Skip to main content
Erschienen in: Inflammation 3/2019

24.01.2019 | ORIGINAL ARTICLE

Sevoflurane Prevents Airway Remodeling via Downregulation of VEGF and TGF-β1 in Mice with OVA-Induced Chronic Airway Inflammation

verfasst von: Qi-Ying Shen, Ling Wu, Chuan-Sheng Wei, Yan-Nan Zhou, Hui-Mei Wu

Erschienen in: Inflammation | Ausgabe 3/2019

Einloggen, um Zugang zu erhalten

Abstract

Asthma is characterized by chronic airway inflammation, which is the underlying cause of airway remodeling featured by goblet cell hyperplasia, subepithelial fibrosis, and proliferation of smooth muscle. Sevoflurane has been used to treat life-threatening asthma and our previous study shows that sevoflurane inhibits acute lung inflammation in ovalbumin (OVA)-induced allergic mice. However, the effect of sevoflurane on airway remodeling in the context of chronic airway inflammation and the underlying mechanism are still unknown. Here, female C57BL/6 mice were used to establish chronic airway inflammation model. Hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and Sirius red (SR) staining were used to evaluate airway remodeling. Protein levels of α-SMA, VEGF, and TGF-β1 in lung tissues were detected by western blotting analyses and immunohistochemistry staining. Results showed that inhalation of sevoflurane inhibited chronic airway inflammation including inflammatory cell infiltration and pro-inflammatory cytokine production in BALF of the OVA-challenged mice. Meanwhile, sevoflurane suppressed airway thickening, goblet cell hyperplasia, smooth muscle hyperplasia, collagen deposition, and fiber hyperplasia in the lung tissues of the mice with airway remodeling. Most notably, sevoflurane inhibited the OVA-induced expressions of VEGF and TGF-β1. These results suggested that sevoflurane effectively inhibits airway remodeling in mouse model of chronic airway inflammation, which may be due to the downregulation of VEGF and TGF-β1in lung tissues. Therefore, our results indicate a potential role of sevoflurane in inhibiting airway remodeling besides its known suppression effect on airway inflammation, and support the use of sevoflurane in treating severe asthma in ICU.
Literatur
2.
Zurück zum Zitat Girodet, P.O., A. Ozier, I. Bara, J.M. Tunon de Lara, R. Marthan, and P. Berger. 2011. Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention. Pharmacology & Therapeutics 130 (3): 325–337.CrossRef Girodet, P.O., A. Ozier, I. Bara, J.M. Tunon de Lara, R. Marthan, and P. Berger. 2011. Airway remodeling in asthma: new mechanisms and potential for pharmacological intervention. Pharmacology & Therapeutics 130 (3): 325–337.CrossRef
3.
Zurück zum Zitat Trejo Bittar, H.E., S.A. Yousem, and S.E. Wenzel. 2015. Pathobiology of severe asthma. Annual Review of Pathology 10: 511–545.PubMedCrossRef Trejo Bittar, H.E., S.A. Yousem, and S.E. Wenzel. 2015. Pathobiology of severe asthma. Annual Review of Pathology 10: 511–545.PubMedCrossRef
4.
Zurück zum Zitat Durrani, S.R., R.K. Viswanathan, and W.W. Busse. 2011. What effect does asthma treatment have on airway remodeling? Current perspectives. The Journal of Allergy and Clinical Immunology 128 (3): 439–448 quiz 449-450.PubMedCrossRef Durrani, S.R., R.K. Viswanathan, and W.W. Busse. 2011. What effect does asthma treatment have on airway remodeling? Current perspectives. The Journal of Allergy and Clinical Immunology 128 (3): 439–448 quiz 449-450.PubMedCrossRef
5.
