamp R, Kreuels B, Aldrich C, Sarpong N et al (2017) Rickettsia felis infection in febrile children, Ghana. Am J Trop Med Hyg 96(4):783–785PubMedPubMedCentral
4.
Zurück zum Zitat Richards AL, Jiang J, Omulo S, Dare R, Abdirahman K, Ali A et al (2010) Human infection with Rickettsia felis, Kenya. Emerg Infect Dis 16(7):1081–1086CrossRefPubMedPubMedCentral Richards AL, Jiang J, Omulo S, Dare R, Abdirahman K, Ali A et al (2010) Human infection with Rickettsia felis, Kenya. Emerg Infect Dis 16(7):1081–1086CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Socolovschi C, Mediannikov O, Sokhna C, Tall A, Diatta G, Bassene H et al (2010) Rickettsia felis-associated uneruptive fever, Senegal. Emerg Infect Dis 16(7):1140–1142CrossRefPubMedPubMedCentral Socolovschi C, Mediannikov O, Sokhna C, Tall A, Diatta G, Bassene H et al (2010) Rickettsia felis-associated uneruptive fever, Senegal. Emerg Infect Dis 16(7):1140–1142CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Sahni SK, Narra HP, Sahni A, Walker DH (2013) Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 8(10):1265–1288CrossRefPubMedPubMedCentral Sahni SK, Narra HP, Sahni A, Walker DH (2013) Recent molecular insights into rickettsial pathogenesis and immunity. Future Microbiol 8(10):1265–1288CrossRefPubMedPubMedCentral
7.
Zurück zum Zitat Mansueto P, Vitale G, Di Lorenzo G, Arcoleo F, Mansueto S, Cillari E (2008) Immunology of human rickettsial diseases. J Biol Regul Homeost Agents 22(2):131–139PubMed Mansueto P, Vitale G, Di Lorenzo G, Arcoleo F, Mansueto S, Cillari E (2008) Immunology of human rickettsial diseases. J Biol Regul Homeost Agents 22(2):131–139PubMed
9.
Zurück zum Zitat Walker DH, Popov VL, Wen J, Feng HM (1994) Rickettsia conorii infection of C3H/HeN mice. A model of endothelial-target rickettsiosis. Lab Invest 70(3):358–68PubMed Walker DH, Popov VL, Wen J, Feng HM (1994) Rickettsia conorii infection of C3H/HeN mice. A model of endothelial-target rickettsiosis. Lab Invest 70(3):358–68PubMed
10.
Zurück zum Zitat Osterloh A, Papp S, Moderzynski K, Kuehl S, Richardt U, Fleischer B (2016) Persisting Rickettsia typhi causes fatal central nervous system inflammation. Infect Immun 84(5):1615–1632CrossRefPubMedPubMedCentral Osterloh A, Papp S, Moderzynski K, Kuehl S, Richardt U, Fleischer B (2016) Persisting Rickettsia typhi causes fatal central nervous system inflammation. Infect Immun 84(5):1615–1632CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Papp S, Moderzynski K, Rauch J, Heine L, Kuehl S, Richardt U et al (2016) Liver necrosis and lethal systemic inflammation in a murine model of Rickettsia typhi infection: role of neutrophils, macrophages and NK cells. PLoS Negl Trop Dis 10(8):e0004935CrossRefPubMedPubMedCentral Papp S, Moderzynski K, Rauch J, Heine L, Kuehl S, Richardt U et al (2016) Liver necrosis and lethal systemic inflammation in a murine model of Rickettsia typhi infection: role of neutrophils, macrophages and NK cells. PLoS Negl Trop Dis 10(8):e0004935CrossRefPubMedPubMedCentral
12.
Zurück zum Zitat Walker DH, Hudnall SD, Szaniawski WK, Feng HM (1999) Monoclonal antibody-based immunohistochemical diagnosis of rickettsialpox: the macrophage is the principal target. Mod Pathol 12(5):529–33PubMed Walker DH, Hudnall SD, Szaniawski WK, Feng HM (1999) Monoclonal antibody-based immunohistochemical diagnosis of rickettsialpox: the macrophage is the principal target. Mod Pathol 12(5):529–33PubMed
13.
