Skip to main content
Erschienen in: Reviews in Endocrine and Metabolic Disorders 4/2014

01.12.2014

Fat sensing and metabolic syndrome

verfasst von: Jang H. Youn

Erschienen in: Reviews in Endocrine and Metabolic Disorders | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Overconsumption of dietary fat contributes to the development of obesity and metabolic syndrome. Recent evidence suggests that high dietary fat may promote these metabolic states not only by providing calories but also by inducing impaired control of energy balance. In normal metabolic states, fat interacts with various organs or receptors to generate signals for the regulation of energy balance. Many of these interactions are impaired by high-fat diets or in obesity, contributing to the development or maintenance of obesity. These impairments may arise largely from fundamental alterations in the hypothalamus where all peripheral signals are integrated to regulate energy balance. This review focuses on various mechanisms by which fat is sensed at different stages of ingestion, circulation, storage, and utilization to regulate food intake, and how these individual mechanisms are altered by high-fat diets or in obesity.
Literatur
1.
Zurück zum Zitat Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. American heart association; national heart, lung, and blood institute. Diagnosis and management of the metabolic syndrome: An american heart association/national heart, lung, and blood institute scientific statement. Circulation. 2005;112(17):2735–52.PubMed Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. American heart association; national heart, lung, and blood institute. Diagnosis and management of the metabolic syndrome: An american heart association/national heart, lung, and blood institute scientific statement. Circulation. 2005;112(17):2735–52.PubMed
2.
Zurück zum Zitat Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43.PubMed Kopelman PG. Obesity as a medical problem. Nature. 2000;404(6778):635–43.PubMed
3.
Zurück zum Zitat Lissner L, Heitmann BL. Dietary fat and obesity: Evidence from epidemiology. Eur J Clin Nutr. 1995;49(2):79–90.PubMed Lissner L, Heitmann BL. Dietary fat and obesity: Evidence from epidemiology. Eur J Clin Nutr. 1995;49(2):79–90.PubMed
4.
Zurück zum Zitat Lichtenstein AH, Kennedy E, Barrier P, Danford D, Ernst ND, Grundy SM, et al. Dietary fat consumption and health. Nutr Rev. 1998;56(5 Pt 2):S3–19. discussion S19-28.PubMed Lichtenstein AH, Kennedy E, Barrier P, Danford D, Ernst ND, Grundy SM, et al. Dietary fat consumption and health. Nutr Rev. 1998;56(5 Pt 2):S3–19. discussion S19-28.PubMed
5.
Zurück zum Zitat Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr. 2004;23:447–56.PubMed Riccardi G, Giacco R, Rivellese AA. Dietary fat, insulin sensitivity and the metabolic syndrome. Clin Nutr. 2004;23:447–56.PubMed
6.
Zurück zum Zitat Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: Role of intramuscular accumulation of lipid metabolites. J Appl Physiol. 2006;100:1467–74.PubMed Lee JS, Pinnamaneni SK, Eo SJ, Cho IH, Pyo JH, Kim CK, et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: Role of intramuscular accumulation of lipid metabolites. J Appl Physiol. 2006;100:1467–74.PubMed
7.
Zurück zum Zitat Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009;17(11):2100–2. Arble DM, Bass J, Laposky AD, Vitaterna MH, Turek FW. Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring). 2009;17(11):2100–2.
8.
Zurück zum Zitat Bray MS, Tsai JY, Villegas-Montoya C, Boland BB, Blasier Z, Egbejimi O, et al. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond). 2010;34(11):1589–98. Bray MS, Tsai JY, Villegas-Montoya C, Boland BB, Blasier Z, Egbejimi O, et al. Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond). 2010;34(11):1589–98.
9.
Zurück zum Zitat Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60.PubMedPubMedCentral Hatori M, Vollmers C, Zarrinpar A, DiTacchio L, Bushong EA, Gill S, et al. Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab. 2012;15(6):848–60.PubMedPubMedCentral
10.
Zurück zum Zitat Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci. 2003;4(11):901–9.PubMed Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci. 2003;4(11):901–9.PubMed
11.
Zurück zum Zitat Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15(2):137–49.PubMedPubMedCentral Ryan KK, Woods SC, Seeley RJ. Central nervous system mechanisms linking the consumption of palatable high-fat diets to the defense of greater adiposity. Cell Metab. 2012;15(2):137–49.PubMedPubMedCentral
12.
Zurück zum Zitat Yue JT, Lam TK. Lipid sensing and insulin resistance in the brain. Cell Metab. 2012;15(5):646–55.PubMed Yue JT, Lam TK. Lipid sensing and insulin resistance in the brain. Cell Metab. 2012;15(5):646–55.PubMed
13.
Zurück zum Zitat Neel JV. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14(4):353–62.PubMedPubMedCentral Neel JV. Diabetes mellitus: A “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14(4):353–62.PubMedPubMedCentral
14.
Zurück zum Zitat Speakman JR. A nonadaptive scenario explaining the genetic predisposition to obesity: The “predation release” hypothesis. Cell Metab. 2007;6(1):5–12.PubMed Speakman JR. A nonadaptive scenario explaining the genetic predisposition to obesity: The “predation release” hypothesis. Cell Metab. 2007;6(1):5–12.PubMed
15.
Zurück zum Zitat Jordan SD, Könner AC, Brüning JC. Sensing the fuels: Glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci. 2010;67(19):3255–73.PubMedPubMedCentral Jordan SD, Könner AC, Brüning JC. Sensing the fuels: Glucose and lipid signaling in the CNS controlling energy homeostasis. Cell Mol Life Sci. 2010;67(19):3255–73.PubMedPubMedCentral
16.
Zurück zum Zitat Caspi L, Wang PY, Lam TK. A balance of lipid-sensing mechanisms in the brain and liver. Cell Metab. 2007;6(2):99–104.PubMed Caspi L, Wang PY, Lam TK. A balance of lipid-sensing mechanisms in the brain and liver. Cell Metab. 2007;6(2):99–104.PubMed
17.
Zurück zum Zitat Hevener AL, Bergman RN, Donovan CM. Novel glucosensor for hypoglycemic detection localized to the portal vein. Diabetes. 1997;46(9):1521–5.PubMed Hevener AL, Bergman RN, Donovan CM. Novel glucosensor for hypoglycemic detection localized to the portal vein. Diabetes. 1997;46(9):1521–5.PubMed
18.
Zurück zum Zitat Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30(6):838–44.PubMed Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30(6):838–44.PubMed
19.
Zurück zum Zitat Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1423–39.PubMed Covasa M. Deficits in gastrointestinal responses controlling food intake and body weight. Am J Physiol Regul Integr Comp Physiol. 2010;299(6):R1423–39.PubMed
20.
Zurück zum Zitat Ritter S, Taylor JS. Vagal sensory neurons are required for lipoprivic but not glucoprivic feeding in rats. Am J Physiol. 1990;258(6 Pt 2):R1395–401.PubMed Ritter S, Taylor JS. Vagal sensory neurons are required for lipoprivic but not glucoprivic feeding in rats. Am J Physiol. 1990;258(6 Pt 2):R1395–401.PubMed
21.
Zurück zum Zitat Gilbertson TA, Liu L, York DA, Bray GA. Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci. 1998;855:165–8.PubMed Gilbertson TA, Liu L, York DA, Bray GA. Dietary fat preferences are inversely correlated with peripheral gustatory fatty acid sensitivity. Ann N Y Acad Sci. 1998;855:165–8.PubMed
22.
Zurück zum Zitat Khan NA, Besnard P. Oro-sensory perception of dietary lipids: New insights into the fat taste transduction. Biochim Biophys Acta. 2009;1791(3):149–55.PubMed Khan NA, Besnard P. Oro-sensory perception of dietary lipids: New insights into the fat taste transduction. Biochim Biophys Acta. 2009;1791(3):149–55.PubMed
23.
Zurück zum Zitat Newman L, Haryono R, Keast R. Functionality of fatty acid chemoreception: A potential factor in the development of obesity? Nutrients. 2013;5(4):1287–300.PubMedPubMedCentral Newman L, Haryono R, Keast R. Functionality of fatty acid chemoreception: A potential factor in the development of obesity? Nutrients. 2013;5(4):1287–300.PubMedPubMedCentral
25.
Zurück zum Zitat Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci. 2010;30(25):8376–82.PubMed Cartoni C, Yasumatsu K, Ohkuri T, Shigemura N, Yoshida R, Godinot N, et al. Taste preference for fatty acids is mediated by GPR40 and GPR120. J Neurosci. 2010;30(25):8376–82.PubMed
26.
Zurück zum Zitat Matsumura S, Eguchi A, Mizushige T, Kitabayashi N, Tsuzuki S, Inoue K, et al. Colocalization of GPR120 with phospholipase-Cbeta2 and alpha-gustducin in the taste bud cells in mice. Neurosci Lett. 2009;450(2):186–90.PubMed Matsumura S, Eguchi A, Mizushige T, Kitabayashi N, Tsuzuki S, Inoue K, et al. Colocalization of GPR120 with phospholipase-Cbeta2 and alpha-gustducin in the taste bud cells in mice. Neurosci Lett. 2009;450(2):186–90.PubMed
27.
Zurück zum Zitat Pepino MY, Love-Gregory L, Klein S, Abumrad NA. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid Res. 2012;53(3):561–6.PubMedPubMedCentral Pepino MY, Love-Gregory L, Klein S, Abumrad NA. The fatty acid translocase gene CD36 and lingual lipase influence oral sensitivity to fat in obese subjects. J Lipid Res. 2012;53(3):561–6.PubMedPubMedCentral
28.
Zurück zum Zitat Chen CS, Bench EM, Allerton TD, Schreiber AL, Arceneaux 3rd KP, Primeaux SD. Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Physiol Regul Integr Comp Physiol. 2013;305(11):R1346–55.PubMed Chen CS, Bench EM, Allerton TD, Schreiber AL, Arceneaux 3rd KP, Primeaux SD. Preference for linoleic acid in obesity-prone and obesity-resistant rats is attenuated by the reduction of CD36 on the tongue. Am J Physiol Regul Integr Comp Physiol. 2013;305(11):R1346–55.PubMed
29.