Zurück zum Zitat Doherty, T.A., P. Soroosh, N. Khorram, S. Fukuyama, P. Rosenthal, J.Y. Cho, P.S. Norris, H. Choi, S. Scheu, K. Pfeffer, B.L. Zuraw, C.F. Ware, D.H. Broide, and M. Croft. 2011. The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nature Medicine 17 (5): 596–603.PubMedPubMedCentralCrossRef Doherty, T.A., P. Soroosh, N. Khorram, S. Fukuyama, P. Rosenthal, J.Y. Cho, P.S. Norris, H. Choi, S. Scheu, K. Pfeffer, B.L. Zuraw, C.F. Ware, D.H. Broide, and M. Croft. 2011. The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nature Medicine 17 (5): 596–603.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Robinson, C.B., J. Leonard, and R.A. Panettieri Jr. 2012. Drug development for severe asthma: what are the metrics? Pharmacology & Therapeutics 135 (2): 176–181.CrossRef Robinson, C.B., J. Leonard, and R.A. Panettieri Jr. 2012. Drug development for severe asthma: what are the metrics? Pharmacology & Therapeutics 135 (2): 176–181.CrossRef
7.
8.
Zurück zum Zitat Louie, S., B.M. Morrissey, N.J. Kenyon, T.E. Albertson, and M. Avdalovic. 2012. The critically ill asthmatic--from ICU to discharge. Clinical Reviews in Allergy and Immunology 43 (1–2): 30–44.PubMedCrossRef Louie, S., B.M. Morrissey, N.J. Kenyon, T.E. Albertson, and M. Avdalovic. 2012. The critically ill asthmatic--from ICU to discharge. Clinical Reviews in Allergy and Immunology 43 (1–2): 30–44.PubMedCrossRef
9.
Zurück zum Zitat Carrie, S., and T.A. Anderson. 2015. Volatile anesthetics for status asthmaticus in pediatric patients: a comprehensive review and case series. Paediatric Anaesthesia 25 (5): 460–467.PubMedCrossRef Carrie, S., and T.A. Anderson. 2015. Volatile anesthetics for status asthmaticus in pediatric patients: a comprehensive review and case series. Paediatric Anaesthesia 25 (5): 460–467.PubMedCrossRef
10.
Zurück zum Zitat Watanabe, K., T. Mizutani, S. Yamashita, Y. Tatekawa, T. Jinbo, and M. Tanaka. 2008. Prolonged sevoflurane inhalation therapy for status asthmaticus in an infant. Paediatric Anaesthesia 18 (6): 543–545.PubMedCrossRef Watanabe, K., T. Mizutani, S. Yamashita, Y. Tatekawa, T. Jinbo, and M. Tanaka. 2008. Prolonged sevoflurane inhalation therapy for status asthmaticus in an infant. Paediatric Anaesthesia 18 (6): 543–545.PubMedCrossRef
11.
Zurück zum Zitat Weber, T., C. Schiebenpflug, and E. Deusch. 2012. Inhalational sevoflurane in severe bronchial obstruction unresponsive to multipharmacologic therapy: a case report. F1000Res 1: 56.PubMedPubMedCentralCrossRef Weber, T., C. Schiebenpflug, and E. Deusch. 2012. Inhalational sevoflurane in severe bronchial obstruction unresponsive to multipharmacologic therapy: a case report. F1000Res 1: 56.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Schultz, T.E. 2005. Sevoflurane administration in status asthmaticus: a case report. AANA Journal 73 (1): 35–36.PubMed Schultz, T.E. 2005. Sevoflurane administration in status asthmaticus: a case report. AANA Journal 73 (1): 35–36.PubMed
13.
Zurück zum Zitat Lin, T.Y., N. Venkatesan, M. Nishioka, S. Kyoh, L. Al-Alwan, C.J. Baglole, D.H. Eidelman, M.S. Ludwig, and Q. Hamid. 2014. Monocyte-derived fibrocytes induce an inflammatory phenotype in airway smooth muscle cells. Clinical and Experimental Allergy 44 (11): 1347–1360.PubMedCrossRef Lin, T.Y., N. Venkatesan, M. Nishioka, S. Kyoh, L. Al-Alwan, C.J. Baglole, D.H. Eidelman, M.S. Ludwig, and Q. Hamid. 2014. Monocyte-derived fibrocytes induce an inflammatory phenotype in airway smooth muscle cells. Clinical and Experimental Allergy 44 (11): 1347–1360.PubMedCrossRef
14.
