Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 4/2014

01.12.2014

Skeletal muscle glucose metabolism and inflammation in the development of the metabolic syndrome

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Insulin resistance and metabolic dysfunction in skeletal muscle play a major role in the development of the metabolic syndrome and type 2 diabetes. Numerous mechanisms have been proposed to explain the pathophysiology of obesity-linked metabolic dysfunction and this review will focus on the contributing role of adiponectin and inflammation. The beneficial effects of adiponectin on both insulin action and inflammation are now well documented and will be reviewed. More recent work provided new insights into adiponectin signaling mechanisms. The development of strategies to mimic adiponectin action holds promise that adiponectin-based compounds may translate into effective therapeutic applications. We will also discussed the novel role of long chain ω-3 PUFA-derived resolution mediators, which in addition to resolving inflammation, can also exert glucoregulatory effects in models of obesity and insulin resistance. We will focus on one resolution mediator, protectin DX (PDX), which was recently shown to act as a muscle interleukin-6 secretagogue. PDX and its isomer PD1 also enhance adiponectin expression and action. Ultimately, it is via a better understanding the molecular mechanisms of action via which inflammation, insulin resistance and metabolic dysfunction occur in skeletal muscle, and also how they crosstalk with each other, that we can generate new and improved therapies for obesity-linked metabolic complications.
Literatur
3.
4.
Zurück zum Zitat Henriksen T, Green C, Pedersen BK. Myokines in myogenesis and health. Recent Patents Biotechnol. 2012;6(3):167–71.CrossRef Henriksen T, Green C, Pedersen BK. Myokines in myogenesis and health. Recent Patents Biotechnol. 2012;6(3):167–71.CrossRef
5.
Zurück zum Zitat Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord. 2014;15(1):79–97. doi:10.1007/s11154-013-9282-4.CrossRefPubMed Xu E, Schwab M, Marette A. Role of protein tyrosine phosphatases in the modulation of insulin signaling and their implication in the pathogenesis of obesity-linked insulin resistance. Rev Endocr Metab Disord. 2014;15(1):79–97. doi:10.​1007/​s11154-013-9282-4.CrossRefPubMed
9.
Zurück zum Zitat Liu Y, Retnakaran R, Hanley A, Tungtrongchitr R, Shaw C, Sweeney G. Total and high molecular weight but not trimeric or hexameric forms of adiponectin correlate with markers of the metabolic syndrome and liver injury in Thai subjects. J Clin Endocrinol Metab. 2007;92(11):4313–8. doi:10.1210/jc.2007-0890.CrossRefPubMed Liu Y, Retnakaran R, Hanley A, Tungtrongchitr R, Shaw C, Sweeney G. Total and high molecular weight but not trimeric or hexameric forms of adiponectin correlate with markers of the metabolic syndrome and liver injury in Thai subjects. J Clin Endocrinol Metab. 2007;92(11):4313–8. doi:10.​1210/​jc.​2007-0890.CrossRefPubMed
12.
Zurück zum Zitat Kuoppamaa H, Skrobuk P, Sihvo M, Hiukka A, Chibalin AV, Zierath JR, et al. Globular adiponectin stimulates glucose transport in type 2 diabetic muscle. Diabetes Metab Res Rev. 2008;24(7):554–62. doi:10.1002/dmrr.883.CrossRefPubMed Kuoppamaa H, Skrobuk P, Sihvo M, Hiukka A, Chibalin AV, Zierath JR, et al. Globular adiponectin stimulates glucose transport in type 2 diabetic muscle. Diabetes Metab Res Rev. 2008;24(7):554–62. doi:10.​1002/​dmrr.​883.CrossRefPubMed
14.
17.
Zurück zum Zitat Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006;8(5):516–23. doi:10.1038/ncb1404.CrossRefPubMed Mao X, Kikani CK, Riojas RA, Langlais P, Wang L, Ramos FJ, et al. APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006;8(5):516–23. doi:10.​1038/​ncb1404.CrossRefPubMed
18.
Zurück zum Zitat Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94. doi:10.2337/db06-1580.CrossRefPubMed Cheng KK, Lam KS, Wang Y, Huang Y, Carling D, Wu D, et al. Adiponectin-induced endothelial nitric oxide synthase activation and nitric oxide production are mediated by APPL1 in endothelial cells. Diabetes. 2007;56(5):1387–94. doi:10.​2337/​db06-1580.CrossRefPubMed