Zurück zum Zitat Clifton DR, Rydkina E, Huyck H, Pryhuber G, Freeman RS, Silverman DJ et al (2005) Expression and secretion of chemotactic cytokines IL-8 and MCP-1 by human endothelial cells after Rickettsia rickettsii infection: regulation by nuclear transcription factor NF-kappaB. Int J Med Microbiol 295(4):267–78CrossRefPubMed Clifton DR, Rydkina E, Huyck H, Pryhuber G, Freeman RS, Silverman DJ et al (2005) Expression and secretion of chemotactic cytokines IL-8 and MCP-1 by human endothelial cells after Rickettsia rickettsii infection: regulation by nuclear transcription factor NF-kappaB. Int J Med Microbiol 295(4):267–78CrossRefPubMed
14.
Zurück zum Zitat Kaplanski G, Teysseire N, Farnarier C, Kaplanski S, Lissitzky JC, Durand JM et al (1995) IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1 alpha-dependent pathway. J Clin Invest 96(6):2839–2844CrossRefPubMedPubMedCentral Kaplanski G, Teysseire N, Farnarier C, Kaplanski S, Lissitzky JC, Durand JM et al (1995) IL-6 and IL-8 production from cultured human endothelial cells stimulated by infection with Rickettsia conorii via a cell-associated IL-1 alpha-dependent pathway. J Clin Invest 96(6):2839–2844CrossRefPubMedPubMedCentral
15.
Zurück zum Zitat Sporn LA, Marder VJ (1996) Interleukin-1 alpha production during Rickettsia rickettsii infection of cultured endothelial cells: potential role in autocrine cell stimulation. Infect Immun 64(5):1609–1613PubMedPubMedCentral Sporn LA, Marder VJ (1996) Interleukin-1 alpha production during Rickettsia rickettsii infection of cultured endothelial cells: potential role in autocrine cell stimulation. Infect Immun 64(5):1609–1613PubMedPubMedCentral
16.
Zurück zum Zitat Bechah Y, Capo C, Raoult D, Mege JL (2008) Infection of endothelial cells with virulent Rickettsia prowazekii increases the transmigration of leukocytes. J Infect Dis 197(1):142–147CrossRefPubMed Bechah Y, Capo C, Raoult D, Mege JL (2008) Infection of endothelial cells with virulent Rickettsia prowazekii increases the transmigration of leukocytes. J Infect Dis 197(1):142–147CrossRefPubMed
17.
Zurück zum Zitat Rydkina E, Sahni A, Silverman DJ, Sahni SK (2007) Comparative analysis of host-cell signalling mechanisms activated in response to infection with Rickettsia conorii and Rickettsia typhi. J Med Microbiol 56(Pt 7):896–906CrossRefPubMed Rydkina E, Sahni A, Silverman DJ, Sahni SK (2007) Comparative analysis of host-cell signalling mechanisms activated in response to infection with Rickettsia conorii and Rickettsia typhi. J Med Microbiol 56(Pt 7):896–906CrossRefPubMed
18.
Zurück zum Zitat Baggiolini M, Clark-Lewis I (1992) Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 307(1):97–101CrossRefPubMed Baggiolini M, Clark-Lewis I (1992) Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 307(1):97–101CrossRefPubMed
19.
Zurück zum Zitat Valbuena G, Walker DH (2009) Infection of the endothelium by members of the order Rickettsiales. Thromb Haemost 102(6):1071–1079PubMedPubMedCentral Valbuena G, Walker DH (2009) Infection of the endothelium by members of the order Rickettsiales. Thromb Haemost 102(6):1071–1079PubMedPubMedCentral
20.
Zurück zum Zitat Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170(6):3369–3376CrossRefPubMed Li A, Dubey S, Varney ML, Dave BJ, Singh RK (2003) IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. J Immunol 170(6):3369–3376CrossRefPubMed
21.
Zurück zum Zitat Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29(6):313–26CrossRefPubMedPubMedCentral Deshmane SL, Kremlev S, Amini S, Sawaya BE (2009) Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res 29(6):313–26CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89(2):207–15CrossRefPubMed Groom JR, Luster AD (2011) CXCR3 ligands: redundant, collaborative and antagonistic functions. Immunol Cell Biol 89(2):207–15CrossRefPubMed
24.