Zurück zum Zitat Mattes RD. Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses. 2009;34(2):145–50.PubMedPubMedCentral Mattes RD. Oral detection of short-, medium-, and long-chain free fatty acids in humans. Chem Senses. 2009;34(2):145–50.PubMedPubMedCentral
30.
Zurück zum Zitat Rolls ET. Mechanisms for sensing fat in food in the mouth: Presented at the Symposium “The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond” held at the Institute of Food Technologists 2011 Annual Meeting, New Orleans, LA, USA., June 12, 2011 Rolls ET. Mechanisms for sensing fat in food in the mouth: Presented at the Symposium “The Taste for Fat: New Discoveries on the Role of Fat in Sensory Perception, Metabolism, Sensory Pleasure and Beyond” held at the Institute of Food Technologists 2011 Annual Meeting, New Orleans, LA, USA., June 12, 2011
31.
Zurück zum Zitat Grabenhorst F, Rolls ET. The representation of oral fat texture in the human somatosensory cortex. Hum Brain Mapp. 2014;35(6):2521–30.PubMed Grabenhorst F, Rolls ET. The representation of oral fat texture in the human somatosensory cortex. Hum Brain Mapp. 2014;35(6):2521–30.PubMed
32.
Zurück zum Zitat Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30(6):838–44.PubMed Stewart JE, Newman LP, Keast RS. Oral sensitivity to oleic acid is associated with fat intake and body mass index. Clin Nutr. 2011;30(6):838–44.PubMed
33.
Zurück zum Zitat Stewart JE, Seimon RV, Otto B, Keast RS, Clifton PM, Feinle-Bisset C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr. 2011;93(4):703–11.PubMed Stewart JE, Seimon RV, Otto B, Keast RS, Clifton PM, Feinle-Bisset C. Marked differences in gustatory and gastrointestinal sensitivity to oleic acid between lean and obese men. Am J Clin Nutr. 2011;93(4):703–11.PubMed
34.
Zurück zum Zitat Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr. 2010;104(1):145–52.PubMed Stewart JE, Feinle-Bisset C, Golding M, Delahunty C, Clifton PM, Keast RS. Oral sensitivity to fatty acids, food consumption and BMI in human subjects. Br J Nutr. 2010;104(1):145–52.PubMed
35.
Zurück zum Zitat Keast RS, Azzopardi KM, Newman LP, Haryono RY. Impaired oral fatty acid chemoreception is associated with acute excess energy consumption. Appetite. 2014;80:1–6.PubMed Keast RS, Azzopardi KM, Newman LP, Haryono RY. Impaired oral fatty acid chemoreception is associated with acute excess energy consumption. Appetite. 2014;80:1–6.PubMed
36.
Zurück zum Zitat Little TJ, Feinle-Bisset C. Effects of dietary fat on appetite and energy intake in health and obesity–oral and gastrointestinal sensory contributions. Physiol Behav. 2011;104(4):613–20.PubMed Little TJ, Feinle-Bisset C. Effects of dietary fat on appetite and energy intake in health and obesity–oral and gastrointestinal sensory contributions. Physiol Behav. 2011;104(4):613–20.PubMed
37.
Zurück zum Zitat Little TJ, Feinle-Bisset C. Oral and gastrointestinal sensing of dietary fat and appetite regulation in humans: Modification by diet and obesity. Front Neurosci. 2010;4:178.PubMedPubMedCentral Little TJ, Feinle-Bisset C. Oral and gastrointestinal sensing of dietary fat and appetite regulation in humans: Modification by diet and obesity. Front Neurosci. 2010;4:178.PubMedPubMedCentral
38.
Zurück zum Zitat Chevrot M, Bernard A, Ancel D, Buttet M, Martin C, Abdoul-Azize S, et al. Obesity alters the gustatory perception of lipids in the mouse: Plausible involvement of lingual CD36. J Lipid Res. 2013;54(9):2485–94.PubMedPubMedCentral Chevrot M, Bernard A, Ancel D, Buttet M, Martin C, Abdoul-Azize S, et al. Obesity alters the gustatory perception of lipids in the mouse: Plausible involvement of lingual CD36. J Lipid Res. 2013;54(9):2485–94.PubMedPubMedCentral
39.
Zurück zum Zitat Chevrot M, Passilly-Degrace P, Ancel D, Bernard A, Enderli G, Gomes M, et al. Obesity interferes with the orosensory detection of long-chain fatty acids in humans. Am J Clin Nutr. 2014;99(5):975–83.PubMed Chevrot M, Passilly-Degrace P, Ancel D, Bernard A, Enderli G, Gomes M, et al. Obesity interferes with the orosensory detection of long-chain fatty acids in humans. Am J Clin Nutr. 2014;99(5):975–83.PubMed
40.
Zurück zum Zitat Zhang XJ, Zhou LH, Ban X, Liu DX, Jiang W, Liu XM. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats. Acta Histochem. 2011;113(6):663–67.PubMed Zhang XJ, Zhou LH, Ban X, Liu DX, Jiang W, Liu XM. Decreased expression of CD36 in circumvallate taste buds of high-fat diet induced obese rats. Acta Histochem. 2011;113(6):663–67.PubMed
41.
Zurück zum Zitat Stewart JE, Keast RS. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int J Obes (Lond). 2012;36(6):834–42. Stewart JE, Keast RS. Recent fat intake modulates fat taste sensitivity in lean and overweight subjects. Int J Obes (Lond). 2012;36(6):834–42.
42.
Zurück zum Zitat Welch I, Saunders K, Read NW. Effect of ileal and intravenous infusions of fat emulsions on feeding and satiety in human volunteers. Gastroenterology. 1985;89(6):1293–7.PubMed Welch I, Saunders K, Read NW. Effect of ileal and intravenous infusions of fat emulsions on feeding and satiety in human volunteers. Gastroenterology. 1985;89(6):1293–7.PubMed
43.
Zurück zum Zitat Welch IM, Sepple CP, Read NW. Comparisons of the effects on satiety and eating behaviour of infusion of lipid into the different regions of the small intestine. Gut. 1988;29(3):306–11.PubMedPubMedCentral Welch IM, Sepple CP, Read NW. Comparisons of the effects on satiety and eating behaviour of infusion of lipid into the different regions of the small intestine. Gut. 1988;29(3):306–11.PubMedPubMedCentral
44.
Zurück zum Zitat Drewe J, Gadient A, Rovati LC, Beglinger C. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Gastroenterology. 1992;102(5):1654–9.PubMed Drewe J, Gadient A, Rovati LC, Beglinger C. Role of circulating cholecystokinin in control of fat-induced inhibition of food intake in humans. Gastroenterology. 1992;102(5):1654–9.PubMed
45.
Zurück zum Zitat Greenberg D, Smith GP, Gibbs J. Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am J Physiol. 1990;259(1 Pt 2):R110–8.PubMed Greenberg D, Smith GP, Gibbs J. Intraduodenal infusions of fats elicit satiety in sham-feeding rats. Am J Physiol. 1990;259(1 Pt 2):R110–8.PubMed
46.
Zurück zum Zitat Yox DP, Stokesberry H, Ritter RC. Vagotomy attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1991;260(3 Pt 2):R503–8.PubMed Yox DP, Stokesberry H, Ritter RC. Vagotomy attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1991;260(3 Pt 2):R503–8.PubMed
47.
Zurück zum Zitat Yox DP, Stokesberry H, Ritter RC. Fourth ventricular capsaicin attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1991;260(4 Pt 2):R681–7.PubMed Yox DP, Stokesberry H, Ritter RC. Fourth ventricular capsaicin attenuates suppression of sham feeding induced by intestinal nutrients. Am J Physiol. 1991;260(4 Pt 2):R681–7.PubMed
48.
Zurück zum Zitat Cox JE, Kelm GR, Meller ST, Randich A. Suppression of food intake by GI fatty acid infusions: Roles of celiac vagal afferents and cholecystokinin. Physiol Behav. 2004;82(1):27–33.PubMed Cox JE, Kelm GR, Meller ST, Randich A. Suppression of food intake by GI fatty acid infusions: Roles of celiac vagal afferents and cholecystokinin. Physiol Behav. 2004;82(1):27–33.PubMed
49.
Zurück zum Zitat Tamura CS, Ritter RC. Intestinal capsaicin transiently attenuates suppression of sham feeding by oleate. Am J Physiol. 1994;267(2 Pt 2):R561–8.PubMed Tamura CS, Ritter RC. Intestinal capsaicin transiently attenuates suppression of sham feeding by oleate. Am J Physiol. 1994;267(2 Pt 2):R561–8.PubMed
50.
Zurück zum Zitat Zittel TT, De Giorgio R, Sternini C, Raybould HE. Fos protein expression in the nucleus of the solitary tract in response to intestinal nutrients in awake rats. Brain Res. 1994;663(2):266–70.PubMed Zittel TT, De Giorgio R, Sternini C, Raybould HE. Fos protein expression in the nucleus of the solitary tract in response to intestinal nutrients in awake rats. Brain Res. 1994;663(2):266–70.PubMed
51.
Zurück zum Zitat Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors. Peptides. 2001;22(8):1339–48.PubMed Covasa M, Ritter RC. Attenuated satiation response to intestinal nutrients in rats that do not express CCK-A receptors. Peptides. 2001;22(8):1339–48.PubMed
52.
Zurück zum Zitat Lieverse RJ, Jansen JB, Masclee AA, Rovati LC, Lamers CB. Effect of a low dose of intraduodenal fat on satiety in humans: Studies using the type a cholecystokinin receptor antagonist loxiglumide. Gut. 1994;35(4):501–5.PubMedPubMedCentral Lieverse RJ, Jansen JB, Masclee AA, Rovati LC, Lamers CB. Effect of a low dose of intraduodenal fat on satiety in humans: Studies using the type a cholecystokinin receptor antagonist loxiglumide. Gut. 1994;35(4):501–5.PubMedPubMedCentral
53.
Zurück zum Zitat Matzinger D, Degen L, Drewe J, Meuli J, Duebendorfer R, Ruckstuhl N, et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut. 2000;46(5):688–93.PubMedPubMedCentral Matzinger D, Degen L, Drewe J, Meuli J, Duebendorfer R, Ruckstuhl N, et al. The role of long chain fatty acids in regulating food intake and cholecystokinin release in humans. Gut. 2000;46(5):688–93.PubMedPubMedCentral
54.
