Skip to main content
Erschienen in: Molecular Cancer 1/2013

Open Access 01.12.2013 | Short communication

Signal transducer and activator of transcription (STAT)-3 regulates microRNA gene expression in chronic lymphocytic leukemia cells

verfasst von: Uri Rozovski, George A Calin, Tetsuro Setoyama, Lucilla D’Abundo, David M Harris, Ping Li, Zhiming Liu, Srdana Grgurevic, Alessandra Ferrajoli, Stefan Faderl, Jan A Burger, Susan O’Brien, William G Wierda, Michael J Keating, Zeev Estrov

Erschienen in: Molecular Cancer | Ausgabe 1/2013

Abstract

Backgrounds

Approximately 1,000 microRNAs (miRs) are present in the human genome; however, little is known about the regulation of miR transcription. Because miR levels are deregulated in chronic lymphocytic leukemia (CLL) and signal transducer and activator of transcription (STAT)-3 is constitutively activated in CLL, we sought to determine whether STAT3 affects the transcription of miR genes in CLL cells.

Methods

We used publically available data from the ENCODE project to identify putative STAT3 binding sites in the promoters of miR genes. Then we transfected CLL cells with STAT3-shRNA or with an empty vector, and to determine which miRs are differentially expressed, we used a miR microarray approach followed by validation of the microarray results for 6 miRs using quantitative real-time polymerase chain reaction (qRT-PCR).

Results

We identified putative STAT3 binding sites in 160 promoter regions of 200 miRs, including miR-21, miR-29, and miR-155, whose levels have been reported to be upregulated in CLL. Levels of 72 miRs were downregulated (n = 63) or upregulated (n = 9). qRT-PCR confirmed the array data in 5 of 6 miRs.

Conclusions

The presence of activated STAT3 has a profound effect on miR expression in CLL cells.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1476-4598-12-50) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

UR drafted the manuscript and performed the bioinformatics and statistical analysis, GC conceived and designed, T S performed the RT-PCR experiments, L A performed the RT-PCR, DM performed the sh-RNA experiment, PL helped in sh-RNA experiment, ZL helped in sh-RNA experiment, SG performed part of the RT-PCR analysis, AF recruited patients to the study, JB obtained patients’ samples, SO obtained patients’ samples, WW recruited patients to the study, MK participated in designing ZE conceived, designed and helped to draft the manuscript. All authors read and approved the final manuscript.

Introduction

B-cell chronic lymphocytic leukemia (CLL) is characterized by asymmetrical proliferation and apoptosis of leukemia cells co-expressing the CD5 and CD19 antigens [1, 2], and several chromosomal abnormalities, including del(13q), del(11q), del(17p), and trisomy 12, are detected in most, but not all, cases. However, in almost all patients, regardless of their cytogenetic abnormalities, clinical characteristics, disease stage, or treatment status, signal transducer and activator of transcription 3 (STAT3) is constitutively phosphorylated on serine 727 residue [3, 4]. Phosphoserine STAT3 shuttles to the nucleus, binds to DNA, and activates genes known to be activated by phosphotyrosine STAT3 in other cell types [4]. Furthermore, unphosphorylated STAT3, detected at high levels in CLL cells, constitutively activates the transcription factor nuclear factor κB [5], which is known to induce the production of several pro-inflammatory cytokines and activate survival pathways.
STAT3-induced transcription of protein-coding genes has been extensively studied in normal and neoplastic tissues[6]. However, protein-coding genes comprise only 3% of the human genome [7] and only scant data are available on the role of STAT3 in the transcription of non-protein-coding genes. Although approximately 1000 microRNAs (miRs) collectively regulate more than 30% of protein-coding genes [8], little is known about miR gene transcription. Iliopoulos et al. found that STAT3 activates the transcription of miR-21 and miR-181b-1, thereby inducing a stable transformed state in cancer cell lines [9].
Because STAT3 is constitutively activated in CLL cells and recent data demonstrated a global deregulation of the miR network in CLL, [10] we hypothesized that STAT3 affects the expression of miRs in CLL cells. Therefore, we analyzed publicly available data to determine whether STAT3 binds to miR promoters, and studies the effect of STAT3 on miR expression in CLL cells.