Zurück zum Zitat Royce, S.G., Y. Moodley, and C.S. Samuel. 2014. Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis. Pharmacology & Therapeutics 141 (3): 250–260.CrossRef Royce, S.G., Y. Moodley, and C.S. Samuel. 2014. Novel therapeutic strategies for lung disorders associated with airway remodelling and fibrosis. Pharmacology & Therapeutics 141 (3): 250–260.CrossRef
15.
Zurück zum Zitat Burburan, S.M., J.D. Silva, S.C. Abreu, C.S. Samary, I.H. Guimaraes, D.G. Xisto, M.M. Morales, and P.R. Rocco. 2014. Effects of inhalational anaesthetics in experimental allergic asthma. Anaesthesia 69 (6): 573–582.PubMedCrossRef Burburan, S.M., J.D. Silva, S.C. Abreu, C.S. Samary, I.H. Guimaraes, D.G. Xisto, M.M. Morales, and P.R. Rocco. 2014. Effects of inhalational anaesthetics in experimental allergic asthma. Anaesthesia 69 (6): 573–582.PubMedCrossRef
16.
Zurück zum Zitat Shen, Q.Y., L. Fang, H.M. Wu, F. He, P.S. Ding, and R.Y. Liu. 2015. Repeated inhalation of sevoflurane inhibits airway inflammation in an OVA-induced mouse model of allergic airway inflammation. Respirology 20 (2): 258–263.PubMedCrossRef Shen, Q.Y., L. Fang, H.M. Wu, F. He, P.S. Ding, and R.Y. Liu. 2015. Repeated inhalation of sevoflurane inhibits airway inflammation in an OVA-induced mouse model of allergic airway inflammation. Respirology 20 (2): 258–263.PubMedCrossRef
17.
Zurück zum Zitat Doherty, T., and D. Broide. 2007. Cytokines and growth factors in airway remodeling in asthma. Current Opinion in Immunology 19 (6): 676–680.PubMedCrossRef Doherty, T., and D. Broide. 2007. Cytokines and growth factors in airway remodeling in asthma. Current Opinion in Immunology 19 (6): 676–680.PubMedCrossRef
18.
Zurück zum Zitat Ricciardolo, F.L., F. Sabatini, V. Sorbello, S. Benedetto, I. Defilippi, L. Petecchia, C. Usai, et al. 2013. Expression of vascular remodelling markers in relation to bradykinin receptors in asthma and COPD. Thorax 68 (9): 803–811.PubMedCrossRef Ricciardolo, F.L., F. Sabatini, V. Sorbello, S. Benedetto, I. Defilippi, L. Petecchia, C. Usai, et al. 2013. Expression of vascular remodelling markers in relation to bradykinin receptors in asthma and COPD. Thorax 68 (9): 803–811.PubMedCrossRef
19.
Zurück zum Zitat Wisniewski, J.A., and L. Borish. 2011. Novel cytokines and cytokine-producing T cells in allergic disorders. Allergy and Asthma Proceedings 32 (2): 83–94.CrossRef Wisniewski, J.A., and L. Borish. 2011. Novel cytokines and cytokine-producing T cells in allergic disorders. Allergy and Asthma Proceedings 32 (2): 83–94.CrossRef
20.
Zurück zum Zitat Keglowich, L.F., and P. Borger. 2015. The three A’s in asthma - airway smooth muscle, airway remodeling & angiogenesis. Open Respiratory Medicine Journal 9: 70–80.PubMedCrossRef Keglowich, L.F., and P. Borger. 2015. The three A’s in asthma - airway smooth muscle, airway remodeling & angiogenesis. Open Respiratory Medicine Journal 9: 70–80.PubMedCrossRef
21.
Zurück zum Zitat Kumar, R.K., C. Herbert, and P.S. Foster. 2008. The “classical” ovalbumin challenge model of asthma in mice. Current Drug Targets 9 (6): 485–494.PubMedCrossRef Kumar, R.K., C. Herbert, and P.S. Foster. 2008. The “classical” ovalbumin challenge model of asthma in mice. Current Drug Targets 9 (6): 485–494.PubMedCrossRef
22.
Zurück zum Zitat Wu, H.M., Q.Y. Shen, L. Fang, S.H. Zhang, P.T. Shen, Y.J. Liu, and R.Y. Liu. 2016. JNK-TLR9 signal pathway mediates allergic airway inflammation through suppressing melatonin biosynthesis. Journal of Pineal Research 60 (4): 415–423.PubMedCrossRef Wu, H.M., Q.Y. Shen, L. Fang, S.H. Zhang, P.T. Shen, Y.J. Liu, and R.Y. Liu. 2016. JNK-TLR9 signal pathway mediates allergic airway inflammation through suppressing melatonin biosynthesis. Journal of Pineal Research 60 (4): 415–423.PubMedCrossRef