19.
Zurück zum Zitat Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9. doi:10.1038/nm1557.CrossRefPubMed Yamauchi T, Nio Y, Maki T, Kobayashi M, Takazawa T, Iwabu M, et al. Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat Med. 2007;13(3):332–9. doi:10.​1038/​nm1557.CrossRefPubMed
20.
Zurück zum Zitat Bjursell M, Ahnmark A, Bohlooly YM, William-Olsson L, Rhedin M, Peng XR, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;56(3):583–93. doi:10.2337/db06-1432.CrossRefPubMed Bjursell M, Ahnmark A, Bohlooly YM, William-Olsson L, Rhedin M, Peng XR, et al. Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes. 2007;56(3):583–93. doi:10.​2337/​db06-1432.CrossRefPubMed
21.
Zurück zum Zitat Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca (2+) and AMPK/SIRT1. Nature. 2010;464(7293):1313–9. doi:10.1038/nature08991.CrossRefPubMed Iwabu M, Yamauchi T, Okada-Iwabu M, Sato K, Nakagawa T, Funata M, et al. Adiponectin and AdipoR1 regulate PGC-1alpha and mitochondria by Ca (2+) and AMPK/SIRT1. Nature. 2010;464(7293):1313–9. doi:10.​1038/​nature08991.CrossRefPubMed
22.
Zurück zum Zitat Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48(1):132–9. doi:10.1007/s00125-004-1609-y.CrossRefPubMed Ceddia RB, Somwar R, Maida A, Fang X, Bikopoulos G, Sweeney G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia. 2005;48(1):132–9. doi:10.​1007/​s00125-004-1609-y.CrossRefPubMed
23.
Zurück zum Zitat Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95. doi:10.1038/nm788.CrossRefPubMed Yamauchi T, Kamon J, Minokoshi Y, Ito Y, Waki H, Uchida S, et al. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med. 2002;8(11):1288–95. doi:10.​1038/​nm788.CrossRefPubMed
24.
Zurück zum Zitat Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A. 2001;98(4):2005–10. doi:10.1073/pnas.041591798.PubMedCentralCrossRefPubMed Fruebis J, Tsao TS, Javorschi S, Ebbets-Reed D, Erickson MR, Yen FT, et al. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc Natl Acad Sci U S A. 2001;98(4):2005–10. doi:10.​1073/​pnas.​041591798.PubMedCentralCrossRefPubMed
25.
Zurück zum Zitat Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9. doi:10.1038/nature01705.CrossRefPubMed Yamauchi T, Kamon J, Ito Y, Tsuchida A, Yokomizo T, Kita S, et al. Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature. 2003;423(6941):762–9. doi:10.​1038/​nature01705.CrossRefPubMed
26.
Zurück zum Zitat Dadson K, Turdi S, Hashemi S, Zhao J, Polidovitch N, Beca S et al. Adiponectin is required for cardiac MEF2 activation during pressure overload induced hypertrophy. Journal of Molecular & Cellular Cardiology. 2014;submitted. Dadson K, Turdi S, Hashemi S, Zhao J, Polidovitch N, Beca S et al. Adiponectin is required for cardiac MEF2 activation during pressure overload induced hypertrophy. Journal of Molecular & Cellular Cardiology. 2014;submitted.
28.
Zurück zum Zitat Gulli RA, Tishinsky JM, MacDonald T, Robinson LE, Wright DC, Dyck DJ. Exercise restores insulin, but not adiponectin, response in skeletal muscle of high-fat fed rodents. Am J Physiol Regul Integr Comp Physiol. 2012;303(10):R1062–70. doi:10.1152/ajpregu.00176.2012.CrossRefPubMed Gulli RA, Tishinsky JM, MacDonald T, Robinson LE, Wright DC, Dyck DJ. Exercise restores insulin, but not adiponectin, response in skeletal muscle of high-fat fed rodents. Am J Physiol Regul Integr Comp Physiol. 2012;303(10):R1062–70. doi:10.​1152/​ajpregu.​00176.​2012.CrossRefPubMed
29.
Zurück zum Zitat Mullen KL, Tishinsky JM, Robinson LE, Dyck DJ. Skeletal muscle inflammation is not responsible for the rapid impairment in adiponectin response with high-fat feeding in rats. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R500–8. doi:10.1152/ajpregu.00080.2010.CrossRefPubMed Mullen KL, Tishinsky JM, Robinson LE, Dyck DJ. Skeletal muscle inflammation is not responsible for the rapid impairment in adiponectin response with high-fat feeding in rats. Am J Physiol Regul Integr Comp Physiol. 2010;299(2):R500–8. doi:10.​1152/​ajpregu.​00080.​2010.CrossRefPubMed