Zurück zum Zitat Walker DH, Popov VL, Feng HM (2000) Establishment of a novel endothelial target mouse model of a typhus group rickettsiosis: evidence for critical roles for gamma interferon and CD8 T lymphocytes. Lab Invest 80(9):1361–1372CrossRefPubMed Walker DH, Popov VL, Feng HM (2000) Establishment of a novel endothelial target mouse model of a typhus group rickettsiosis: evidence for critical roles for gamma interferon and CD8 T lymphocytes. Lab Invest 80(9):1361–1372CrossRefPubMed
25.
Zurück zum Zitat Li H, Jerrells TR, Spitalny GL, Walker DH (1987) Gamma interferon as a crucial host defense against Rickettsia conorii in vivo. Infect Immun 55(5):1252–1255PubMedPubMedCentral Li H, Jerrells TR, Spitalny GL, Walker DH (1987) Gamma interferon as a crucial host defense against Rickettsia conorii in vivo. Infect Immun 55(5):1252–1255PubMedPubMedCentral
26.
Zurück zum Zitat Walker DH, Olano JP, Feng HM (2001) Critical role of cytotoxic T lymphocytes in immune clearance of rickettsial infection. Infect Immun 69(3):1841–1846CrossRefPubMedPubMedCentral Walker DH, Olano JP, Feng HM (2001) Critical role of cytotoxic T lymphocytes in immune clearance of rickettsial infection. Infect Immun 69(3):1841–1846CrossRefPubMedPubMedCentral
27.
Zurück zum Zitat Feng HM, Popov VL, Walker DH (1994) Depletion of gamma interferon and tumor necrosis factor alpha in mice with Rickettsia conorii-infected endothelium: impairment of rickettsicidal nitric oxide production resulting in fatal, overwhelming rickettsial disease. Infect Immun 62(5):1952–1960PubMedPubMedCentral Feng HM, Popov VL, Walker DH (1994) Depletion of gamma interferon and tumor necrosis factor alpha in mice with Rickettsia conorii-infected endothelium: impairment of rickettsicidal nitric oxide production resulting in fatal, overwhelming rickettsial disease. Infect Immun 62(5):1952–1960PubMedPubMedCentral
28.
Zurück zum Zitat Moderzynski K, Heine L, Rauch J, Papp S, Kuehl S, Richardt U et al (2017) Cytotoxic effector functions of T cells are not required for protective immunity against fatal Rickettsia typhi infection in a murine model of infection: role of TH1 and TH17 cytokines in protection and pathology. PLoS Negl Trop Dis 11(2):e0005404CrossRefPubMedPubMedCentral Moderzynski K, Heine L, Rauch J, Papp S, Kuehl S, Richardt U et al (2017) Cytotoxic effector functions of T cells are not required for protective immunity against fatal Rickettsia typhi infection in a murine model of infection: role of TH1 and TH17 cytokines in protection and pathology. PLoS Negl Trop Dis 11(2):e0005404CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Moderzynski K, Papp S, Rauch J, Heine L, Kuehl S, Richardt U et al (2016) CD4+ T cells are as protective as CD8+ T cells against Rickettsia typhi infection by activating macrophage bactericidal activity. PLoS Negl Trop Dis 10(11):e0005089CrossRefPubMedPubMedCentral Moderzynski K, Papp S, Rauch J, Heine L, Kuehl S, Richardt U et al (2016) CD4+ T cells are as protective as CD8+ T cells against Rickettsia typhi infection by activating macrophage bactericidal activity. PLoS Negl Trop Dis 10(11):e0005089CrossRefPubMedPubMedCentral
30.
Zurück zum Zitat Feng HM, Walker DH (1993) Interferon-gamma and tumor necrosis factor-alpha exert their antirickettsial effect via induction of synthesis of nitric oxide. Am J Pathol 143(4):1016–1023PubMedPubMedCentral Feng HM, Walker DH (1993) Interferon-gamma and tumor necrosis factor-alpha exert their antirickettsial effect via induction of synthesis of nitric oxide. Am J Pathol 143(4):1016–1023PubMedPubMedCentral
31.
Zurück zum Zitat Turco J, Winkler HH (1984) Effect of mouse lymphokines and cloned mouse interferon-gamma on the interaction of Rickettsia prowazekii with mouse macrophage-like RAW264.7 cells. Infect Immun 45(2):303–308PubMedPubMedCentral Turco J, Winkler HH (1984) Effect of mouse lymphokines and cloned mouse interferon-gamma on the interaction of Rickettsia prowazekii with mouse macrophage-like RAW264.7 cells. Infect Immun 45(2):303–308PubMedPubMedCentral
32.
