Skip to main content
Erschienen in: BMC Cancer 1/2011

Open Access 01.12.2011 | Research article

Smoking and drinking in relation to oral potentially malignant disorders in Puerto Rico: a case-control study

verfasst von: Lin Li, Walter J Psoter, Carmen J Buxó, Augusto Elias, Lumarie Cuadrado, Douglas E Morse

Erschienen in: BMC Cancer | Ausgabe 1/2011

Abstract

Background

Oral cancer incidence is high on the Island of Puerto Rico (PR), particularly among males. As part of a larger study conducted in PR, we evaluated smoking and drinking as risk factors for oral potentially malignant disorders (OPMDs).

Methods

Persons diagnosed with either an OPMD (n = 86) [oral epithelial dysplasia (OED), oral hyperkeratosis/epithelial hyperplasia without OED] or a benign oral tissue condition (n = 155) were identified through PR pathology laboratories. Subjects were interviewed using a standardized, structured questionnaire that obtained information, including detailed histories of smoking and drinking. Odds ratios (ORs) for smoking and drinking in relation to having an OPMD, relative to persons with a benign oral tissue condition, were obtained using logistic regression and adjusted for age, gender, education, fruit/vegetable intake and smoking or drinking.

Results

For persons with an OPMD and relative to individuals with a benign oral tissue condition, the adjusted OR for current smoking was 4.32 (95% CI: 1.99-9.38), while for former smokers, the ORadj was 1.47 (95% CI: 0.67-3.21), each ORadj relative to never smokers. With regard to drinking, no adjusted ORs approached statistical significance, and few point estimates exceeded 1.0, whether consumption was defined in terms of ever, current, level (drinks/week), or beverage type.

Conclusions

In this study, conducted in Puerto Rico, current smoking was a substantial risk factor for OPMDs while former smokers had a considerably reduced risk compared to current smokers. There was little evidence suggesting that alcohol consumption was positively associated with OPMD risk.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LL: conducted the statistical analysis, contributed to the interpretation of study results, and was the lead author of the manuscript. WJP: assisted in designing the study, contributed to the writing of the grant proposal that supported the research, assisted in the interpretation of study results, and contributed to the preparation of the final manuscript. CJB: served as the primary study interviewer, constructed and maintained the database, assisted in the interpretation of study results, and contributed to the writing of the final manuscript. AE: assisted in designing the study, in overseeing study activities in Puerto Rico, and contributed to writing of the final manuscript. LC: generated all study documents, coordinated day-to-day study activities in Puerto Rico, and maintained the overall study database. DEM: as Principal Investigator, designed the study, wrote the grant proposal that supported the research, assisted with the statistical analysis, and contributed to interpretation of study results and preparation of the final manuscript.
All authors read and approved the final manuscript.

Background

The clinical term "oral potentially malignant disorders" (OPMDs) is used to refer to a number of clinical presentations that carry an elevated risk of oral cancer [1]. In Puerto Rico, OPMDs most frequently present as leukoplakia and erythroplakia and are often diagnosed histopathologically as oral hyperkeratosis, epithelial hyperplasia, and epithelial dysplasia (OED). Oral hyperkeratosis presents histopathologically as a thickened keratotic layer on the epithelial surface, epithelial hyperplasia is characterized by a thickening of the spinous spinosum (acanthosis) and OED presents as alterations in cellular proliferation and maturation of the oral epithelium [13]. Previous reports have documented the malignant potential of oral hyperkeratosis/epithelial hyperplasia and OED [49].
It is well-established that tobacco smoking and alcohol consumption are important independent risk factors for squamous cell carcinoma of the oral cavity and pharynx [10, 11]. A number of studies in disparate areas around the world have also reported a positive association between smoking tobacco and the risk of both oral leukoplakia and OED [12]. Findings with regard to a link between alcohol consumption and OPMDs have been less consistent [12].
The purpose of the current analysis was to evaluate smoking and drinking as risk factors for OPMDs on the island of Puerto Rico where a high incidence of oral cancer is observed, particularly among males [13].