Methods

Data mining

To find the putative promoter sites of miR genes, we used data on H2K4me3 enrichment regions published by Baer et al. [11]. To find STAT3 binding sites on these promoters, we used chromatin immunoprecipitation followed by high-throughput DNA sequencing (ChIP-seq) data (Additional file 1: Figure S1), generated as part of the ENCODE project [12] and acquired from the University of California Santa Cruz genome browser. For each putative STAT3 binding event a cluster score representing the ChIP-seq signal strength, ranging from 0 to 1000, was assigned.

Patient samples and cell fractionation

After obtaining The University of Texas MD Anderson Cancer Center Institutional Review Board-approved informed consent, we obtained peripheral blood (PB) cells from 3 patients with CLL. To isolate low-density cells, we fractionated PB cells using Ficoll Hypaque 1077 (Sigma-Aldrich). More than 90% of the CLL PB cells were CD19+/CD5+ lymphocytes.

Generation of green fluorescence protein (GFP)-lentiviral STAT3-shRNA and infection of CLL cells

293T cells were co-transfected with GFP-lentivirus STAT3 short hairpin RNA (shRNA) or GFP-lentivirus empty vector and the packaging vectors pCMVdeltaR8.2 and pMDG (generously provided by Dr. G. Inghirami, Torino, Italy) using the Superfect transfection reagent (Qiagen, Inc.). 293T cell culture medium was changed after 16 hours and collected after 48 hours. The culture medium was filtered through a 45-μm syringe filter to remove floating cells, the lentivirus was then concentrated by filtration through an Amicon ultracentrifugal filter device (Millipore, Billerica, MA), and the concentrated supernatant was used to infect CLL cells. CLL cells (5 × 106/mL) were incubated in 6-well plates (Becton Dickinson, Franklin Lakes, NJ) in 2 ml DMEM supplemented with 10% fetal calf serum and transfected with 100 μL of viral supernatant. Polybrene (10 ng/mL) was added to the viral supernatant at a ratio of 1:1000 (v/v). Infection efficiency was measured after 48–72 hours and was found to range between 40% and 70% (calculated on the basis of the ratio of propidium iodide (PI)-negative/GFP-positive cells).

RNA purification and quantitative real-time polymerase chain reaction (RT-PCR)

Total RNA was extracted using Trizol reagent (Invitrogen) for microRNA analyses according to the manufacturer's protocol. For mature microRNA expression analysis, total RNA was retrotranscribed with microRNA-specific primers using TaqMan microRNA reverse transcription kit (Applied Biosystems, Foster City, CA), and then quantitative RT-PCR was performed using Taqman miR assays according to the manufacturer's protocol. The comparative cycle time (Ct) method was used to calculate the relative abundance of microRNAs compared with snRNA U6 as an internal control for RNA normalization. The profiling was done in duplicate wells for each sample and in two independent experiments (three measurements each), and the results were presented as mean +/− SD of the four measurements.

Western immunoblotting

Western blot analysis was conducted using mouse anti-human STAT3 antibodies (BD Bioscience, Palo Alto, CA) and horseradish peroxidase-conjugated anti-mouse secondary antibodies (GE, healthcare, Amersham, Buckinghamshire, UK), as previously described [4].

Microarray analysis

Microarray analysis was conducted to identify miRs that were differentially expressed after silencing of STAT3 by transfection with short hairpin (sh) RNA or control treatment by transfection with empty vector. RNA was labeled and hybridized on miR microarray chips as previously described [13]. Signals in the images were quantified with GenePix Pro 6.0 software (Axon Instruments), and data were analyzed using PartekFlow software (v 2.1, 2012). Following quantile normalization, expression differences between the two sets of transfected CLL cells were tested by application of the Welch’s approximate t-test for two groups (with variances not assumed equal), with a P value cutoff of 0.05. Hierarchical clustering was generated for both genes and conditions, by using standard correlation as a measure of similarity.

Bioinformatics tools

The RNA22 pattern discovery algorithm, which utilizes miR sequences to predict miR:mRNA heteroduplexes, was used to simulate the sponge-out process [14].