23.
Zurück zum Zitat Lopez-Guisa, J.M., C. Powers, D. File, E. Cochrane, N. Jimenez, and J.S. Debley. 2012. Airway epithelial cells from asthmatic children differentially express proremodeling factors. The Journal of Allergy and Clinical Immunology 129 (4): 990–997 e996.PubMedPubMedCentralCrossRef Lopez-Guisa, J.M., C. Powers, D. File, E. Cochrane, N. Jimenez, and J.S. Debley. 2012. Airway epithelial cells from asthmatic children differentially express proremodeling factors. The Journal of Allergy and Clinical Immunology 129 (4): 990–997 e996.PubMedPubMedCentralCrossRef
24.
Zurück zum Zitat Yuksel, H., O. Yilmaz, M. Karaman, H.A. Bagriyanik, F. Firinci, M. Kiray, A. Turkeli, and O. Karaman. 2013. Role of vascular endothelial growth factor antagonism on airway remodeling in asthma. Annals of Allergy, Asthma & Immunology 110 (3): 150–155.CrossRef Yuksel, H., O. Yilmaz, M. Karaman, H.A. Bagriyanik, F. Firinci, M. Kiray, A. Turkeli, and O. Karaman. 2013. Role of vascular endothelial growth factor antagonism on airway remodeling in asthma. Annals of Allergy, Asthma & Immunology 110 (3): 150–155.CrossRef
25.
Zurück zum Zitat Wang, N., D. Yan, Y. Liu, X. Gu, J. Sun, F. Long, and S. Jiang. 2016. A HuR/TGF-beta1 feedback circuit regulates airway remodeling in airway smooth muscle cells. Respiratory Research 17 (1): 117.PubMedPubMedCentralCrossRef Wang, N., D. Yan, Y. Liu, X. Gu, J. Sun, F. Long, and S. Jiang. 2016. A HuR/TGF-beta1 feedback circuit regulates airway remodeling in airway smooth muscle cells. Respiratory Research 17 (1): 117.PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Puig, N.R., P. Ferrero, M.L. Bay, G. Hidalgo, J. Valenti, N. Amerio, and G. Elena. 2002. Effects of sevoflurane general anesthesia: immunological studies in mice. International Immunopharmacology 2 (1): 95–104.PubMedCrossRef Puig, N.R., P. Ferrero, M.L. Bay, G. Hidalgo, J. Valenti, N. Amerio, and G. Elena. 2002. Effects of sevoflurane general anesthesia: immunological studies in mice. International Immunopharmacology 2 (1): 95–104.PubMedCrossRef
27.
Zurück zum Zitat Burburan, S.M., D.G. Xisto, H.C. Ferreira, R. Riva Ddos, G.M. Carvalho, W.A. Zin, and P.R. Rocco. 2007. Lung mechanics and histology during sevoflurane anesthesia in a model of chronic allergic asthma. Anesthesia and Analgesia 104 (3): 631–637.PubMedCrossRef Burburan, S.M., D.G. Xisto, H.C. Ferreira, R. Riva Ddos, G.M. Carvalho, W.A. Zin, and P.R. Rocco. 2007. Lung mechanics and histology during sevoflurane anesthesia in a model of chronic allergic asthma. Anesthesia and Analgesia 104 (3): 631–637.PubMedCrossRef
28.
Zurück zum Zitat Wicks, J., H.M. Haitchi, S.T. Holgate, D.E. Davies, and R.M. Powell. 2006. Enhanced upregulation of smooth muscle related transcripts by TGF beta2 in asthmatic (myo) fibroblasts. Thorax 61 (4): 313–319.PubMedPubMedCentralCrossRef Wicks, J., H.M. Haitchi, S.T. Holgate, D.E. Davies, and R.M. Powell. 2006. Enhanced upregulation of smooth muscle related transcripts by TGF beta2 in asthmatic (myo) fibroblasts. Thorax 61 (4): 313–319.PubMedPubMedCentralCrossRef
29.