30.
Zurück zum Zitat Mullen KL, Smith AC, Junkin KA, Dyck DJ. Globular adiponectin resistance develops independently of impaired insulin-stimulated glucose transport in soleus muscle from high-fat-fed rats. Am J Physiol Endocrinol Metab. 2007;293(1):E83–90. doi:10.1152/ajpendo.00545.2006.CrossRefPubMed Mullen KL, Smith AC, Junkin KA, Dyck DJ. Globular adiponectin resistance develops independently of impaired insulin-stimulated glucose transport in soleus muscle from high-fat-fed rats. Am J Physiol Endocrinol Metab. 2007;293(1):E83–90. doi:10.​1152/​ajpendo.​00545.​2006.CrossRefPubMed
31.
Zurück zum Zitat Mullen KL, Pritchard J, Ritchie I, Snook LA, Chabowski A, Bonen A, et al. Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R243–51. doi:10.1152/ajpregu.90774.2008.CrossRefPubMed Mullen KL, Pritchard J, Ritchie I, Snook LA, Chabowski A, Bonen A, et al. Adiponectin resistance precedes the accumulation of skeletal muscle lipids and insulin resistance in high-fat-fed rats. Am J Physiol Regul Integr Comp Physiol. 2009;296(2):R243–51. doi:10.​1152/​ajpregu.​90774.​2008.CrossRefPubMed
32.
Zurück zum Zitat Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 2004;279(29):30817–22. doi:10.1074/jbc.M402367200.CrossRefPubMed Tsuchida A, Yamauchi T, Ito Y, Hada Y, Maki T, Takekawa S, et al. Insulin/Foxo1 pathway regulates expression levels of adiponectin receptors and adiponectin sensitivity. J Biol Chem. 2004;279(29):30817–22. doi:10.​1074/​jbc.​M402367200.CrossRefPubMed
33.
Zurück zum Zitat Fang X, Palanivel R, Zhou X, Liu Y, Xu A, Wang Y, et al. Hyperglycemia- and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts. J Mol Endocrinol. 2005;35(3):465–76. doi:10.1677/jme.1.01877.CrossRefPubMed Fang X, Palanivel R, Zhou X, Liu Y, Xu A, Wang Y, et al. Hyperglycemia- and hyperinsulinemia-induced alteration of adiponectin receptor expression and adiponectin effects in L6 myoblasts. J Mol Endocrinol. 2005;35(3):465–76. doi:10.​1677/​jme.​1.​01877.CrossRefPubMed
34.
Zurück zum Zitat Civitarese AE, Jenkinson CP, Richardson D, Bajaj M, Cusi K, Kashyap S, et al. Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes. Diabetologia. 2004;47(5):816–20. doi:10.1007/s00125-004-1359-x.CrossRefPubMed Civitarese AE, Jenkinson CP, Richardson D, Bajaj M, Cusi K, Kashyap S, et al. Adiponectin receptors gene expression and insulin sensitivity in non-diabetic Mexican Americans with or without a family history of Type 2 diabetes. Diabetologia. 2004;47(5):816–20. doi:10.​1007/​s00125-004-1359-x.CrossRefPubMed
35.
Zurück zum Zitat Debard C, Laville M, Berbe V, Loizon E, Guillet C, Morio-Liondore B, et al. Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients. Diabetologia. 2004;47(5):917–25. doi:10.1007/s00125-004-1394-7.CrossRefPubMed Debard C, Laville M, Berbe V, Loizon E, Guillet C, Morio-Liondore B, et al. Expression of key genes of fatty acid oxidation, including adiponectin receptors, in skeletal muscle of Type 2 diabetic patients. Diabetologia. 2004;47(5):917–25. doi:10.​1007/​s00125-004-1394-7.CrossRefPubMed
37.
Zurück zum Zitat Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, et al. Exercise training reverses adiponectin resistance in skeletal muscle of patients with chronic heart failure. Heart. 2011;97(17):1403–9. doi:10.1136/hrt.2011.226373.CrossRefPubMed Van Berendoncks AM, Garnier A, Beckers P, Hoymans VY, Possemiers N, Fortin D, et al. Exercise training reverses adiponectin resistance in skeletal muscle of patients with chronic heart failure. Heart. 2011;97(17):1403–9. doi:10.​1136/​hrt.​2011.​226373.CrossRefPubMed
39.
Zurück zum Zitat Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva AS, Bertoli FC, et al. Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss. J Cell Physiol. 2012;227(7):2917–26. doi:10.1002/jcp.23037.CrossRefPubMed Marinho R, Ropelle ER, Cintra DE, De Souza CT, Da Silva AS, Bertoli FC, et al. Endurance exercise training increases APPL1 expression and improves insulin signaling in the hepatic tissue of diet-induced obese mice, independently of weight loss. J Cell Physiol. 2012;227(7):2917–26. doi:10.​1002/​jcp.​23037.CrossRefPubMed