Methods

All individuals diagnosed with an OPMD or a benign oral tissue condition were identified by reviewing pathology reports generated via pathology laboratories located in cities around Puerto Rico. The study began with one participating laboratory in February 2003; additional laboratories were added over time to a total of six in October 2007 at the conclusion of subject identification. Persons with a histopathologic diagnosis of oral hyperkeratosis, epithelial hyperplasia, or OED were categorized as having an OPMD. Seven subjects diagnosed with lichen planus were excluded from the primary analysis given the controversy over its malignant potential [14], but those subjects were included as OPMD cases in a secondary analysis. Individuals histopathologically diagnosed with one or more of the following were classified as having a benign oral tissue condition: benign adenoma, amalgam tattoo, cyst, fibroma, fibrous histocytoma, granuloma, hemangioma, incontinentia pigmenti, inflammation, benign ulceration, lipoma, mucocele, mucositis, papilloma, Sjoegren syndrome, sialandenitis, or reactive, non-epithelial hyperplasia. When a subject was diagnosed with more than one eligible oral abnormality, s/he was classified as having the more severe disease condition, e.g., if a subject was diagnosed with both a benign oral tissue condition and OED, the disease status was classified as OED.
Subjects were included in the study if they were 30+ years of age at diagnosis, had no previous history of the diagnosed oral abnormality, could speak Spanish or English, and were able to provide reliable exposure information as judged by the trained interviewers.
After obtaining permission to contact an identified individual from his/her surgeon of record, each potential subject was contacted by study personnel, first via mail, and subsequently via telephone to answer any questions regarding participation and to schedule an in-person interview appointment. Two trained interviewers, who were blinded to both study hypotheses and disease status, used a standardized, structured questionnaire that included questions on smoking, drinking, and medical/dental history as well as information on demographics and dietary habits. Each subject received $20 reimbursement for their participation time.
Smoking tobacco use was defined in terms of cigarettes, pipes, and cigars. An "ever smoker" was defined as a person who self-reported smoking at least 100 cigarettes during the course of his/her lifetime or having smoked pipes or cigars for six months or more. A "current smoker" was defined as a person who self-reported smoking within the calendar year prior to the year of diagnosis while an "ex-smoker" was defined as an ever smoker who had quit smoking for more than one calendar year prior to the diagnosis year. For instance, a subject diagnosed in 2005 who quit smoking in 2004, would be classified as a current smoker; however, the same individual would be classified as an ex-smoker if s/he quit smoking in 2003. Cigarette equivalents were calculated based on the conversion factor of 1 cigarette = 1/2 pipe = 1/4 cigar and reported in terms of average cigarette equivalents per day [15]. Pack-year equivalents of smoking was calculated based upon the average number of pack-equivalents smoked per day times the number of smoking years.
Alcoholic beverage consumption was obtained in terms of beer, wine, and hard liquor. An "ever drinker" was defined as a person who self-reported consuming at least 12 drinks of any alcoholic beverage type over his/her lifetime. A "current drinker" was defined as a person who reported drinking any type of alcoholic beverage within the calendar year prior to the diagnosis year while an "ex-drinker" was defined as an ever drinker who had discontinued all drinking for more than one calendar year prior to the diagnosis year. The average number of drinks consumed per week was calculated based upon the reported number of 12-ounce beers, 4-ounce glasses of wine, and 1.5-ounce shots of hard liquor consumed per week [1517].
We employed standard statistical methods to evaluate differences in means and proportions. Odds ratios (ORs) and their 95% confidence intervals (95% CIs) were obtained using unconditional logistic regression [18]. Where indicated, ORs were adjusted for age (4 levels), gender, education (3 levels), daily fruit & vegetable intake (4 levels), and smoking (current vs. non-current) or drinking (4 levels). Levels of tobacco smoking (average cigarette equivalents/day, pack-year equivalents) were stratified into tertiles based upon consumption levels in the benign conditions group while the frequency of alcohol consumption was categorically defined as 0, > 0-< 7, 7-20, and > 20 drinks/wk. Crude and adjusted ORs were estimated by entering the applicable smoking and drinking terms, as factored variables, into the statistical models.
Tests of linear trend were conducted by adding the relevant ordinally-defined variable as a variate into the next lower order model and evaluating the statistical significance of that addition using the Wald statistic. An exploratory evaluation of the interaction between smoking and drinking was performed.
The study protocol was reviewed and approved by the Institutional Review Boards of the University of Puerto Rico Medical Sciences Campus and New York University.