Results and discussion

Putative STAT3 binding sites exist in the promoters of 25% of miR genes

A histone modification in which histone H3 is trimethylated on lysine 4 residues (H2K4me3) typifies transcription start sites in most gene promoters [15]. To identify miR gene promoters, Baer et al. interrogated these regions in CLL cells, normal B cells, and CLL-related cell lines [11]. Among the 939 miRs annotated to the miRBase15 database [16], they identified putative miR promoters in 781 miR genes [11].
Using those reports’ and the ChIP-seq ENCODE’s data [12], we searched for STAT3-binding sites in miR promoters. In our search, we identified 52,348 plausible STAT3-binding sites; STAT3 binding sites were found in 160 putative promoters of nearly 25% of the miR genes examined (N=200) with binding scores ranging from 100 (the lowest score) to 1000 (the highest score). Binding sites were found in 132 promoters of single pre-miR genes and in 28 promoters of pre-miR clusters of 2 to 6 genes (Table 1 and Additional file 2: Table S1). High STAT3-binding scores of 1000 and 710 were identified in miR-21 and miR-181b, consistent with the data of Iliopoulos et al. [9]. Remarkably, putative STAT3-binding sites were also detected in the promoters of miR-15-1 and miR-16a, which are deleted in most CLL patients with del(13q) [17].
Table 1
MiRs with putative STAT3 binding sites
Micro RNA gene
Chromosome
Promoter start coordinates
Promoter end coordinates
Median (range) STAT3 binding score*
miR-1205, miR-1206,miR-1207
8 q24.21
128961454
128962791
1000 (1000-1000)
miR-1537
1 q42.3
236045425
236047415
1000 (1000-1000)
miR-21
17 q23.1
57901872
57921277
1000 (112-1000)
miR-3124
1 q44
249115404
249123965
1000 (1000-1000)
miR-451
17q11.2
27222251
27224114
1000 (1000-1000)
miR-92b
1 q22
155162340
155168439
1000 (1000-1000)
miR-3197
21 q22.2
42537544
42543023
943 (943-943)
miR-646
20 q13.33
58712550
58715320
789 (789-789)
miR-629
15 q23
70383751
70394586
773 (661-885)
miR-30e, miR-30c-1
1 p34.2
41173077
41177703
759 (759-759)
miR-3125
2 p24.3
12855381
12862915
756 (756-756)
miR-3145
6 q23.3
138776942
138779365
743 (487-1000)
miR-645
20 q13.13
49199911
49201187
743 (743-743)
miR-1256
1 p36.12
21346830
21350211
725 (725-725)
miR-619
12 q24.11
109248263
109253306
719 (719-719)
miR-181a-2, miR-181b-2
9 q33.3
127418928
127426139
710 (710-710)
miR-29a, miR-29b-1
7 q32.3
130583383
130597803
697 (482-1000)
miR-202
10 q26.3
135069499
135077337
696 (393-1000)
miR-3142, miR-146a
5 q34
159890882
159899475
671 (671-671)
miR-548c
12 q14.2
65000968
65011503
660 (660-660)
miR-630
15 q24.1
72764289
72769197
627 (255-1000)
miR-135b
1 q32.1
205416952
205452990
622 (245-1000)
miR-29c, miR-29b-2
1 q32.2
207991044
208002382
608 (608-608)
miR-1825
20 q11.21
30791020
30798310
604 (209-1000)
miR-548h-1
14 q23.2
64578834
64581657
587 (174-1000)
miR-612
11 q13.1
65183633
65198528
581 (157-1000)
miR-148b
12 q13.13
54717640
54721204
578 (578-578)
miR-3174
15 q26.1
90543381
90549092
576 (152-1000)
let7a-3, let7b
22
46480680
46481826
573 (146-1000)
miR-1255a
4 q24
102263848
102272541
557 (557-557)
*MiRs with the highest STAT3 binding score obtained by using the ENCODE ChIP-seq data (Pennisi 2012) [7] are depicted.

STAT3 upregulates miR levels in CLL cells

Because putative STAT3 binding sites were identified in a significant number of miR promoters and STAT3 is constitutively activated in CLL, we sought to determine whether STAT3 would affect miR levels in unstimulated PB CLL cells. Transfection of CLL with STAT3-shRNA downregulated STAT3-mRNA and protein levels (Figure 1A). Microarray analysis showed that RNA levels of STAT3-shRNA-transfected cells were significantly different (P ≤ 0.05) from RNA levels of empty vector-transfected cells in 152 probes from 78 non-coding RNA genes, including 72 miR genes; the levels of 63 of the 72 miR genes were significantly downregulated by STAT3-shRNA, suggesting that STAT3 upregulates the levels of those miRs (Additional file 3: Table S2). For 60% of the 63 downregulated miR genes (n = 38) ChIP-seq data confirmed STAT3 binding in a putative promoter upstream of the gene location, significantly more than expected by chance (p<0.0001) (Additional file 2: Table S1).
To confirm these data, we studied miR levels of CLL cells transfected with STAT3-shRNA or empty vector using RT-PCR. Analyzed were miRs with either high levels of STAT3-binding sites, as reported in the ChIP-seq database (i.e. miR-21), reduced STAT3 levels following transfection with STAT3-shRNA in our studies (miR-181a), high STAT3-binding scores (213 for miR15-1 and miR-16a and 1,000 for miR-21), or a known pathogenetic role in CLL (miR15-1, miR-16a, miR-155, and miR-21) [1820]. As shown in Figure 1B, RT-PCR confirmed the array data in 5 of the 6 studied miRs.