40.
Zurück zum Zitat Li FY, Lam KS, Xu A. Therapeutic perspectives for adiponectin: An update. Curr Med Chem. 2012;19(32):5513–23.CrossRefPubMed Li FY, Lam KS, Xu A. Therapeutic perspectives for adiponectin: An update. Curr Med Chem. 2012;19(32):5513–23.CrossRefPubMed
42.
Zurück zum Zitat Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K, Matsuda K, et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature. 2013;503(7477):493–9. doi:10.1038/nature12656.CrossRefPubMed Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K, Matsuda K, et al. A small-molecule AdipoR agonist for type 2 diabetes and short life in obesity. Nature. 2013;503(7477):493–9. doi:10.​1038/​nature12656.CrossRefPubMed
43.
Zurück zum Zitat Vu V, Riddell MC, Sweeney G. Circulating adiponectin and adiponectin receptor expression in skeletal muscle: Effects of exercise. Diabetes Metab Res Rev. 2007;23(8):600–11. doi:10.1002/dmrr.778.CrossRefPubMed Vu V, Riddell MC, Sweeney G. Circulating adiponectin and adiponectin receptor expression in skeletal muscle: Effects of exercise. Diabetes Metab Res Rev. 2007;23(8):600–11. doi:10.​1002/​dmrr.​778.CrossRefPubMed
44.
Zurück zum Zitat Farias JM, Maggi RM, Tromm CB, Silva LA, Luciano TF, Marques SO, et al. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice. Lipids Health Dis. 2012;11:134. doi:10.1186/1476-511X-11-134.PubMedCentralCrossRefPubMed Farias JM, Maggi RM, Tromm CB, Silva LA, Luciano TF, Marques SO, et al. Exercise training performed simultaneously to a high-fat diet reduces the degree of insulin resistance and improves adipoR1-2/APPL1 protein levels in mice. Lipids Health Dis. 2012;11:134. doi:10.​1186/​1476-511X-11-134.PubMedCentralCrossRefPubMed
45.
Zurück zum Zitat White PJ, Marette A. Inflammation-Induced Insulin Resistance in Obesity: When Immunity Affects Metabolic Control. In: Hawley JA, Zierath JR, editors. Physical activity and type 2 diabetes: therapeutic effects and mechanisms of action. 2008. p. 83–106. White PJ, Marette A. Inflammation-Induced Insulin Resistance in Obesity: When Immunity Affects Metabolic Control. In: Hawley JA, Zierath JR, editors. Physical activity and type 2 diabetes: therapeutic effects and mechanisms of action. 2008. p. 83–106.
46.
Zurück zum Zitat Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7(10):1138–43.CrossRefPubMed Perreault M, Marette A. Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med. 2001;7(10):1138–43.CrossRefPubMed
47.
Zurück zum Zitat Zhang X, Xu A, Chung SK, Cresser JH, Sweeney G, Wong RL, et al. Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes. 2011;60(2):486–95. doi:10.2337/db10-0650.PubMedCentralCrossRefPubMed Zhang X, Xu A, Chung SK, Cresser JH, Sweeney G, Wong RL, et al. Selective inactivation of c-Jun NH2-terminal kinase in adipose tissue protects against diet-induced obesity and improves insulin sensitivity in both liver and skeletal muscle in mice. Diabetes. 2011;60(2):486–95. doi:10.​2337/​db10-0650.PubMedCentralCrossRefPubMed
48.
Zurück zum Zitat Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.CrossRefPubMed Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, et al. A central role for JNK in obesity and insulin resistance. Nature. 2002;420(6913):333–6.CrossRefPubMed
49.
Zurück zum Zitat Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M, et al. Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med. 2004;10(10):1128–32.CrossRefPubMed Kaneto H, Nakatani Y, Miyatsuka T, Kawamori D, Matsuoka TA, Matsuhisa M, et al. Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med. 2004;10(10):1128–32.CrossRefPubMed
51.
Zurück zum Zitat Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW, et al. PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest. 2004;114(6):823–7.PubMedCentralCrossRefPubMed Kim JK, Fillmore JJ, Sunshine MJ, Albrecht B, Higashimori T, Kim DW, et al. PKC-theta knockout mice are protected from fat-induced insulin resistance. J Clin Invest. 2004;114(6):823–7.PubMedCentralCrossRefPubMed