Zurück zum Zitat Schick RR, Harty GJ, Yaksh TL, Go VL. Sites in the brain at which cholecystokinin octapeptide (CCK-8) acts to suppress feeding in rats: A mapping study. Neuropharmacology. 1990;29(2):109–18.PubMed Schick RR, Harty GJ, Yaksh TL, Go VL. Sites in the brain at which cholecystokinin octapeptide (CCK-8) acts to suppress feeding in rats: A mapping study. Neuropharmacology. 1990;29(2):109–18.PubMed
55.
Zurück zum Zitat Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res. 2000;860(1–2):1–10.PubMed Blevins JE, Stanley BG, Reidelberger RD. Brain regions where cholecystokinin suppresses feeding in rats. Brain Res. 2000;860(1–2):1–10.PubMed
56.
Zurück zum Zitat Covasa M, Ritter RC. Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides. 1998;19(8):1407–15.PubMed Covasa M, Ritter RC. Rats maintained on high-fat diets exhibit reduced satiety in response to CCK and bombesin. Peptides. 1998;19(8):1407–15.PubMed
57.
Zurück zum Zitat Covasa M, Ritter RC. Reduced sensitivity to the satiation effect of intestinal oleate in rats adapted to high-fat diet. Am J Physiol. 1999;277(1 Pt 2):R279–85.PubMed Covasa M, Ritter RC. Reduced sensitivity to the satiation effect of intestinal oleate in rats adapted to high-fat diet. Am J Physiol. 1999;277(1 Pt 2):R279–85.PubMed
58.
Zurück zum Zitat Savastano DM, Covasa M. Adaptation to a high-fat diet leads to hyperphagia and diminished sensitivity to cholecystokinin in rats. J Nutr. 2005;135(8):1953–9.PubMed Savastano DM, Covasa M. Adaptation to a high-fat diet leads to hyperphagia and diminished sensitivity to cholecystokinin in rats. J Nutr. 2005;135(8):1953–9.PubMed
59.
Zurück zum Zitat Covasa M, Ritter RC. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol. 2000;278(1):R166–70.PubMed Covasa M, Ritter RC. Adaptation to high-fat diet reduces inhibition of gastric emptying by CCK and intestinal oleate. Am J Physiol Regul Integr Comp Physiol. 2000;278(1):R166–70.PubMed
60.
Zurück zum Zitat Covasa M, Grahn J, Ritter RC. High fat maintenance diet attenuates hindbrain neuronal response to CCK. Regul Pept. 2000;86(1–3):83–8.PubMed Covasa M, Grahn J, Ritter RC. High fat maintenance diet attenuates hindbrain neuronal response to CCK. Regul Pept. 2000;86(1–3):83–8.PubMed
61.
Zurück zum Zitat Covasa M, Grahn J, Ritter RC. Reduced hindbrain and enteric neuronal response to intestinal oleate in rats maintained on high-fat diet. Auton Neurosci. 2000;84(1–2):8–18.PubMed Covasa M, Grahn J, Ritter RC. Reduced hindbrain and enteric neuronal response to intestinal oleate in rats maintained on high-fat diet. Auton Neurosci. 2000;84(1–2):8–18.PubMed
62.
Zurück zum Zitat Greenberg D, McCaffery J, Potack JZ, Bray GA, York DA. Differential satiating effects of fats in the small intestine of obesity-resistant and obesity-prone rats. Physiol Behav. 1999;66(4):621–6.PubMed Greenberg D, McCaffery J, Potack JZ, Bray GA, York DA. Differential satiating effects of fats in the small intestine of obesity-resistant and obesity-prone rats. Physiol Behav. 1999;66(4):621–6.PubMed
63.
Zurück zum Zitat Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.PubMed Wren AM, Seal LJ, Cohen MA, Brynes AE, Frost GS, Murphy KG, et al. Ghrelin enhances appetite and increases food intake in humans. J Clin Endocrinol Metab. 2001;86(12):5992.PubMed
64.
Zurück zum Zitat Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89(5):1070–7.PubMed Adrian TE, Ferri GL, Bacarese-Hamilton AJ, Fuessl HS, Polak JM, Bloom SR. Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology. 1985;89(5):1070–7.PubMed
65.
Zurück zum Zitat Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101(3):515–20.PubMedPubMedCentral Flint A, Raben A, Astrup A, Holst JJ. Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. J Clin Invest. 1998;101(3):515–20.PubMedPubMedCentral
66.
Zurück zum Zitat Gutzwiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, et al. Glucagon-like peptide-1: A potent regulator of food intake in humans. Gut. 1999;44(1):81–6.PubMedPubMedCentral Gutzwiller JP, Göke B, Drewe J, Hildebrand P, Ketterer S, Handschin D, et al. Glucagon-like peptide-1: A potent regulator of food intake in humans. Gut. 1999;44(1):81–6.PubMedPubMedCentral
67.
Zurück zum Zitat Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.PubMed Batterham RL, Cohen MA, Ellis SM, Le Roux CW, Withers DJ, Frost GS, et al. Inhibition of food intake in obese subjects by peptide YY3-36. N Engl J Med. 2003;349(10):941–8.PubMed
68.
Zurück zum Zitat Karra E, Chandarana K, Batterham RL. The role of peptide YY in appetite regulation and obesity. J Physiol. 2009;587(Pt 1):19–25.PubMedPubMedCentral Karra E, Chandarana K, Batterham RL. The role of peptide YY in appetite regulation and obesity. J Physiol. 2009;587(Pt 1):19–25.PubMedPubMedCentral
69.
Zurück zum Zitat Degen L, Drewe J, Piccoli F, Gräni K, Oesch S, Bunea R, et al. Effect of CCK-1 receptor blockade on ghrelin and PYY secretion in men. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1391–9.PubMed Degen L, Drewe J, Piccoli F, Gräni K, Oesch S, Bunea R, et al. Effect of CCK-1 receptor blockade on ghrelin and PYY secretion in men. Am J Physiol Regul Integr Comp Physiol. 2007;292(4):R1391–9.PubMed
70.
Zurück zum Zitat Beglinger S, Drewe J, Schirra J, Göke B, D'Amato M, Beglinger C. Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab. 2010;95(2):879–86.PubMed Beglinger S, Drewe J, Schirra J, Göke B, D'Amato M, Beglinger C. Role of fat hydrolysis in regulating glucagon-like Peptide-1 secretion. J Clin Endocrinol Metab. 2010;95(2):879–86.PubMed
71.
Zurück zum Zitat Feinle-Bisset C, Patterson M, Ghatei MA, Bloom SR, Horowitz M. Fat digestion is required for suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am J Physiol Endocrinol Metab. 2005;289(6):E948–53.PubMed Feinle-Bisset C, Patterson M, Ghatei MA, Bloom SR, Horowitz M. Fat digestion is required for suppression of ghrelin and stimulation of peptide YY and pancreatic polypeptide secretion by intraduodenal lipid. Am J Physiol Endocrinol Metab. 2005;289(6):E948–53.PubMed
72.
Zurück zum Zitat Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.PubMed Tschöp M, Weyer C, Tataranni PA, Devanarayan V, Ravussin E, Heiman ML. Circulating ghrelin levels are decreased in human obesity. Diabetes. 2001;50(4):707–9.PubMed
73.
Zurück zum Zitat Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes (Lond). 2005;29(9):1130–6. Druce MR, Wren AM, Park AJ, Milton JE, Patterson M, Frost G, et al. Ghrelin increases food intake in obese as well as lean subjects. Int J Obes (Lond). 2005;29(9):1130–6.
74.
Zurück zum Zitat English PJ, Ghatei MA, Malik IA, Bloom SR, Wilding JP. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab. 2002;87(6):2984.PubMed English PJ, Ghatei MA, Malik IA, Bloom SR, Wilding JP. Food fails to suppress ghrelin levels in obese humans. J Clin Endocrinol Metab. 2002;87(6):2984.PubMed
75.
Zurück zum Zitat le Roux CW, Patterson M, Vincent RP, Hunt C, Ghatei MA, Bloom SR. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab. 2005;90(2):1068–71.PubMed le Roux CW, Patterson M, Vincent RP, Hunt C, Ghatei MA, Bloom SR. Postprandial plasma ghrelin is suppressed proportional to meal calorie content in normal-weight but not obese subjects. J Clin Endocrinol Metab. 2005;90(2):1068–71.PubMed
76.
Zurück zum Zitat Mittelman SD, Klier K, Braun S, Azen C, Geffner ME, Buchanan TA. Obese adolescents show impaired meal responses of the appetite-regulating hormones ghrelin and PYY. Obesity (Silver Spring). 2010;18(5):918–25.PubMedCentral Mittelman SD, Klier K, Braun S, Azen C, Geffner ME, Buchanan TA. Obese adolescents show impaired meal responses of the appetite-regulating hormones ghrelin and PYY. Obesity (Silver Spring). 2010;18(5):918–25.PubMedCentral
77.
Zurück zum Zitat McFarlane MR, Brown MS, Goldstein JL, Zhao TJ. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High-Fat Diet. Cell Metab. 2014 May 14 McFarlane MR, Brown MS, Goldstein JL, Zhao TJ. Induced Ablation of Ghrelin Cells in Adult Mice Does Not Decrease Food Intake, Body Weight, or Response to High-Fat Diet. Cell Metab. 2014 May 14
78.
Zurück zum Zitat le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006;147(1):3–8.PubMed le Roux CW, Batterham RL, Aylwin SJ, Patterson M, Borg CM, Wynne KJ, et al. Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology. 2006;147(1):3–8.PubMed
79.
Zurück zum Zitat Guo Y, Ma L, Enriori PJ, Koska J, Franks PW, Brookshire T, et al. Delparigi A, Tataranni PA. Physiological evidence for the involvement of peptide YY in the regulation of energy homeostasis in humans. Obesity (Silver Spring). 2006;14(9):1562–70. Guo Y, Ma L, Enriori PJ, Koska J, Franks PW, Brookshire T, et al. Delparigi A, Tataranni PA. Physiological evidence for the involvement of peptide YY in the regulation of energy homeostasis in humans. Obesity (Silver Spring). 2006;14(9):1562–70.
80.