STAT3 downregulates miR levels in CLL cells

Phosphorylated STAT3 binds to and activates the STAT3 gene, inducing the production of STAT3 protein [4]. Our current analysis revealed that STAT3 binds several miRs whose levels are overexpressed in CLL such as miR-21, an oncomiR of various neoplasms [20], and miR-29 and -181a, which affect CLL cell survival [21]. The levels of most miRs we studied were downregulated by transfection with STAT3-shRNA; however, the levels of 9 miRs were upregulated (Figure 1; Additional file 3: Table S2), suggesting that STAT3 downregulates those miRs’ levels. Several pathways can lead to STAT3 mediated suppression of transcription. Direct binding of unphosphorylated STAT3 suppresses transcription [22]. For example, miR-451, whose levels are downregulated by STAT3, carries a very high STAT3 binding score in its promoter. In addition, STAT3 mediates epigenetic silencing of a variety of genes [23], in particular genes that affect histone deacetylases [24, 25]. Therefore, we theorized that STAT3 induces epigenetic silencing of various miRs in CLL cells. Finally, STAT3 may also operate in a transcription-independent fashion. Single-stranded RNAs were shown to sequester (“sponge”) miRs in a sequence-specific manner [26]. Because constitutively phosphorylated STAT3 activates the STAT3 gene, single-stranded 4.3-kb STAT3-mRNA is generated at high levels in CLL cells. Those 4.3-kb RNA strands may bind complementary miRs, thereby interrupting their interaction with their corresponding target genes. For example, miR-18-a antisense (AS), upregulated by STAT3-shRNA has a complementary sequence in STAT3 mRNA, consistent with the “sponge regulation” hypothesis. Conversely, the miR-18-a sense form, downregulated by STAT3-shRNA, does not have a complementary sequence in STAT3 or the 3’UTR-STAT3.
To test whether this mechanism may be operative in CLL cells, we performed a simulation analysis using the 9 miRs whose levels were upregulated by STAT3-shRNA. We compared the theoretical energy released by single-stranded STAT3 mRNA sequences to that of random 4.3-kb mRNA sequences with an identical base content. Because miRs preferentially bind 3’-untranslated region sequences, we also calculated the energy release of shorter mRNA sequences. Using the RNA22 algorithm, we found higher energy release by full-length and short 3’-untranslated region STAT3 mRNA than by random single-stranded RNA sequences, suggesting that complementary binding of single-stranded STAT3 mRNA to miRs sequestered the circulating miRs, generating a stable, energetically superior state (Additional file 3: Table S2).
Taken together, our data suggest that STAT3 directly and indirectly modulates miR expression in CLL cells. Further studies to explore the mechanisms that affect miR expression in CLL are warranted.

Acknowledgements

We thank Cathryn Carnes for reviewing our manuscript.
This research is supported in part by the MD Anderson Cancer Center Support Grant CA016672
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