Zurück zum Zitat Turco J, Winkler HH (1986) Gamma-interferon-induced inhibition of the growth of Rickettsia prowazekii in fibroblasts cannot be explained by the degradation of tryptophan or other amino acids. Infect Immun 53(1):38–46PubMedPubMedCentral Turco J, Winkler HH (1986) Gamma-interferon-induced inhibition of the growth of Rickettsia prowazekii in fibroblasts cannot be explained by the degradation of tryptophan or other amino acids. Infect Immun 53(1):38–46PubMedPubMedCentral
33.
Zurück zum Zitat Chan ED, Riches DW (1998) Potential role of the JNK/SAPK signal transduction pathway in the induction of iNOS by TNF-alpha. Biochem Biophys Res Commun 253(3):790–796CrossRefPubMed Chan ED, Riches DW (1998) Potential role of the JNK/SAPK signal transduction pathway in the induction of iNOS by TNF-alpha. Biochem Biophys Res Commun 253(3):790–796CrossRefPubMed
34.
Zurück zum Zitat Sothmann P, Krumkamp R, Kreuels B, Sarpong N, Frank C, Ehlkes L et al (2015) Urbanicity and paediatric bacteraemia in Ghana—a case–control study within a rural-urban transition zone. PLoS One 10(9):e0139433CrossRefPubMedPubMedCentral Sothmann P, Krumkamp R, Kreuels B, Sarpong N, Frank C, Ehlkes L et al (2015) Urbanicity and paediatric bacteraemia in Ghana—a case–control study within a rural-urban transition zone. PLoS One 10(9):e0139433CrossRefPubMedPubMedCentral
35.
Zurück zum Zitat Mediannikov O, Socolovschi C, Million M, Sokhna C, Bassene H, Diatta G et al (2014) Molecular identification of pathogenic bacteria in eschars from acute febrile patients, Senegal. Am J Trop Med Hyg 91(5):1015–1019CrossRefPubMedPubMedCentral Mediannikov O, Socolovschi C, Million M, Sokhna C, Bassene H, Diatta G et al (2014) Molecular identification of pathogenic bacteria in eschars from acute febrile patients, Senegal. Am J Trop Med Hyg 91(5):1015–1019CrossRefPubMedPubMedCentral
36.
Zurück zum Zitat Maina AN, Knobel DL, Jiang J, Halliday J, Feikin DR, Cleaveland S et al (2012) Rickettsia felis infection in febrile patients, western Kenya, 2007–2010. Emerg Infect Dis 18(2):328–31CrossRefPubMedPubMedCentral Maina AN, Knobel DL, Jiang J, Halliday J, Feikin DR, Cleaveland S et al (2012) Rickettsia felis infection in febrile patients, western Kenya, 2007–2010. Emerg Infect Dis 18(2):328–31CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Mourembou G, Lekana-Douki JB, Mediannikov O, Nzondo SM, Kouna LC, Essone JC et al (2015) Possible role of Rickettsia felis in acute febrile illness among children in Gabon. Emerg Infect Dis 21(10):1808–1815CrossRefPubMedPubMedCentral Mourembou G, Lekana-Douki JB, Mediannikov O, Nzondo SM, Kouna LC, Essone JC et al (2015) Possible role of Rickettsia felis in acute febrile illness among children in Gabon. Emerg Infect Dis 21(10):1808–1815CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Zavala-Castro J, Zavala-Velazquez J, Walker D, Perez-Osorio J, Peniche-Lara G (2009) Severe human infection with Rickettsia felis associated with hepatitis in Yucatan, Mexico. Int J Med Microbiol 299(7):529–33CrossRefPubMedPubMedCentral Zavala-Castro J, Zavala-Velazquez J, Walker D, Perez-Osorio J, Peniche-Lara G (2009) Severe human infection with Rickettsia felis associated with hepatitis in Yucatan, Mexico. Int J Med Microbiol 299(7):529–33CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Zavala-Velazquez J, Laviada-Molina H, Zavala-Castro J, Perez-Osorio C, Becerra-Carmona G, Ruiz-Sosa JA et al (2006) Rickettsia felis, the agent of an emerging infectious disease: report of a new case in Mexico. Arch Med Res 37(3):419–22CrossRefPubMed Zavala-Velazquez J, Laviada-Molina H, Zavala-Castro J, Perez-Osorio C, Becerra-Carmona G, Ruiz-Sosa JA et al (2006) Rickettsia felis, the agent of an emerging infectious disease: report of a new case in Mexico. Arch Med Res 37(3):419–22CrossRefPubMed
40.