Zurück zum Zitat Boey D, Lin S, Enriquez RF, Lee NJ, Slack K, Couzens M, et al. PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides. 2008;42(1):19–30.PubMed Boey D, Lin S, Enriquez RF, Lee NJ, Slack K, Couzens M, et al. PYY transgenic mice are protected against diet-induced and genetic obesity. Neuropeptides. 2008;42(1):19–30.PubMed
81.
Zurück zum Zitat Boey D, Lin S, Karl T, Baldock P, Lee N, Enriquez R, et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia. 2006;49(6):1360–70.PubMed Boey D, Lin S, Karl T, Baldock P, Lee N, Enriquez R, et al. Peptide YY ablation in mice leads to the development of hyperinsulinaemia and obesity. Diabetologia. 2006;49(6):1360–70.PubMed
82.
Zurück zum Zitat Fineman MS, Cirincione BB, Maggs D, Diamant M. GLP-1 based therapies: Differential effects on fasting and postprandial glucose. Diabetes Obes Metab. 2012;14(8):675–88.PubMed Fineman MS, Cirincione BB, Maggs D, Diamant M. GLP-1 based therapies: Differential effects on fasting and postprandial glucose. Diabetes Obes Metab. 2012;14(8):675–88.PubMed
83.
Zurück zum Zitat Van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: Focus on the CNS. J Endocrinol. 2014;221(1):T1–16.PubMed Van Bloemendaal L, Ten Kulve JS, la Fleur SE, Ijzerman RG, Diamant M. Effects of glucagon-like peptide 1 on appetite and body weight: Focus on the CNS. J Endocrinol. 2014;221(1):T1–16.PubMed
85.
Zurück zum Zitat Hansen HS. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol Res. 2014 Mar 28 Hansen HS. Role of anorectic N-acylethanolamines in intestinal physiology and satiety control with respect to dietary fat. Pharmacol Res. 2014 Mar 28
86.
Zurück zum Zitat Rodríguez De Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature. 2001;414(6860):209–12.PubMed Rodríguez De Fonseca F, Navarro M, Gómez R, Escuredo L, Nava F, Fu J, et al. An anorexic lipid mediator regulated by feeding. Nature. 2001;414(6860):209–12.PubMed
87.
Zurück zum Zitat Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez De Fonseca F, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425(6953):90–3.PubMed Fu J, Gaetani S, Oveisi F, Lo Verme J, Serrano A, Rodríguez De Fonseca F, et al. Oleylethanolamide regulates feeding and body weight through activation of the nuclear receptor PPAR-alpha. Nature. 2003;425(6953):90–3.PubMed
88.
Zurück zum Zitat Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 2008;8(4):281–8.PubMedPubMedCentral Schwartz GJ, Fu J, Astarita G, Li X, Gaetani S, Campolongo P, et al. The lipid messenger OEA links dietary fat intake to satiety. Cell Metab. 2008;8(4):281–8.PubMedPubMedCentral
89.
Zurück zum Zitat Guijarro A, Fu J, Astarita G, Piomelli D. CD36 gene deletion decreases oleoylethanolamide levels in small intestine of free-feeding mice. Pharmacol Res. 2010;61(1):27–33.PubMedPubMedCentral Guijarro A, Fu J, Astarita G, Piomelli D. CD36 gene deletion decreases oleoylethanolamide levels in small intestine of free-feeding mice. Pharmacol Res. 2010;61(1):27–33.PubMedPubMedCentral
90.
Zurück zum Zitat Romano A, Karimian Azari E, Tempesta B, Mansouri A, Micioni Di Bonaventura MV, Ramachandran D, Lutz TA, Bedse G, Langhans W, Gaetani S. High dietary fat intake influences the activation of specific hindbrain and hypothalamic nuclei by the satiety factor oleoylethanolamide. Physiol Behav. 2014 May 5 Romano A, Karimian Azari E, Tempesta B, Mansouri A, Micioni Di Bonaventura MV, Ramachandran D, Lutz TA, Bedse G, Langhans W, Gaetani S. High dietary fat intake influences the activation of specific hindbrain and hypothalamic nuclei by the satiety factor oleoylethanolamide. Physiol Behav. 2014 May 5
91.
Zurück zum Zitat Oveisi F, Gaetani S, Eng KT, Piomelli D. Oleoylethanolamide inhibits food intake in free-feeding rats after oral administration. Pharmacol Res. 2004;49(5):461–6.PubMed Oveisi F, Gaetani S, Eng KT, Piomelli D. Oleoylethanolamide inhibits food intake in free-feeding rats after oral administration. Pharmacol Res. 2004;49(5):461–6.PubMed
92.
Zurück zum Zitat Guzmán M, Lo Verme J, Fu J, Oveisi F, Blázquez C, Piomelli D. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem. 2004;279(27):27849–54.PubMed Guzmán M, Lo Verme J, Fu J, Oveisi F, Blázquez C, Piomelli D. Oleoylethanolamide stimulates lipolysis by activating the nuclear receptor peroxisome proliferator-activated receptor alpha (PPAR-alpha). J Biol Chem. 2004;279(27):27849–54.PubMed
93.
Zurück zum Zitat Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology. 2005;48(8):1147–53.PubMed Fu J, Oveisi F, Gaetani S, Lin E, Piomelli D. Oleoylethanolamide, an endogenous PPAR-alpha agonist, lowers body weight and hyperlipidemia in obese rats. Neuropharmacology. 2005;48(8):1147–53.PubMed
94.
Zurück zum Zitat Romano A, Coccurello R, Giacovazzo G, Bedse G, Moles A, Gaetani S. Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite. Biomed Res Int. 2014;2014:203425.PubMedPubMedCentral Romano A, Coccurello R, Giacovazzo G, Bedse G, Moles A, Gaetani S. Oleoylethanolamide: a novel potential pharmacological alternative to cannabinoid antagonists for the control of appetite. Biomed Res Int. 2014;2014:203425.PubMedPubMedCentral
95.
Zurück zum Zitat Hansen HS, Diep TA. N-acylethanolamines, anandamide and food intake. Biochem Pharmacol. 2009;78(6):553–60.PubMed Hansen HS, Diep TA. N-acylethanolamines, anandamide and food intake. Biochem Pharmacol. 2009;78(6):553–60.PubMed
96.
Zurück zum Zitat Diep TA, Madsen AN, Holst B, Kristiansen MM, Wellner N, Hansen SH, et al. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J. 2011;25(2):765–74.PubMed Diep TA, Madsen AN, Holst B, Kristiansen MM, Wellner N, Hansen SH, et al. Dietary fat decreases intestinal levels of the anorectic lipids through a fat sensor. FASEB J. 2011;25(2):765–74.PubMed
97.
Zurück zum Zitat Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, et al. N-acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell. 2008;135(5):813–24.PubMedPubMedCentral Gillum MP, Zhang D, Zhang XM, Erion DM, Jamison RA, Choi C, et al. N-acylphosphatidylethanolamine, a gut- derived circulating factor induced by fat ingestion, inhibits food intake. Cell. 2008;135(5):813–24.PubMedPubMedCentral
98.
Zurück zum Zitat Wellner N, Tsuboi K, Madsen AN, Holst B, Diep TA, Nakao M, et al. Studies on the anorectic effect of N-acylphosphatidylethanolamine and phosphatidylethanolamine in mice. Biochim Biophys Acta. 2011;1811(9):508–12.PubMed Wellner N, Tsuboi K, Madsen AN, Holst B, Diep TA, Nakao M, et al. Studies on the anorectic effect of N-acylphosphatidylethanolamine and phosphatidylethanolamine in mice. Biochim Biophys Acta. 2011;1811(9):508–12.PubMed
99.
Zurück zum Zitat Wellner N, Diep TA, Janfelt C, Hansen HS. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta. 2013;1831(3):652–62.PubMed Wellner N, Diep TA, Janfelt C, Hansen HS. N-acylation of phosphatidylethanolamine and its biological functions in mammals. Biochim Biophys Acta. 2013;1831(3):652–62.PubMed
100.
Zurück zum Zitat Mattes RD. Oral fatty acid signaling and intestinal lipid processing: Support and supposition. Physiol Behav. 2011;105(1):27–35. Review.PubMed Mattes RD. Oral fatty acid signaling and intestinal lipid processing: Support and supposition. Physiol Behav. 2011;105(1):27–35. Review.PubMed
101.
Zurück zum Zitat Schwartz GJ. Gut fat sensing in the negative feedback control of energy balance–recent advances. Physiol Behav. 2011;104(4):621–3.PubMedPubMedCentral Schwartz GJ. Gut fat sensing in the negative feedback control of energy balance–recent advances. Physiol Behav. 2011;104(4):621–3.PubMedPubMedCentral
102.
Zurück zum Zitat Lee CY. The effect of high-Fat diet-induced pathophysiological changes in the Gut on obesity: what should be the ideal treatment? Clin Transl Gastroenterol. 2013;4:e39. Lee CY. The effect of high-Fat diet-induced pathophysiological changes in the Gut on obesity: what should be the ideal treatment? Clin Transl Gastroenterol. 2013;4:e39.
103.
Zurück zum Zitat Breen DM, Rasmussen BA, Côté CD, Jackson VM, Lam TK. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes. 2013;62(9):3005–13.PubMedPubMedCentral Breen DM, Rasmussen BA, Côté CD, Jackson VM, Lam TK. Nutrient-sensing mechanisms in the gut as therapeutic targets for diabetes. Diabetes. 2013;62(9):3005–13.PubMedPubMedCentral
104.
Zurück zum Zitat Greenberg D, Smith GP, Gibbs J. Intravenous triglycerides fail to elicit satiety in sham-feeding rats. Am J Physiol. 1993;264(2 Pt 2):R409–13.PubMed Greenberg D, Smith GP, Gibbs J. Intravenous triglycerides fail to elicit satiety in sham-feeding rats. Am J Physiol. 1993;264(2 Pt 2):R409–13.PubMed
105.
Zurück zum Zitat Greenberg D, Kava RA, Lewis DR, Greenwood MR, Smith GP. Time course for entry of intestinally infused lipids into blood of rats. Am J Physiol. 1995;269(2 Pt 2):R432–6.PubMed Greenberg D, Kava RA, Lewis DR, Greenwood MR, Smith GP. Time course for entry of intestinally infused lipids into blood of rats. Am J Physiol. 1995;269(2 Pt 2):R432–6.PubMed
106.