UR drafted the manuscript and performed the bioinformatics and statistical analysis, GC conceived and designed, T S performed the RT-PCR experiments, L A performed the RT-PCR, DM performed the sh-RNA experiment, PL helped in sh-RNA experiment, ZL helped in sh-RNA experiment, SG performed part of the RT-PCR analysis, AF recruited patients to the study, JB obtained patients’ samples, SO obtained patients’ samples, WW recruited patients to the study, MK participated in designing ZE conceived, designed and helped to draft the manuscript. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Bueso-Ramos CE, Ferrajoli A, Medeiros LJ, Keating MJ, Estrov Z: Aberrant morphology, proliferation, and apoptosis of B-cell chronic lymphocytic leukemia cells. Hematology. 2004, 9: 279-286. 10.1080/10245330410001727046CrossRefPubMed Bueso-Ramos CE, Ferrajoli A, Medeiros LJ, Keating MJ, Estrov Z: Aberrant morphology, proliferation, and apoptosis of B-cell chronic lymphocytic leukemia cells. Hematology. 2004, 9: 279-286. 10.1080/10245330410001727046CrossRefPubMed
2.
Zurück zum Zitat Chiorazzi N: Cell proliferation and death: forgotten features of chronic lymphocytic leukemia B cells. Best Pract Res Clin Haematol. 2007, 20: 399-413. 10.1016/j.beha.2007.03.007CrossRefPubMed Chiorazzi N: Cell proliferation and death: forgotten features of chronic lymphocytic leukemia B cells. Best Pract Res Clin Haematol. 2007, 20: 399-413. 10.1016/j.beha.2007.03.007CrossRefPubMed
3.
Zurück zum Zitat Frank DA, Mahajan S, Ritz J: B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest. 1997, 100: 3140-3148. 10.1172/JCI119869PubMedCentralCrossRefPubMed Frank DA, Mahajan S, Ritz J: B lymphocytes from patients with chronic lymphocytic leukemia contain signal transducer and activator of transcription (STAT) 1 and STAT3 constitutively phosphorylated on serine residues. J Clin Invest. 1997, 100: 3140-3148. 10.1172/JCI119869PubMedCentralCrossRefPubMed
4.
Zurück zum Zitat Hazan-Halevy I, Harris D, Liu Z, Liu J, Li P, Chen X, Shanker S, Ferrajoli A, Keating MJ, Estrov Z: STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood. 2010, 115: 2852-2863. 10.1182/blood-2009-10-230060PubMedCentralCrossRefPubMed Hazan-Halevy I, Harris D, Liu Z, Liu J, Li P, Chen X, Shanker S, Ferrajoli A, Keating MJ, Estrov Z: STAT3 is constitutively phosphorylated on serine 727 residues, binds DNA, and activates transcription in CLL cells. Blood. 2010, 115: 2852-2863. 10.1182/blood-2009-10-230060PubMedCentralCrossRefPubMed
5.
Zurück zum Zitat Liu Z, Hazan-Halevy I, Harris DM, Li P, Ferrajoli A, Faderl S, Keating MJ, Estrov Z: STAT-3 activates NF-kappaB in chronic lymphocytic leukemia cells. Mol Cancer Res. 2011, 9: 507-515. 10.1158/1541-7786.MCR-10-0559PubMedCentralCrossRefPubMed Liu Z, Hazan-Halevy I, Harris DM, Li P, Ferrajoli A, Faderl S, Keating MJ, Estrov Z: STAT-3 activates NF-kappaB in chronic lymphocytic leukemia cells. Mol Cancer Res. 2011, 9: 507-515. 10.1158/1541-7786.MCR-10-0559PubMedCentralCrossRefPubMed
6.
Zurück zum Zitat Yu H, Kortylewski M, Pardoll D: Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007, 7: 41-51. 10.1038/nri1995CrossRefPubMed Yu H, Kortylewski M, Pardoll D: Crosstalk between cancer and immune cells: role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 2007, 7: 41-51. 10.1038/nri1995CrossRefPubMed
7.
Zurück zum Zitat Pennisi E: Genomics. ENCODE project writes eulogy for junk DNA. Science. 2012, 337: 1159-1161. 10.1126/science.337.6099.1159CrossRefPubMed Pennisi E: Genomics. ENCODE project writes eulogy for junk DNA. Science. 2012, 337: 1159-1161. 10.1126/science.337.6099.1159CrossRefPubMed
9.
Zurück zum Zitat Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K: STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010, 39: 493-506. 10.1016/j.molcel.2010.07.023PubMedCentralCrossRefPubMed Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K: STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell. 2010, 39: 493-506. 10.1016/j.molcel.2010.07.023PubMedCentralCrossRefPubMed
10.