55.
Zurück zum Zitat Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: Assignments of dihydroxy-containing docosatrienes. J Immunol. 2006;176(3):1848–59.CrossRefPubMed Serhan CN, Gotlinger K, Hong S, Lu Y, Siegelman J, Baer T, et al. Anti-inflammatory actions of neuroprotectin D1/protectin D1 and its natural stereoisomers: Assignments of dihydroxy-containing docosatrienes. J Immunol. 2006;176(3):1848–59.CrossRefPubMed
57.
Zurück zum Zitat Balas L, Guichardant M, Durand T, Lagarde M. Confusion between protectin D1 (PD1) and its isomer protectin DX (PDX). An overview on the dihydroxy-docosatrienes described to date. Biochimie. 2013. doi:S0300-9084 (13) 00402-1 10:1016/j.biochi.2013.11.006. Balas L, Guichardant M, Durand T, Lagarde M. Confusion between protectin D1 (PD1) and its isomer protectin DX (PDX). An overview on the dihydroxy-docosatrienes described to date. Biochimie. 2013. doi:S0300-9084 (13) 00402-1 10:1016/j.biochi.2013.11.006.
59.
Zurück zum Zitat White PJ, Arita M, Taguchi R, Kang JX, Marette A. Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes. 2010;59(12):3066–73. doi:10.2337/db10-0054.PubMedCentralCrossRefPubMed White PJ, Arita M, Taguchi R, Kang JX, Marette A. Transgenic restoration of long-chain n-3 fatty acids in insulin target tissues improves resolution capacity and alleviates obesity-linked inflammation and insulin resistance in high-fat-fed mice. Diabetes. 2010;59(12):3066–73. doi:10.​2337/​db10-0054.PubMedCentralCrossRefPubMed
60.
Zurück zum Zitat Gonzalez-Periz A, Planaguma A, Gronert K, Miquel R, Lopez-Parra M, Titos E, et al. Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17S-hydroxy-DHA. FASEB J. 2006;20(14):2537–9. doi:10.1096/fj.06-6250fje.CrossRefPubMed Gonzalez-Periz A, Planaguma A, Gronert K, Miquel R, Lopez-Parra M, Titos E, et al. Docosahexaenoic acid (DHA) blunts liver injury by conversion to protective lipid mediators: protectin D1 and 17S-hydroxy-DHA. FASEB J. 2006;20(14):2537–9. doi:10.​1096/​fj.​06-6250fje.CrossRefPubMed
63.
Zurück zum Zitat Neuhofer A, Zeyda M, Mascher D, Itariu BK, Murano I, Leitner L, et al. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes. 2013;62(6):1945–56. doi:10.2337/db12-0828.PubMedCentralCrossRefPubMed Neuhofer A, Zeyda M, Mascher D, Itariu BK, Murano I, Leitner L, et al. Impaired local production of proresolving lipid mediators in obesity and 17-HDHA as a potential treatment for obesity-associated inflammation. Diabetes. 2013;62(6):1945–56. doi:10.​2337/​db12-0828.PubMedCentralCrossRefPubMed
64.
Zurück zum Zitat White PJ, St-Pierre P, Charbonneau A, Mitchell PL, St-Amand E, Marcotte B, et al. Protectin DX alleviates insulin resistance by activating a myokine-liver glucoregulatory axis. Nat Med. 2014;20(6):664–9. doi:10.1038/nm.3549.CrossRefPubMed White PJ, St-Pierre P, Charbonneau A, Mitchell PL, St-Amand E, Marcotte B, et al. Protectin DX alleviates insulin resistance by activating a myokine-liver glucoregulatory axis. Nat Med. 2014;20(6):664–9. doi:10.​1038/​nm.​3549.CrossRefPubMed
65.
Zurück zum Zitat Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55(10):2688–97. doi:10.2337/db05-1404.CrossRefPubMed Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, et al. Interleukin-6 increases insulin-stimulated glucose disposal in humans and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes. 2006;55(10):2688–97. doi:10.​2337/​db05-1404.CrossRefPubMed
66.
Zurück zum Zitat Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes. 2004;53(7):1643–8.CrossRefPubMed Febbraio MA, Hiscock N, Sacchetti M, Fischer CP, Pedersen BK. Interleukin-6 is a novel factor mediating glucose homeostasis during skeletal muscle contraction. Diabetes. 2004;53(7):1643–8.CrossRefPubMed
Metadaten
Titel
Skeletal muscle glucose metabolism and inflammation in the development of the metabolic syndrome
Publikationsdatum
01.12.2014
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 4/2014
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-014-9296-6