Zurück zum Zitat Ierodiakonou, D., D.S. Postma, G.H. Koppelman, J. Gerritsen, N.H. ten Hacken, W. Timens, H.M. Boezen, and J.M. Vonk. 2013. TGF-beta1 polymorphisms and asthma severity, airway inflammation, and remodeling. The Journal of Allergy and Clinical Immunology 131 (2): 582–585.PubMedCrossRef Ierodiakonou, D., D.S. Postma, G.H. Koppelman, J. Gerritsen, N.H. ten Hacken, W. Timens, H.M. Boezen, and J.M. Vonk. 2013. TGF-beta1 polymorphisms and asthma severity, airway inflammation, and remodeling. The Journal of Allergy and Clinical Immunology 131 (2): 582–585.PubMedCrossRef
30.
Zurück zum Zitat Bakakos, P., G. Patentalakis, and A. Papi. 2016. Vascular biomarkers in asthma and COPD. Current Topics in Medicinal Chemistry 16 (14): 1599–1609.PubMedCrossRef Bakakos, P., G. Patentalakis, and A. Papi. 2016. Vascular biomarkers in asthma and COPD. Current Topics in Medicinal Chemistry 16 (14): 1599–1609.PubMedCrossRef
31.
Zurück zum Zitat Yang, Y.C., N. Zhang, K. Van Crombruggen, G.H. Hu, S.L. Hong, and C. Bachert. 2012. Transforming growth factor-beta1 in inflammatory airway disease: a key for understanding inflammation and remodeling. Allergy 67 (10): 1193–1202.PubMedCrossRef Yang, Y.C., N. Zhang, K. Van Crombruggen, G.H. Hu, S.L. Hong, and C. Bachert. 2012. Transforming growth factor-beta1 in inflammatory airway disease: a key for understanding inflammation and remodeling. Allergy 67 (10): 1193–1202.PubMedCrossRef
32.
Zurück zum Zitat Rogerio, A.P., C. Fontanari, E. Borducchi, A.C. Keller, M. Russo, E.G. Soares, D.A. Albuquerque, and L.H. Faccioli. 2008. Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. European Journal of Pharmacology 580 (1–2): 262–270.PubMedCrossRef Rogerio, A.P., C. Fontanari, E. Borducchi, A.C. Keller, M. Russo, E.G. Soares, D.A. Albuquerque, and L.H. Faccioli. 2008. Anti-inflammatory effects of Lafoensia pacari and ellagic acid in a murine model of asthma. European Journal of Pharmacology 580 (1–2): 262–270.PubMedCrossRef
33.
Zurück zum Zitat Bordon, Y. 2013. Asthma and allergy: TGFbeta--too much of a good thing? Nature Reviews. Immunology 13 (9): 618–619.PubMedCrossRef Bordon, Y. 2013. Asthma and allergy: TGFbeta--too much of a good thing? Nature Reviews. Immunology 13 (9): 618–619.PubMedCrossRef
34.
Zurück zum Zitat Liu, Y.N., W.J. Zha, Y. Ma, F.F. Chen, W. Zhu, A. Ge, X.N. Zeng, and M. Huang. 2015. Galangin attenuates airway remodelling by inhibiting TGF-beta1-mediated ROS generation and MAPK/Akt phosphorylation in asthma. Scientific Reports 5: 11758.PubMedPubMedCentralCrossRef Liu, Y.N., W.J. Zha, Y. Ma, F.F. Chen, W. Zhu, A. Ge, X.N. Zeng, and M. Huang. 2015. Galangin attenuates airway remodelling by inhibiting TGF-beta1-mediated ROS generation and MAPK/Akt phosphorylation in asthma. Scientific Reports 5: 11758.PubMedPubMedCentralCrossRef
35.
Zurück zum Zitat Firszt, R., D. Francisco, T.D. Church, J.M. Thomas, J.L. Ingram, and M. Kraft. 2014. Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-beta1 in airway fibroblasts in asthma. The European Respiratory Journal 43 (2): 464–473.PubMedCrossRef Firszt, R., D. Francisco, T.D. Church, J.M. Thomas, J.L. Ingram, and M. Kraft. 2014. Interleukin-13 induces collagen type-1 expression through matrix metalloproteinase-2 and transforming growth factor-beta1 in airway fibroblasts in asthma. The European Respiratory Journal 43 (2): 464–473.PubMedCrossRef
36.
Zurück zum Zitat Minagawa, S., J. Lou, R.I. Seed, A. Cormier, S. Wu, Y. Cheng, L. Murray, et al. 2014. Selective targeting of TGF-beta activation to treat fibroinflammatory airway disease. Science Translational Medicine 6 (241): 241ra279.CrossRef Minagawa, S., J. Lou, R.I. Seed, A. Cormier, S. Wu, Y. Cheng, L. Murray, et al. 2014. Selective targeting of TGF-beta activation to treat fibroinflammatory airway disease. Science Translational Medicine 6 (241): 241ra279.CrossRef