Zurück zum Zitat Woods SC, Stein LJ, McKay LD, Porte Jr D. Suppression of food intake by intravenous nutrients and insulin in the baboon. Am J Physiol. 1984;247:R393.PubMed Woods SC, Stein LJ, McKay LD, Porte Jr D. Suppression of food intake by intravenous nutrients and insulin in the baboon. Am J Physiol. 1984;247:R393.PubMed
107.
Zurück zum Zitat Walls EK, Koopmans HS. Effect of intravenous nutrient infusions on food intake in rats. Physiol Behav. 1989;45:1223.PubMed Walls EK, Koopmans HS. Effect of intravenous nutrient infusions on food intake in rats. Physiol Behav. 1989;45:1223.PubMed
108.
Zurück zum Zitat Gil KM, Skeie B, Kretan V, Askanazi J, Friedman MI. Parenteral nutrition and oral intake: Effect of glucose and fat infusion. JPEN. 1991;15:426. Gil KM, Skeie B, Kretan V, Askanazi J, Friedman MI. Parenteral nutrition and oral intake: Effect of glucose and fat infusion. JPEN. 1991;15:426.
109.
Zurück zum Zitat Giner M, Meguid MM. Effect of intravenous or intragstric nutrients on food intake in rats. J Surg Res. 1991;51:259.PubMed Giner M, Meguid MM. Effect of intravenous or intragstric nutrients on food intake in rats. J Surg Res. 1991;51:259.PubMed
110.
Zurück zum Zitat Walls EK, Koopmans HS. Differential effects of intravenous glucose, amino acids, and lipid on daily food intake in rats. Am J Physiol. 1992;262(2 Pt 2):R225–34.PubMed Walls EK, Koopmans HS. Differential effects of intravenous glucose, amino acids, and lipid on daily food intake in rats. Am J Physiol. 1992;262(2 Pt 2):R225–34.PubMed
111.
Zurück zum Zitat Fantino M. Role of lipids in the control of food intake. Curr Opin Clin Nutr Metab Care. 2011;14(2):138–44.PubMed Fantino M. Role of lipids in the control of food intake. Curr Opin Clin Nutr Metab Care. 2011;14(2):138–44.PubMed
112.
Zurück zum Zitat Lam TK, Pocai A, Gutierrez-Juarez R, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005;11:320–7.PubMed Lam TK, Pocai A, Gutierrez-Juarez R, et al. Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med. 2005;11:320–7.PubMed
113.
Zurück zum Zitat Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R655–64.PubMedPubMedCentral Le Foll C, Irani BG, Magnan C, Dunn-Meynell AA, Levin BE. Characteristics and mechanisms of hypothalamic neuronal fatty acid sensing. Am J Physiol Regul Integr Comp Physiol. 2009;297(3):R655–64.PubMedPubMedCentral
114.
Zurück zum Zitat Le Foll C, Dunn-Meynell A, Musatov S, Magnan C, Levin BE. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes. 2013;62(8):2709–16.PubMedPubMedCentral Le Foll C, Dunn-Meynell A, Musatov S, Magnan C, Levin BE. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice. Diabetes. 2013;62(8):2709–16.PubMedPubMedCentral
115.
Zurück zum Zitat Moullé VS, Picard A, Le Foll C, Levin BE, Magnan C. Lipid sensing in the brain and regulation of energy balance. Diabetes Metab. 2014;40(1):29–33.PubMed Moullé VS, Picard A, Le Foll C, Levin BE, Magnan C. Lipid sensing in the brain and regulation of energy balance. Diabetes Metab. 2014;40(1):29–33.PubMed
116.
Zurück zum Zitat Miller JC, Gnaedinger JM, Rapoport SI. Utilization of plasma fatty acid in rat brain: Distribution of [14C] palmitate between oxidative and synthetic pathways. J Neurochem. 1987;49(5):1507–14.PubMed Miller JC, Gnaedinger JM, Rapoport SI. Utilization of plasma fatty acid in rat brain: Distribution of [14C] palmitate between oxidative and synthetic pathways. J Neurochem. 1987;49(5):1507–14.PubMed
117.
Zurück zum Zitat Gnaedinger JM, Miller JC, Latker CH, Rapoport SI. Cerebral metabolism of plasma [14C] palmitate in awake, adult rat: Subcellular localization. Neurochem Res. 1988;13(1):21–9.PubMed Gnaedinger JM, Miller JC, Latker CH, Rapoport SI. Cerebral metabolism of plasma [14C] palmitate in awake, adult rat: Subcellular localization. Neurochem Res. 1988;13(1):21–9.PubMed
118.
Zurück zum Zitat Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51:271–5.PubMed Obici S, Feng Z, Morgan K, Stein D, Karkanias G, Rossetti L. Central administration of oleic acid inhibits glucose production and food intake. Diabetes. 2002;51:271–5.PubMed
119.
Zurück zum Zitat Schwinkendorf DR, Tsatsos NG, Gosnell BA, Mashek DG. Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism. Int J Obes (Lond). 2011;35(3):336–44. Schwinkendorf DR, Tsatsos NG, Gosnell BA, Mashek DG. Effects of central administration of distinct fatty acids on hypothalamic neuropeptide expression and energy metabolism. Int J Obes (Lond). 2011;35(3):336–44.
120.
Zurück zum Zitat Ross RA, Rossetti L, Lam TK, Schwartz GJ. Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production. Am J Physiol Endocrinol Metab. 2010;299(4):E633–9.PubMedPubMedCentral Ross RA, Rossetti L, Lam TK, Schwartz GJ. Differential effects of hypothalamic long-chain fatty acid infusions on suppression of hepatic glucose production. Am J Physiol Endocrinol Metab. 2010;299(4):E633–9.PubMedPubMedCentral
121.
Zurück zum Zitat Jambor De Sousa UL, Benthem L, Arsenijevic D, Scheurink AJ, Langhans W, Geary N, et al. Hepatic-portal oleic acid inhibits feeding more potently than hepatic-portal caprylic acid in rats. Physiol Behav. 2006;89(3):329–34.PubMed Jambor De Sousa UL, Benthem L, Arsenijevic D, Scheurink AJ, Langhans W, Geary N, et al. Hepatic-portal oleic acid inhibits feeding more potently than hepatic-portal caprylic acid in rats. Physiol Behav. 2006;89(3):329–34.PubMed
122.
Zurück zum Zitat Librán-Pérez M, Polakof S, López-Patiño MA, Míguez JM, Soengas JL. Evidence of a metabolic fatty acid-sensing system in the hypothalamus and brockmann bodies of rainbow trout: Implications in food intake regulation. Am J Physiol Regul Integr Comp Physiol. 2012;302(11):R1340–50.PubMed Librán-Pérez M, Polakof S, López-Patiño MA, Míguez JM, Soengas JL. Evidence of a metabolic fatty acid-sensing system in the hypothalamus and brockmann bodies of rainbow trout: Implications in food intake regulation. Am J Physiol Regul Integr Comp Physiol. 2012;302(11):R1340–50.PubMed
123.
Zurück zum Zitat Librán-Pérez M, López-Patiño MA, Míguez JM, Soengas JL. Oleic acid and octanoic acid sensing capacity in rainbow trout Oncorhynchus mykiss is direct in hypothalamus and Brockmann bodies. PLoS One. 2013;8(3):e59507.PubMedPubMedCentral Librán-Pérez M, López-Patiño MA, Míguez JM, Soengas JL. Oleic acid and octanoic acid sensing capacity in rainbow trout Oncorhynchus mykiss is direct in hypothalamus and Brockmann bodies. PLoS One. 2013;8(3):e59507.PubMedPubMedCentral
124.
Zurück zum Zitat Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL. Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout. Physiol Behav. 2014;129:272–9.PubMed Librán-Pérez M, Otero-Rodiño C, López-Patiño MA, Míguez JM, Soengas JL. Central administration of oleate or octanoate activates hypothalamic fatty acid sensing and inhibits food intake in rainbow trout. Physiol Behav. 2014;129:272–9.PubMed
125.
Zurück zum Zitat Oh YT, Youn JH. Circulating oleate, but not other free fatty acids, suppresses food intake in Wistar rats. Diabetes. 2014;63:A471. Oh YT, Youn JH. Circulating oleate, but not other free fatty acids, suppresses food intake in Wistar rats. Diabetes. 2014;63:A471.
126.
Zurück zum Zitat Reynaert R, De Paepe M, Marcus S, Peeters G. Influence of serum free fatty acid levels on growth hormone secretion in lactating cows. J Endocrinol. 1975;66:213–24.PubMed Reynaert R, De Paepe M, Marcus S, Peeters G. Influence of serum free fatty acid levels on growth hormone secretion in lactating cows. J Endocrinol. 1975;66:213–24.PubMed
127.
Zurück zum Zitat Kreitschmann-Andermahr I, Suarez P, Jennings R, Evers N, Brabant G. GH/IGF-I regulation in obesity–mechanisms and practical consequences in children and adults. Horm Res Paediatr. 2010;73:153–60.PubMed Kreitschmann-Andermahr I, Suarez P, Jennings R, Evers N, Brabant G. GH/IGF-I regulation in obesity–mechanisms and practical consequences in children and adults. Horm Res Paediatr. 2010;73:153–60.PubMed
128.
Zurück zum Zitat Briard N, Rico-Gomez M, Guillaume V, Sauze N, Vuaroqueaux V, Dadoun F, et al. Hypothalamic mediated action of free fatty acid on growth hormone secretion in sheep. Endocrinology. 1998;139:4811–9.PubMed Briard N, Rico-Gomez M, Guillaume V, Sauze N, Vuaroqueaux V, Dadoun F, et al. Hypothalamic mediated action of free fatty acid on growth hormone secretion in sheep. Endocrinology. 1998;139:4811–9.PubMed
129.
Zurück zum Zitat Quabbe HJ, Luyckx AS, L’age M, Schwarz C. Growth hormone, cortisol, and glucagon concentrations during plasma free fatty acid depression: different effects of nicotinic acid and an adenosine derivative (BM 11.189). J Clin Endocrinol Metab. 1983;57:410–4.PubMed Quabbe HJ, Luyckx AS, L’age M, Schwarz C. Growth hormone, cortisol, and glucagon concentrations during plasma free fatty acid depression: different effects of nicotinic acid and an adenosine derivative (BM 11.189). J Clin Endocrinol Metab. 1983;57:410–4.PubMed
130.