Zurück zum Zitat Zavala-Velazquez JE, Ruiz-Sosa JA, Sanchez-Elias RA, Becerra-Carmona G, Walker DH (2000) Rickettsia felis rickettsiosis in Yucatan. Lancet 356(9235):1079–1080CrossRefPubMed Zavala-Velazquez JE, Ruiz-Sosa JA, Sanchez-Elias RA, Becerra-Carmona G, Walker DH (2000) Rickettsia felis rickettsiosis in Yucatan. Lancet 356(9235):1079–1080CrossRefPubMed
41.
Zurück zum Zitat Mediannikov O, Fenollar F, Bassene H, Tall A, Sokhna C, Trape JF et al (2013) Description of “yaaf”, the vesicular fever caused by acute Rickettsia felis infection in Senegal. J Infect 66(6):536–40CrossRefPubMed Mediannikov O, Fenollar F, Bassene H, Tall A, Sokhna C, Trape JF et al (2013) Description of “yaaf”, the vesicular fever caused by acute Rickettsia felis infection in Senegal. J Infect 66(6):536–40CrossRefPubMed
42.
Zurück zum Zitat Mediannikov O, Diatta G, Fenollar F, Sokhna C, Trape JF, Raoult D. Tick-borne rickettsioses, neglected emerging diseases in rural Senegal. PLoS Negl Trop Dis. 2010;4(9) Mediannikov O, Diatta G, Fenollar F, Sokhna C, Trape JF, Raoult D. Tick-borne rickettsioses, neglected emerging diseases in rural Senegal. PLoS Negl Trop Dis. 2010;4(9)
43.
Zurück zum Zitat Zavala-Velazquez JE, Yu XJ, Walker DH (1996) Unrecognized spotted fever group rickettsiosis masquerading as dengue fever in Mexico. Am J Trop Med Hyg 55(2):157–159CrossRefPubMed Zavala-Velazquez JE, Yu XJ, Walker DH (1996) Unrecognized spotted fever group rickettsiosis masquerading as dengue fever in Mexico. Am J Trop Med Hyg 55(2):157–159CrossRefPubMed
44.
Zurück zum Zitat Fournier PE, Jensenius M, Laferl H, Vene S, Raoult D (2002) Kinetics of antibody responses in Rickettsia africae and Rickettsia conorii infections. Clin Diagn Lab Immunol 9(2):324–328PubMedPubMedCentral Fournier PE, Jensenius M, Laferl H, Vene S, Raoult D (2002) Kinetics of antibody responses in Rickettsia africae and Rickettsia conorii infections. Clin Diagn Lab Immunol 9(2):324–328PubMedPubMedCentral
45.
Zurück zum Zitat La Scola B, Raoult D (1997) Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol 35(11):2715–2727PubMedPubMedCentral La Scola B, Raoult D (1997) Laboratory diagnosis of rickettsioses: current approaches to diagnosis of old and new rickettsial diseases. J Clin Microbiol 35(11):2715–2727PubMedPubMedCentral
46.
Zurück zum Zitat Damas JK, Davi G, Jensenius M, Santilli F, Otterdal K, Ueland T et al (2009) Relative chemokine and adhesion molecule expression in Mediterranean spotted fever and African tick bite fever. J Infect 58(1):68–75CrossRefPubMed Damas JK, Davi G, Jensenius M, Santilli F, Otterdal K, Ueland T et al (2009) Relative chemokine and adhesion molecule expression in Mediterranean spotted fever and African tick bite fever. J Infect 58(1):68–75CrossRefPubMed
47.
Zurück zum Zitat Jensenius M, Ueland T, Fournier PE, Brosstad F, Stylianou E, Vene S et al (2003) Systemic inflammatory responses in African tick-bite fever. J Infect Dis 187(8):1332–1336CrossRefPubMed Jensenius M, Ueland T, Fournier PE, Brosstad F, Stylianou E, Vene S et al (2003) Systemic inflammatory responses in African tick-bite fever. J Infect Dis 187(8):1332–1336CrossRefPubMed
48.