Zurück zum Zitat Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M: MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004, 101: 11755-11760. 10.1073/pnas.0404432101PubMedCentralCrossRefPubMed Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M: MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004, 101: 11755-11760. 10.1073/pnas.0404432101PubMedCentralCrossRefPubMed
11.
Zurück zum Zitat Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, Weichenhan D, Fischer M, Pallasch CP, Herpel E: Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 2012, 72: 3775-3785. 10.1158/0008-5472.CAN-12-0803CrossRefPubMed Baer C, Claus R, Frenzel LP, Zucknick M, Park YJ, Gu L, Weichenhan D, Fischer M, Pallasch CP, Herpel E: Extensive promoter DNA hypermethylation and hypomethylation is associated with aberrant microRNA expression in chronic lymphocytic leukemia. Cancer Res. 2012, 72: 3775-3785. 10.1158/0008-5472.CAN-12-0803CrossRefPubMed
12.
Zurück zum Zitat A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 2011, 9: e1001046- A user's guide to the encyclopedia of DNA elements (ENCODE). PLoS Biol. 2011, 9: e1001046-
13.
Zurück zum Zitat Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S, Fernandez AF, Carneiro F, Oliveira C: A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009, 41: 365-370. 10.1038/ng.317PubMedCentralCrossRefPubMed Melo SA, Ropero S, Moutinho C, Aaltonen LA, Yamamoto H, Calin GA, Rossi S, Fernandez AF, Carneiro F, Oliveira C: A TARBP2 mutation in human cancer impairs microRNA processing and DICER1 function. Nat Genet. 2009, 41: 365-370. 10.1038/ng.317PubMedCentralCrossRefPubMed
14.
Zurück zum Zitat Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006, 126: 1203-1217. 10.1016/j.cell.2006.07.031CrossRefPubMed Miranda KC, Huynh T, Tay Y, Ang YS, Tam WL, Thomson AM, Lim B, Rigoutsos I: A pattern-based method for the identification of MicroRNA binding sites and their corresponding heteroduplexes. Cell. 2006, 126: 1203-1217. 10.1016/j.cell.2006.07.031CrossRefPubMed
15.
Zurück zum Zitat Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129: 823-837. 10.1016/j.cell.2007.05.009CrossRefPubMed Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell. 2007, 129: 823-837. 10.1016/j.cell.2007.05.009CrossRefPubMed
16.
Zurück zum Zitat Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39: D152-157. 10.1093/nar/gkq1027PubMedCentralCrossRefPubMed Kozomara A, Griffiths-Jones S: miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011, 39: D152-157. 10.1093/nar/gkq1027PubMedCentralCrossRefPubMed
17.
Zurück zum Zitat Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002, 99: 15524-15529. 10.1073/pnas.242606799PubMedCentralCrossRefPubMed Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA. 2002, 99: 15524-15529. 10.1073/pnas.242606799PubMedCentralCrossRefPubMed
18.
Zurück zum Zitat Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE: Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005, 102: 3627-3632. 10.1073/pnas.0500613102PubMedCentralCrossRefPubMed Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE: Accumulation of miR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci USA. 2005, 102: 3627-3632. 10.1073/pnas.0500613102PubMedCentralCrossRefPubMed
19.
Zurück zum Zitat Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S, Barbarotto E, Cimmino A, Adair B, Wojcik SE: Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011, 305: 59-67. 10.1001/jama.2010.1919PubMedCentralCrossRefPubMed Fabbri M, Bottoni A, Shimizu M, Spizzo R, Nicoloso MS, Rossi S, Barbarotto E, Cimmino A, Adair B, Wojcik SE: Association of a microRNA/TP53 feedback circuitry with pathogenesis and outcome of B-cell chronic lymphocytic leukemia. JAMA. 2011, 305: 59-67. 10.1001/jama.2010.1919PubMedCentralCrossRefPubMed
20.
Zurück zum Zitat Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D, Fabbri M, Lerner S, Barron LL, Rassenti LZ: microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. 2010, 116: 945-952. 10.1182/blood-2010-01-263889CrossRefPubMed Rossi S, Shimizu M, Barbarotto E, Nicoloso MS, Dimitri F, Sampath D, Fabbri M, Lerner S, Barron LL, Rassenti LZ: microRNA fingerprinting of CLL patients with chromosome 17p deletion identify a miR-21 score that stratifies early survival. Blood. 2010, 116: 945-952. 10.1182/blood-2010-01-263889CrossRefPubMed