Zurück zum Zitat Watt MJ, Holmes AG, Steinberg GR, Mesa JL, Kemp BE, Febbraio MA. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;287:E120–7.PubMed Watt MJ, Holmes AG, Steinberg GR, Mesa JL, Kemp BE, Febbraio MA. Reduced plasma FFA availability increases net triacylglycerol degradation, but not GPAT or HSL activity, in human skeletal muscle. Am J Physiol Endocrinol Metab. 2004;287:E120–7.PubMed
131.
Zurück zum Zitat Pereira JN. The plasma free fatty acid rebound induced by nicotinic acid. J Lipid Res. 1967;8:239–44.PubMed Pereira JN. The plasma free fatty acid rebound induced by nicotinic acid. J Lipid Res. 1967;8:239–44.PubMed
132.
Zurück zum Zitat Oh YT, Oh KS, Kang I, Youn JH. A fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: Evidence for brain sensing of circulating FFA. Endocrinology. 2012;153(8):3587–92.PubMedPubMedCentral Oh YT, Oh KS, Kang I, Youn JH. A fall in plasma free fatty acid (FFA) level activates the hypothalamic-pituitary-adrenal axis independent of plasma glucose: Evidence for brain sensing of circulating FFA. Endocrinology. 2012;153(8):3587–92.PubMedPubMedCentral
133.
Zurück zum Zitat Oh YT, Kim J, Kang I, Youn JH. Regulation of hypothalamic-pituitary-adrenal axis by circulating free fatty acids in male Wistar rats: Role of individual free fatty acids. Endocrinology. 2014;155(3):923–31.PubMed Oh YT, Kim J, Kang I, Youn JH. Regulation of hypothalamic-pituitary-adrenal axis by circulating free fatty acids in male Wistar rats: Role of individual free fatty acids. Endocrinology. 2014;155(3):923–31.PubMed
134.
Zurück zum Zitat Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933–44.PubMedPubMedCentral Cao H, Gerhold K, Mayers JR, Wiest MM, Watkins SM, Hotamisligil GS. Identification of a lipokine, a lipid hormone linking adipose tissue to systemic metabolism. Cell. 2008;134(6):933–44.PubMedPubMedCentral
135.
Zurück zum Zitat Yang ZH, Miyahara H, Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis. 2011;10:120.PubMedPubMedCentral Yang ZH, Miyahara H, Hatanaka A. Chronic administration of palmitoleic acid reduces insulin resistance and hepatic lipid accumulation in KK-Ay Mice with genetic type 2 diabetes. Lipids Health Dis. 2011;10:120.PubMedPubMedCentral
136.
Zurück zum Zitat Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, et al. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care. 2010;33(2):405–7.PubMedPubMedCentral Stefan N, Kantartzis K, Celebi N, Staiger H, Machann J, Schick F, et al. Circulating palmitoleate strongly and independently predicts insulin sensitivity in humans. Diabetes Care. 2010;33(2):405–7.PubMedPubMedCentral
137.
Zurück zum Zitat Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, et al. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am J Clin Nutr. 2010;92(6):1350–8.PubMedPubMedCentral Mozaffarian D, Cao H, King IB, Lemaitre RN, Song X, Siscovick DS, et al. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. Am J Clin Nutr. 2010;92(6):1350–8.PubMedPubMedCentral
138.
Zurück zum Zitat Yang ZH, Takeo J, Katayama M. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats. Appetite. 2013;65:1–7.PubMed Yang ZH, Takeo J, Katayama M. Oral administration of omega-7 palmitoleic acid induces satiety and the release of appetite-related hormones in male rats. Appetite. 2013;65:1–7.PubMed
139.
Zurück zum Zitat Gong J, Campos H, McGarvey S, Wu Z, Goldberg R, Baylin A. Adipose tissue palmitoleic acid and obesity in humans: Does it behave as a lipokine? Am J Clin Nutr. 2011;93(1):186–91.PubMedPubMedCentral Gong J, Campos H, McGarvey S, Wu Z, Goldberg R, Baylin A. Adipose tissue palmitoleic acid and obesity in humans: Does it behave as a lipokine? Am J Clin Nutr. 2011;93(1):186–91.PubMedPubMedCentral
140.
Zurück zum Zitat Hodson L, Karpe F. Is there something special about palmitoleate? Curr Opin Clin Nutr Metab Care. 2013;16(2):225–31.PubMed Hodson L, Karpe F. Is there something special about palmitoleate? Curr Opin Clin Nutr Metab Care. 2013;16(2):225–31.PubMed
141.
Zurück zum Zitat Huber AH, Kampf JP, Kwan T, Zhu B, Kleinfeld AM. Fatty acid-specific fluorescent probes and their use in resolving mixtures of unbound free fatty acids in equilibrium with albumin. Biochemistry. 2006;45:14263–74.PubMedPubMedCentral Huber AH, Kampf JP, Kwan T, Zhu B, Kleinfeld AM. Fatty acid-specific fluorescent probes and their use in resolving mixtures of unbound free fatty acids in equilibrium with albumin. Biochemistry. 2006;45:14263–74.PubMedPubMedCentral
142.
Zurück zum Zitat Watt MJ, Hoy AJ, Muoio DM, Coleman RA. Distinct roles of specific fatty acids in cellular processes: Implications for interpreting and reporting experiments. Am J Physiol Endocrinol Metab. 2012;302:E1–3.PubMedPubMedCentral Watt MJ, Hoy AJ, Muoio DM, Coleman RA. Distinct roles of specific fatty acids in cellular processes: Implications for interpreting and reporting experiments. Am J Physiol Endocrinol Metab. 2012;302:E1–3.PubMedPubMedCentral
143.
Zurück zum Zitat Hummel L. Studies on the metabolism of free fatty acids of the plasma in non-pregnant female and pregnant rats. Acta Biol Med Ger. 1975;34(4):607–11.PubMed Hummel L. Studies on the metabolism of free fatty acids of the plasma in non-pregnant female and pregnant rats. Acta Biol Med Ger. 1975;34(4):607–11.PubMed
144.
Zurück zum Zitat Nelson RH, Mundi MS, Vlazny DT, Smailovic A, Muthusamy K, Almandoz JP, et al. Kinetics of saturated, monounsaturated, and polyunsaturated fatty acids in humans. Diabetes. 2013;62(3):783–8.PubMedPubMedCentral Nelson RH, Mundi MS, Vlazny DT, Smailovic A, Muthusamy K, Almandoz JP, et al. Kinetics of saturated, monounsaturated, and polyunsaturated fatty acids in humans. Diabetes. 2013;62(3):783–8.PubMedPubMedCentral
145.
Zurück zum Zitat Bezman-Tarcher A. Method for continuous intravenous infusion of large amounts of oleic acid into rats. J Lipid Res. 1969;10(2):197–206.PubMed Bezman-Tarcher A. Method for continuous intravenous infusion of large amounts of oleic acid into rats. J Lipid Res. 1969;10(2):197–206.PubMed
146.
Zurück zum Zitat Gould S, Scott RC. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol. 2005;43(10):1451–9.PubMed Gould S, Scott RC. 2-Hydroxypropyl-beta-cyclodextrin (HP-beta-CD): a toxicology review. Food Chem Toxicol. 2005;43(10):1451–9.PubMed
147.
Zurück zum Zitat Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med. 1994;149(1):245–60.PubMed Schuster DP. ARDS: clinical lessons from the oleic acid model of acute lung injury. Am J Respir Crit Care Med. 1994;149(1):245–60.PubMed
148.
Zurück zum Zitat Richieri GV, Anel A, Kleinfeld AM. Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry. 1993;32(29):7574–80.PubMed Richieri GV, Anel A, Kleinfeld AM. Interactions of long-chain fatty acids and albumin: determination of free fatty acid levels using the fluorescent probe ADIFAB. Biochemistry. 1993;32(29):7574–80.PubMed
149.
Zurück zum Zitat Nivala AM, Reese L, Frye M, Gentile CL, Pagliassotti MJ. Fatty acid-mediated endoplasmic reticulum stress in vivo: differential response to the infusion of Soybean and Lard Oil in rats. Metabolism. 2013;62(5):753–60.PubMedPubMedCentral Nivala AM, Reese L, Frye M, Gentile CL, Pagliassotti MJ. Fatty acid-mediated endoplasmic reticulum stress in vivo: differential response to the infusion of Soybean and Lard Oil in rats. Metabolism. 2013;62(5):753–60.PubMedPubMedCentral
150.
Zurück zum Zitat Morgan K, Obici S, Rossetti L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem. 2004;279:31139–48.PubMed Morgan K, Obici S, Rossetti L. Hypothalamic responses to long-chain fatty acids are nutritionally regulated. J Biol Chem. 2004;279:31139–48.PubMed
151.
Zurück zum Zitat Pocai A, Lam TK, Obici S, et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest. 2006;116:1081–91.PubMedPubMedCentral Pocai A, Lam TK, Obici S, et al. Restoration of hypothalamic lipid sensing normalizes energy and glucose homeostasis in overfed rats. J Clin Invest. 2006;116:1081–91.PubMedPubMedCentral
152.
Zurück zum Zitat Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.PubMed Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372:425–32.PubMed
153.
Zurück zum Zitat Coleman DL. A historical perspective on leptin. Nat Med. 2010;16(10):1097–9.PubMed Coleman DL. A historical perspective on leptin. Nat Med. 2010;16(10):1097–9.PubMed
154.
Zurück zum Zitat Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MS, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.PubMed Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MS, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med. 1996;334:292–5.PubMed
155.
Zurück zum Zitat Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob mRNA in obese and weight reduced subjects. Nat Med. 1995;1:1155–61.PubMed Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, et al. Leptin levels in human and rodent: Measurement of plasma leptin and ob mRNA in obese and weight reduced subjects. Nat Med. 1995;1:1155–61.PubMed
156.
Zurück zum Zitat Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nat Med. 1995;1:1311–4.PubMed Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS. Leptin levels reflect body lipid content in mice: Evidence for diet-induced resistance to leptin action. Nat Med. 1995;1:1311–4.PubMed
157.