Zurück zum Zitat Vitale G, Mansueto S, Gambino G, Mocciaro C, Spinelli A, Rini GB et al (2001) The acute phase response in Sicilian patients with boutonneuse fever admitted to hospitals in Palermo, 1992–1997. J Infect 42(1):33–9CrossRefPubMed Vitale G, Mansueto S, Gambino G, Mocciaro C, Spinelli A, Rini GB et al (2001) The acute phase response in Sicilian patients with boutonneuse fever admitted to hospitals in Palermo, 1992–1997. J Infect 42(1):33–9CrossRefPubMed
49.
Zurück zum Zitat Mansueto P, Vitale G, Cascio A, Seidita A, Pepe I, Carroccio A et al (2012) New insight into immunity and immunopathology of Rickettsial diseases. Clin Dev Immunol 2012:967852CrossRefPubMed Mansueto P, Vitale G, Cascio A, Seidita A, Pepe I, Carroccio A et al (2012) New insight into immunity and immunopathology of Rickettsial diseases. Clin Dev Immunol 2012:967852CrossRefPubMed
50.
Zurück zum Zitat Noone C, Parkinson M, Dowling DJ, Aldridge A, Kirwan P, Molloy SF et al (2013) Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum. Malar J 12:5CrossRefPubMedPubMedCentral Noone C, Parkinson M, Dowling DJ, Aldridge A, Kirwan P, Molloy SF et al (2013) Plasma cytokines, chemokines and cellular immune responses in pre-school Nigerian children infected with Plasmodium falciparum. Malar J 12:5CrossRefPubMedPubMedCentral
51.
Zurück zum Zitat Peyron F, Burdin N, Ringwald P, Vuillez JP, Rousset F, Banchereau J (1994) High levels of circulating IL-10 in human malaria. Clin Exp Immunol 95(2):300–303CrossRefPubMedPubMedCentral Peyron F, Burdin N, Ringwald P, Vuillez JP, Rousset F, Banchereau J (1994) High levels of circulating IL-10 in human malaria. Clin Exp Immunol 95(2):300–303CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Cillari E, Milano S, D’Agostino P, Arcoleo F, Stassi G, Galluzzo A et al (1996) Depression of CD4 T cell subsets and alteration in cytokine profile in boutonneuse fever. J Infect Dis 174(5):1051–1057CrossRefPubMed Cillari E, Milano S, D’Agostino P, Arcoleo F, Stassi G, Galluzzo A et al (1996) Depression of CD4 T cell subsets and alteration in cytokine profile in boutonneuse fever. J Infect Dis 174(5):1051–1057CrossRefPubMed
53.
Zurück zum Zitat Rijkers GT, Sanders LA, Zegers BJ (1993) Anti-capsular polysaccharide antibody deficiency states. Immunodeficiency 5(1):1–21PubMed Rijkers GT, Sanders LA, Zegers BJ (1993) Anti-capsular polysaccharide antibody deficiency states. Immunodeficiency 5(1):1–21PubMed
54.
Zurück zum Zitat Lilic D, Cant AJ, Abinun M, Calvert JE, Spickett GP (1997) Cytokine production differs in children and adults. Pediatr Res 42(2):237–40CrossRefPubMed Lilic D, Cant AJ, Abinun M, Calvert JE, Spickett GP (1997) Cytokine production differs in children and adults. Pediatr Res 42(2):237–40CrossRefPubMed
Metadaten
Titel
Serum cytokine responses in Rickettsia felis infected febrile children, Ghana
verfasst von
Jessica Rauch
Peter Sothmann
Cassandra Aldrich
Ben Hogan
Ellis Owusu-Dabo
Jürgen May
Daniel Eibach
Dennis Tappe
Publikationsdatum
08.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical Microbiology and Immunology / Ausgabe 3-4/2018
Print ISSN: 0300-8584
Elektronische ISSN: 1432-1831
DOI
https://doi.org/10.1007/s00430-018-0544-3

Weitere Artikel der Ausgabe 3-4/2018

Medical Microbiology and Immunology 3-4/2018 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.