21.
Zurück zum Zitat Mraz M, Pospisilova S, Malinova K, Slapak I, Mayer J: MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma. 2009, 50: 506-509. 10.1080/10428190902763517CrossRefPubMed Mraz M, Pospisilova S, Malinova K, Slapak I, Mayer J: MicroRNAs in chronic lymphocytic leukemia pathogenesis and disease subtypes. Leuk Lymphoma. 2009, 50: 506-509. 10.1080/10428190902763517CrossRefPubMed
22.
Zurück zum Zitat Timofeeva OA, Tarasova NI, Zhang X, Chasovskikh S, Cheema AK, Wang H, Brown ML, Dritschilo A: STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain. Proc Natl Acad Sci USA. 2013, 110: 1267-1272. 10.1073/pnas.1211805110PubMedCentralCrossRefPubMed Timofeeva OA, Tarasova NI, Zhang X, Chasovskikh S, Cheema AK, Wang H, Brown ML, Dritschilo A: STAT3 suppresses transcription of proapoptotic genes in cancer cells with the involvement of its N-terminal domain. Proc Natl Acad Sci USA. 2013, 110: 1267-1272. 10.1073/pnas.1211805110PubMedCentralCrossRefPubMed
23.
Zurück zum Zitat Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, Wasik MA: STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci USA. 2005, 102: 6948-6953. 10.1073/pnas.0501959102PubMedCentralCrossRefPubMed Zhang Q, Wang HY, Marzec M, Raghunath PN, Nagasawa T, Wasik MA: STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proc Natl Acad Sci USA. 2005, 102: 6948-6953. 10.1073/pnas.0501959102PubMedCentralCrossRefPubMed
24.
Zurück zum Zitat Tang Y, Luo Y, Jiang Z, Ma Y, Lin CJ, Kim C, Carter MG, Amano T, Park J, Kish S, Tian XC: Jak/Stat3 Signaling Promotes Somatic Cell Reprogramming by Epigenetic Regulation. Stem Cells. 2012, 30: 2645-2656. 10.1002/stem.1225CrossRefPubMed Tang Y, Luo Y, Jiang Z, Ma Y, Lin CJ, Kim C, Carter MG, Amano T, Park J, Kish S, Tian XC: Jak/Stat3 Signaling Promotes Somatic Cell Reprogramming by Epigenetic Regulation. Stem Cells. 2012, 30: 2645-2656. 10.1002/stem.1225CrossRefPubMed
25.
Zurück zum Zitat Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG, Keating MJ: Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood. 2012, 119: 1162-1172. 10.1182/blood-2011-05-351510PubMedCentralCrossRefPubMed Sampath D, Liu C, Vasan K, Sulda M, Puduvalli VK, Wierda WG, Keating MJ: Histone deacetylases mediate the silencing of miR-15a, miR-16, and miR-29b in chronic lymphocytic leukemia. Blood. 2012, 119: 1162-1172. 10.1182/blood-2011-05-351510PubMedCentralCrossRefPubMed
Metadaten
Titel
Signal transducer and activator of transcription (STAT)-3 regulates microRNA gene expression in chronic lymphocytic leukemia cells
verfasst von
Uri Rozovski
George A Calin
Tetsuro Setoyama
Lucilla D’Abundo
David M Harris
Ping Li
Zhiming Liu
Srdana Grgurevic
Alessandra Ferrajoli
Stefan Faderl
Jan A Burger
Susan O’Brien
William G Wierda
Michael J Keating
Zeev Estrov
Publikationsdatum
01.12.2013
Verlag
BioMed Central
Erschienen in
Molecular Cancer / Ausgabe 1/2013
Elektronische ISSN: 1476-4598
DOI
https://doi.org/10.1186/1476-4598-12-50

Weitere Artikel der Ausgabe 1/2013

Molecular Cancer 1/2013 Zur Ausgabe

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Alectinib verbessert krankheitsfreies Überleben bei ALK-positivem NSCLC

25.04.2024 NSCLC Nachrichten

Das Risiko für Rezidiv oder Tod von Patienten und Patientinnen mit reseziertem ALK-positivem NSCLC ist unter einer adjuvanten Therapie mit dem Tyrosinkinase-Inhibitor Alectinib signifikant geringer als unter platinbasierter Chemotherapie.

Bei Senioren mit Prostatakarzinom auf Anämie achten!

24.04.2024 DGIM 2024 Nachrichten

Patienten, die zur Behandlung ihres Prostatakarzinoms eine Androgendeprivationstherapie erhalten, entwickeln nicht selten eine Anämie. Wer ältere Patienten internistisch mitbetreut, sollte auf diese Nebenwirkung achten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.