Zurück zum Zitat Munzberg H. Leptin-signaling pathways and leptin resistance. Forum Nutr. 2010;63:123–32.PubMed Munzberg H. Leptin-signaling pathways and leptin resistance. Forum Nutr. 2010;63:123–32.PubMed
158.
Zurück zum Zitat Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70:537–56.PubMed Myers MG, Cowley MA, Münzberg H. Mechanisms of leptin action and leptin resistance. Annu Rev Physiol. 2008;70:537–56.PubMed
159.
Zurück zum Zitat Morris DL, Rui L. Recent advances in understanding Leptin signaling and Leptin resistance. Am J Physiol Endocrinol Metab. 2009;297:E1247–59.PubMedPubMedCentral Morris DL, Rui L. Recent advances in understanding Leptin signaling and Leptin resistance. Am J Physiol Endocrinol Metab. 2009;297:E1247–59.PubMedPubMedCentral
160.
Zurück zum Zitat Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci. 2003;4(11):901–9.PubMed Seeley RJ, Woods SC. Monitoring of stored and available fuel by the CNS: Implications for obesity. Nat Rev Neurosci. 2003;4(11):901–9.PubMed
161.
Zurück zum Zitat Lin L, Martin R, Schaffhauser AO, York DA. Acute changes in the response to peripheral leptin with alteration in diet composition. Am J Physiol Regul Integr Comp Physiol. 2001;280:R504–9.PubMed Lin L, Martin R, Schaffhauser AO, York DA. Acute changes in the response to peripheral leptin with alteration in diet composition. Am J Physiol Regul Integr Comp Physiol. 2001;280:R504–9.PubMed
162.
Zurück zum Zitat Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L. Overfeeding rapidly induces leptin and insulin resistance. Diabetes. 2001;50:2786–91.PubMed Wang J, Obici S, Morgan K, Barzilai N, Feng Z, Rossetti L. Overfeeding rapidly induces leptin and insulin resistance. Diabetes. 2001;50:2786–91.PubMed
163.
Zurück zum Zitat Myers Jr MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–51.PubMedPubMedCentral Myers Jr MG, Leibel RL, Seeley RJ, Schwartz MW. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol Metab. 2010;21(11):643–51.PubMedPubMedCentral
164.
Zurück zum Zitat Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW. Hypothalamic inflammation: Marker or mechanism of obesity pathogenesis? Diabetes. 2013;62(8):2629–34.PubMedPubMedCentral Thaler JP, Guyenet SJ, Dorfman MD, Wisse BE, Schwartz MW. Hypothalamic inflammation: Marker or mechanism of obesity pathogenesis? Diabetes. 2013;62(8):2629–34.PubMedPubMedCentral
165.
Zurück zum Zitat Scarpace PJ, Zhang Y. Leptin resistance: A predisposing factor for diet-induced obesity. Am J Physioql Regul Comp Physiol. 2009;296:R493–500. Scarpace PJ, Zhang Y. Leptin resistance: A predisposing factor for diet-induced obesity. Am J Physioql Regul Comp Physiol. 2009;296:R493–500.
166.
Zurück zum Zitat El-Haschimi K, Pierroz DD, Hileman SM, Bjørbæk C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest. 2000;105:1827–32.PubMedPubMedCentral El-Haschimi K, Pierroz DD, Hileman SM, Bjørbæk C, Flier JS. Two defects contribute to hypothalamic leptin resistance in mice with diet-induced obesity. J Clin Invest. 2000;105:1827–32.PubMedPubMedCentral
167.
Zurück zum Zitat Banks WA. The blood–brain barrier as a cause of obesity. Curr Pharm Des. 2008;14:1606–14.PubMed Banks WA. The blood–brain barrier as a cause of obesity. Curr Pharm Des. 2008;14:1606–14.PubMed
168.
Zurück zum Zitat Velloso LA, Schwartz MW. Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond). 2011;35(12):1455–65. Velloso LA, Schwartz MW. Altered hypothalamic function in diet-induced obesity. Int J Obes (Lond). 2011;35(12):1455–65.
169.
Zurück zum Zitat Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17:305–11.PubMed Banks WA, Kastin AJ, Huang W, Jaspan JB, Maness LM. Leptin enters the brain by a saturable system independent of insulin. Peptides. 1996;17:305–11.PubMed
170.
Zurück zum Zitat Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, et al. Triglycerides induce leptin resistance at the blood–brain barrier. Diabetes. 2004;53(5):1253–60.PubMed Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, et al. Triglycerides induce leptin resistance at the blood–brain barrier. Diabetes. 2004;53(5):1253–60.PubMed
171.
Zurück zum Zitat Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance. Lancet. 1996;348:159–61.PubMed Caro JF, Kolaczynski JW, Nyce MR, Ohannesian JP, Opentanova I, Goldman WH, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: A possible mechanism for leptin resistance. Lancet. 1996;348:159–61.PubMed
172.
Zurück zum Zitat Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte Jr D. Cerebrospinal fluid leptin levels: Relationship to plasma levels and adiposity in humans. Nat Med. 1996;2:589–93.PubMed Schwartz MW, Peskind E, Raskind M, Boyko EJ, Porte Jr D. Cerebrospinal fluid leptin levels: Relationship to plasma levels and adiposity in humans. Nat Med. 1996;2:589–93.PubMed
173.
Zurück zum Zitat Shapiro A, Mu W, Roncal CA, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1370–5.PubMedPubMedCentral Shapiro A, Mu W, Roncal CA, Cheng KY, Johnson RJ, Scarpace PJ. Fructose-induced leptin resistance exacerbates weight gain in response to subsequent high fat feeding. Am J Physiol Regul Integr Comp Physiol. 2008;295:R1370–5.PubMedPubMedCentral
174.
Zurück zum Zitat Vasselli JR, Scarpace PJ, Harris RB, Banks WA. Dietary components in the development of leptin resistance. Adv Nutr. 2013;4(2):164–75.PubMedPubMedCentral Vasselli JR, Scarpace PJ, Harris RB, Banks WA. Dietary components in the development of leptin resistance. Adv Nutr. 2013;4(2):164–75.PubMedPubMedCentral
175.
Zurück zum Zitat Adam CL, Findlay PA. Decreased blood–brain leptin transfer in an ovine model of obesity and weight loss: Resolving the cause of leptin resistance. Int J Obes (Lond). 2010;34(6):980–8. Adam CL, Findlay PA. Decreased blood–brain leptin transfer in an ovine model of obesity and weight loss: Resolving the cause of leptin resistance. Int J Obes (Lond). 2010;34(6):980–8.
176.
Zurück zum Zitat Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers Jr MG, et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: A key mediator of insulin-induced anorexia. Diabetes. 2003;52:227–31.PubMed Niswender KD, Morrison CD, Clegg DJ, Olson R, Baskin DG, Myers Jr MG, et al. Insulin activation of phosphatidylinositol 3-kinase in the hypothalamic arcuate nucleus: A key mediator of insulin-induced anorexia. Diabetes. 2003;52:227–31.PubMed
177.
Zurück zum Zitat Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest. 1988;81(2):435–41.PubMedPubMedCentral Polonsky KS, Given BD, Hirsch L, Shapiro ET, Tillil H, Beebe C, et al. Quantitative study of insulin secretion and clearance in normal and obese subjects. J Clin Invest. 1988;81(2):435–41.PubMedPubMedCentral
178.
Zurück zum Zitat Heni M1, Schöpfer P, Peter A, Sartorius T, Fritsche A, Synofzik M, Häring HU, Maetzler W, Hennige AM. Evidence for altered transport of insulin across the blood–brain barrier in insulin-resistant humans. Acta Diabetol. 2013 Dec 27 Heni M1, Schöpfer P, Peter A, Sartorius T, Fritsche A, Synofzik M, Häring HU, Maetzler W, Hennige AM. Evidence for altered transport of insulin across the blood–brain barrier in insulin-resistant humans. Acta Diabetol. 2013 Dec 27
179.
Zurück zum Zitat Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953;249(1):13–6.PubMed Mayer J. Glucostatic mechanism of regulation of food intake. N Engl J Med. 1953;249(1):13–6.PubMed
180.
Zurück zum Zitat Ritter S, Taylor JS. Capsaicin abolishes lipoprivic but not glucoprivic feeding in rats. Am J Physiol. 1989;256(6 Pt 2):R1232–9.PubMed Ritter S, Taylor JS. Capsaicin abolishes lipoprivic but not glucoprivic feeding in rats. Am J Physiol. 1989;256(6 Pt 2):R1232–9.PubMed
181.
Zurück zum Zitat Leonhardt M, Langhans W. Fatty acid oxidation and control of food intake. Physiol Behav. 2004;83(4):645–51.PubMed Leonhardt M, Langhans W. Fatty acid oxidation and control of food intake. Physiol Behav. 2004;83(4):645–51.PubMed
182.
Zurück zum Zitat Scharrer E. Control of food intake by fatty acid oxidation and ketogenesis. Nutrition. 1999;15(9):704–14.PubMed Scharrer E. Control of food intake by fatty acid oxidation and ketogenesis. Nutrition. 1999;15(9):704–14.PubMed
183.
Zurück zum Zitat Langhans W, Leitner C, Arnold M. Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R554–65.PubMed Langhans W, Leitner C, Arnold M. Dietary fat sensing via fatty acid oxidation in enterocytes: possible role in the control of eating. Am J Physiol Regul Integr Comp Physiol. 2011;300(3):R554–65.PubMed
184.
Zurück zum Zitat Karimian Azari E, Leitner C, Jaggi T, Langhans W, Mansouri A. Possible role of intestinal fatty acid oxidation in the eating-inhibitory effect of the PPAR-α agonist Wy-14643 in high-fat diet fed rats. PLoS One. 2013;8(9):e74869.PubMedPubMedCentral Karimian Azari E, Leitner C, Jaggi T, Langhans W, Mansouri A. Possible role of intestinal fatty acid oxidation in the eating-inhibitory effect of the PPAR-α agonist Wy-14643 in high-fat diet fed rats. PLoS One. 2013;8(9):e74869.PubMedPubMedCentral
185.