Weitere Artikel der Ausgabe 4/2014

Reviews in Endocrine and Metabolic Disorders 4/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Restriktion auf vier Wochen Therapie bei Schlaflosigkeit ist absurd!“

06.05.2024 Insomnie Nachrichten

Chronische Insomnie als eigenständiges Krankheitsbild ernst nehmen und adäquat nach dem aktuellen Forschungsstand behandeln: Das forderte der Schlafmediziner Dr. Dieter Kunz von der Berliner Charité beim Praxis Update.

GLP-1-Rezeptoragonisten und SGLT-2-Hemmer: zusammen besser

06.05.2024 Typ-2-Diabetes Nachrichten

Immer häufiger wird ein Typ-2-Diabetes sowohl mit einem GLP-1-Rezeptor-Agonisten als auch mit einem SGLT-2-Inhibitor behandelt. Wie sich das verglichen mit den Einzeltherapien auf kardiovaskuläre und renale Komplikationen auswirkt, wurde anhand von Praxisdaten aus Großbritannien untersucht.

Bessere Prognose mit links- statt rechtsseitigem Kolon-Ca.

06.05.2024 Kolonkarzinom Nachrichten

Menschen mit linksseitigem Kolonkarzinom leben im Mittel zweieinhalb Jahre länger als solche mit rechtsseitigem Tumor. Auch aktuell ist das Sterberisiko bei linksseitigen Tumoren US-Daten zufolge etwa um 11% geringer als bei rechtsseitigen.

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.