37.
Zurück zum Zitat Ribatti, D., I. Puxeddu, E. Crivellato, B. Nico, A. Vacca, and F. Levi-Schaffer. 2009. Angiogenesis in asthma. Clinical and Experimental Allergy 39 (12): 1815–1821.PubMedCrossRef Ribatti, D., I. Puxeddu, E. Crivellato, B. Nico, A. Vacca, and F. Levi-Schaffer. 2009. Angiogenesis in asthma. Clinical and Experimental Allergy 39 (12): 1815–1821.PubMedCrossRef
38.
Zurück zum Zitat Harkness, L.M., A.W. Ashton, and J.K. Burgess. 2015. Asthma is not only an airway disease, but also a vascular disease. Pharmacology & Therapeutics 148: 17–33.CrossRef Harkness, L.M., A.W. Ashton, and J.K. Burgess. 2015. Asthma is not only an airway disease, but also a vascular disease. Pharmacology & Therapeutics 148: 17–33.CrossRef
39.
Zurück zum Zitat Takyar, S., H. Vasavada, J.G. Zhang, F. Ahangari, N. Niu, Q. Liu, C.G. Lee, L. Cohn, and J.A. Elias. 2013. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. The Journal of Experimental Medicine 210 (10): 1993–2010.PubMedPubMedCentralCrossRef Takyar, S., H. Vasavada, J.G. Zhang, F. Ahangari, N. Niu, Q. Liu, C.G. Lee, L. Cohn, and J.A. Elias. 2013. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. The Journal of Experimental Medicine 210 (10): 1993–2010.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Simpson, A., A. Custovic, R. Tepper, P. Graves, D.A. Stern, M. Jones, J. Hankinson, J.A. Curtin, J. Wu, M. Blekic, B.K. Bukvic, N. Aberle, S. Marinho, D. Belgrave, W.J. Morgan, and F.D. Martinez. 2012. Genetic variation in vascular endothelial growth factor-a and lung function. American Journal of Respiratory and Critical Care Medicine 185 (11): 1197–1204.PubMedPubMedCentralCrossRef Simpson, A., A. Custovic, R. Tepper, P. Graves, D.A. Stern, M. Jones, J. Hankinson, J.A. Curtin, J. Wu, M. Blekic, B.K. Bukvic, N. Aberle, S. Marinho, D. Belgrave, W.J. Morgan, and F.D. Martinez. 2012. Genetic variation in vascular endothelial growth factor-a and lung function. American Journal of Respiratory and Critical Care Medicine 185 (11): 1197–1204.PubMedPubMedCentralCrossRef
Metadaten
Titel
Sevoflurane Prevents Airway Remodeling via Downregulation of VEGF and TGF-β1 in Mice with OVA-Induced Chronic Airway Inflammation
verfasst von
Qi-Ying Shen
Ling Wu
Chuan-Sheng Wei
Yan-Nan Zhou
Hui-Mei Wu
Publikationsdatum
24.01.2019
Verlag
Springer US
Erschienen in
Inflammation / Ausgabe 3/2019
Print ISSN: 0360-3997
Elektronische ISSN: 1573-2576
DOI
https://doi.org/10.1007/s10753-019-00963-w

Weitere Artikel der Ausgabe 3/2019

Inflammation 3/2019 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Aquatherapie bei Fibromyalgie wirksamer als Trockenübungen

03.05.2024 Fibromyalgiesyndrom Nachrichten

Bewegungs-, Dehnungs- und Entspannungsübungen im Wasser lindern die Beschwerden von Patientinnen mit Fibromyalgie besser als das Üben auf trockenem Land. Das geht aus einer spanisch-brasilianischen Vergleichsstudie hervor.

Wo hapert es noch bei der Umsetzung der POMGAT-Leitlinie?

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Das Risiko für Vorhofflimmern in der Bevölkerung steigt

02.05.2024 Vorhofflimmern Nachrichten

Das Risiko, im Lauf des Lebens an Vorhofflimmern zu erkranken, ist in den vergangenen 20 Jahren gestiegen: Laut dänischen Zahlen wird es drei von zehn Personen treffen. Das hat Folgen weit über die Schlaganfallgefährdung hinaus.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.