Zurück zum Zitat Clegg DJ, Gotoh K, Kemp C, Wortman MD, Benoit SC, Brown LM, et al. Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav. 2011;103(1):10–6.PubMedPubMedCentral Clegg DJ, Gotoh K, Kemp C, Wortman MD, Benoit SC, Brown LM, et al. Consumption of a high-fat diet induces central insulin resistance independent of adiposity. Physiol Behav. 2011;103(1):10–6.PubMedPubMedCentral
186.
Zurück zum Zitat Pimentel GD, Dornellas AP, Rosa JC, Lira FS, Cunha CA, Boldarine VT, et al. High-fat diets rich in soy or fish oil distinctly alter hypothalamic insulin signaling in rats. J Nutr Biochem. 2012;23(7):822–8.PubMed Pimentel GD, Dornellas AP, Rosa JC, Lira FS, Cunha CA, Boldarine VT, et al. High-fat diets rich in soy or fish oil distinctly alter hypothalamic insulin signaling in rats. J Nutr Biochem. 2012;23(7):822–8.PubMed
187.
Zurück zum Zitat Olofsson LE, Unger EK, Cheung CC, Xu AW. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proc Natl Acad Sci U S A. 2013;110(8):E697–706.PubMedPubMedCentral Olofsson LE, Unger EK, Cheung CC, Xu AW. Modulation of AgRP-neuronal function by SOCS3 as an initiating event in diet-induced hypothalamic leptin resistance. Proc Natl Acad Sci U S A. 2013;110(8):E697–706.PubMedPubMedCentral
188.
Zurück zum Zitat Duca FA, Swartz TD, Sakar Y, Covasa M. Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors. Int J Obes (Lond). 2013;37(3):375–81. Duca FA, Swartz TD, Sakar Y, Covasa M. Decreased intestinal nutrient response in diet-induced obese rats: role of gut peptides and nutrient receptors. Int J Obes (Lond). 2013;37(3):375–81.
189.
Zurück zum Zitat De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192–9.PubMed De Souza CT, Araujo EP, Bordin S, Ashimine R, Zollner RL, Boschero AC, et al. Consumption of a fat-rich diet activates a proinflammatory response and induces insulin resistance in the hypothalamus. Endocrinology. 2005;146(10):4192–9.PubMed
190.
Zurück zum Zitat Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.PubMedPubMedCentral Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell. 2008;135(1):61–73.PubMedPubMedCentral
191.
Zurück zum Zitat Oh-I S, Thaler JP, Ogimoto K, Wisse BE, Morton GJ, Schwartz MW. Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab. 2010;299(1):E47–53.PubMedPubMedCentral Oh-I S, Thaler JP, Ogimoto K, Wisse BE, Morton GJ, Schwartz MW. Central administration of interleukin-4 exacerbates hypothalamic inflammation and weight gain during high-fat feeding. Am J Physiol Endocrinol Metab. 2010;299(1):E47–53.PubMedPubMedCentral
192.
Zurück zum Zitat Chiarreotto-Ropelle EC, Pauli LS, Katashima CK, Pimentel GD, Picardi PK, Silva VR, et al. Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats. Am J Physiol Endocrinol Metab. 2013;305(5):E649–59.PubMed Chiarreotto-Ropelle EC, Pauli LS, Katashima CK, Pimentel GD, Picardi PK, Silva VR, et al. Acute exercise suppresses hypothalamic PTP1B protein level and improves insulin and leptin signaling in obese rats. Am J Physiol Endocrinol Metab. 2013;305(5):E649–59.PubMed
193.
Zurück zum Zitat Weissmann L, Quaresma PG, Santos AC, de Matos AH, D'Ávila Bittencourt Pascoal V, Zanotto TM, Castro G, Guadgnini D, Martins da Silva J, Velloso LA, Bittencourt JC, Lopes-Cendes I, Saad MJ, Prada PO. IKK epsilon is key to induction of insulin resistance in the hypothalamus and its inhibition reverses obesity. Diabetes. 2014 May 8 Weissmann L, Quaresma PG, Santos AC, de Matos AH, D'Ávila Bittencourt Pascoal V, Zanotto TM, Castro G, Guadgnini D, Martins da Silva J, Velloso LA, Bittencourt JC, Lopes-Cendes I, Saad MJ, Prada PO. IKK epsilon is key to induction of insulin resistance in the hypothalamus and its inhibition reverses obesity. Diabetes. 2014 May 8
194.
Zurück zum Zitat Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol. 2010;24:8(8). Ropelle ER, Flores MB, Cintra DE, Rocha GZ, Pauli JR, Morari J, et al. IL-6 and IL-10 anti-inflammatory activity links exercise to hypothalamic insulin and leptin sensitivity through IKKbeta and ER stress inhibition. PLoS Biol. 2010;24:8(8).
195.
Zurück zum Zitat Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.PubMedPubMedCentral Thaler JP, Yi CX, Schur EA, Guyenet SJ, Hwang BH, Dietrich MO, et al. Obesity is associated with hypothalamic injury in rodents and humans. J Clin Invest. 2012;122(1):153–62.PubMedPubMedCentral
196.
Zurück zum Zitat Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One. 2012;7(1):e30571.PubMedPubMedCentral Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, et al. Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS One. 2012;7(1):e30571.PubMedPubMedCentral
197.
Zurück zum Zitat Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296:E1003–12.PubMedPubMedCentral Posey KA, Clegg DJ, Printz RL, Byun J, Morton GJ, Vivekanandan-Giri A, et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am J Physiol Endocrinol Metab. 2009;296:E1003–12.PubMedPubMedCentral
198.
Zurück zum Zitat Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest. 2009;119(9):2577–89.PubMedPubMedCentral Benoit SC, Kemp CJ, Elias CF, Abplanalp W, Herman JP, Migrenne S, et al. Palmitic acid mediates hypothalamic insulin resistance by altering PKC-theta subcellular localization in rodents. J Clin Invest. 2009;119(9):2577–89.PubMedPubMedCentral
199.
Zurück zum Zitat Guyenet SJ, Nguyen HT, Hwang BH, Schwartz MW, Baskin DG, Thaler JP. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes. Brain Res. 2013;1512:97–105.PubMedPubMedCentral Guyenet SJ, Nguyen HT, Hwang BH, Schwartz MW, Baskin DG, Thaler JP. High-fat diet feeding causes rapid, non-apoptotic cleavage of caspase-3 in astrocytes. Brain Res. 2013;1512:97–105.PubMedPubMedCentral
200.
Zurück zum Zitat Gao Y, Ottaway N, Schriever SC, Legutko B, García-Cáceres C, de la Fuente E, et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia. 2014;62(1):17–25.PubMedPubMedCentral Gao Y, Ottaway N, Schriever SC, Legutko B, García-Cáceres C, de la Fuente E, et al. Hormones and diet, but not body weight, control hypothalamic microglial activity. Glia. 2014;62(1):17–25.PubMedPubMedCentral
201.
Zurück zum Zitat Ouyang S, Hsuchou H, Kastin AJ, Wang Y, Yu C, Pan W. Diet-induced obesity suppresses expression of many proteins at the blood–brain barrier. J Cereb Blood Flow Metab. 2014;34(1):43–51.PubMed Ouyang S, Hsuchou H, Kastin AJ, Wang Y, Yu C, Pan W. Diet-induced obesity suppresses expression of many proteins at the blood–brain barrier. J Cereb Blood Flow Metab. 2014;34(1):43–51.PubMed
202.
Zurück zum Zitat Takechi R, Galloway S, Pallebage-Gamarallage MM, Wellington CL, Johnsen RD, Dhaliwal SS, et al. Differential effects of dietary fatty acids on the cerebral distribution of plasma-derived apo B lipoproteins with amyloid-beta. Br J Nutr. 2010;103(5):652–62.PubMed Takechi R, Galloway S, Pallebage-Gamarallage MM, Wellington CL, Johnsen RD, Dhaliwal SS, et al. Differential effects of dietary fatty acids on the cerebral distribution of plasma-derived apo B lipoproteins with amyloid-beta. Br J Nutr. 2010;103(5):652–62.PubMed
203.
Zurück zum Zitat Hsuchou H, Kastin AJ, Pan W. Blood-borne metabolic factors in obesity exacerbate injury-induced gliosis. J Mol Neurosci. 2012;47(2):267–77.PubMedPubMedCentral Hsuchou H, Kastin AJ, Pan W. Blood-borne metabolic factors in obesity exacerbate injury-induced gliosis. J Mol Neurosci. 2012;47(2):267–77.PubMedPubMedCentral
Metadaten
Titel
Fat sensing and metabolic syndrome
verfasst von
Jang H. Youn
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Reviews in Endocrine and Metabolic Disorders / Ausgabe 4/2014
Print ISSN: 1389-9155
Elektronische ISSN: 1573-2606
DOI
https://doi.org/10.1007/s11154-014-9300-1

Weitere Artikel der Ausgabe 4/2014

Reviews in Endocrine and Metabolic Disorders 4/2014 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

RAS-Blocker bei Hyperkaliämie möglichst nicht sofort absetzen

14.05.2024 Hyperkaliämie Nachrichten

Bei ausgeprägter Nierenfunktionsstörung steigen unter der Einnahme von Renin-Angiotensin-System(RAS)-Hemmstoffen nicht selten die Serumkaliumspiegel. Was in diesem Fall zu tun ist, erklärte Prof. Jürgen Floege beim diesjährigen Allgemeinmedizin-Update-Seminar.

Gestationsdiabetes: In der zweiten Schwangerschaft folgenreicher als in der ersten

13.05.2024 Gestationsdiabetes Nachrichten

Das Risiko, nach einem Gestationsdiabetes einen Typ-2-Diabetes zu entwickeln, hängt nicht nur von der Zahl, sondern auch von der Reihenfolge der betroffenen Schwangerschaften ab.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Battle of Experts: Sport vs. Spritze bei Adipositas und Typ-2-Diabetes

11.05.2024 DDG-Jahrestagung 2024 Kongressbericht

Im Battle of Experts traten zwei Experten auf dem Diabeteskongress gegeneinander an: Die eine vertrat die Auffassung „Sport statt Spritze“ bei Adipositas und Typ-2-Diabetes, der andere forderte „Spritze statt Sport!“ Am Ende waren sie sich aber einig: Die Kombination aus beidem erzielt die besten Ergebnisse.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.