Results

A total of 241 subjects meeting the study eligibility criteria were included in the analysis. Table 1 presents the distribution of study participants by key variables of interest. The OPMD group (n = 86) was older than the benign group (n = 155) while the two groups were not significantly different in terms of gender, education, or fruit and vegetable intake.
Table 1
Distribution of demographic variables by diagnostic group
Variable
OPMDsa
n (%)
 
Benignb
n (%)
Age
   
   30-49
18 (20.9)
 
52 (33.5)
   50-59
20 (23.3))
 
37 (23.9)
   60-69
26 (30.2)
 
43 (27.7)
   70+
22 (25.6)
 
23 (14.8)
  
P = 0.09 c
 
   Mean (SD)
60.0 (12.5)
 
55.6 (12.3)
  
P = 0.009 d
 
Gender
   
   Males
40 (46.5)
 
58 (37.4)
   Females
46 (53.5)
 
97 (62.6)
  
P = 0.17 c
 
Education
   
   < 12 yrs
28 (32.6)
 
37 (23.9)
   12 yrs/High School
15 (17.4)
 
29 (18.7)
   > 12 yrs
43 (50.0)
 
89 (57.4)
  
P = 0.34 c
 
Fruit & vegetable servings/day
   
   Mean (SD)
1.14 (0.9)
 
1.23 (0.9)
  
P = 0.51 d
 
   Total
86
 
155
a Oral Potentially Malignant Disorders: oral hyperkeratosis, epithelial hyperplasia, and oral epithelial dysplasia
b Oral Benign Tissue Conditions
c Based on χ2 test
d Based on t-test

Smoking

Among the 86 subjects diagnosed with an OPMD, 52.3% reported ever smoking cigarettes while 4.7% and 2.3% had smoked cigars or pipes, respectively. Of the 155 subjects diagnosed with a benign oral tissue condition, the corresponding percentages were 36.1%, 2.6%, and 1.9%. None of the study subjects reported using smokeless tobacco.
Table 2 presents ORs for smoking associated with having an OPMD relative to having a benign oral tissue condition. Ever versus never smoking was associated with a more than two-fold increase in the odds of having an OPMD (ORadj = 2.53, 95% CI: 1.33-4.80). When we stratified ever smokers in terms of ex- and current smoking, the adjusted OR was strongest for current smokers (ORadj = 4.32, 95% CI: 1.99-9.38) and only modestly elevated for ex-smokers (ORadj = 1.47, 95% CI: 0.67-3.21), linear test of trend, P trend < 0.001. When current and noncurrent (i.e., never & ex-) smokers were compared, the adjusted OR for having an OPMD relative to a benign oral condition, was 3.72 (95% CI: 1.83-7.56).
Table 2
Odds ratios for smoking associated with OPMDs relative to oral benign tissue conditions
Exposure
OPMDs (n)
Benign (n)
ORa
95% CI
ORadj b
95% CI
Never smokers
38
99
1.0
---
1.0
---
Ever smokers
48
56
2.23
1.31-3.82
2.53
1.33-4.80
Never smokers
38
99
1.0
---
1.0
---
   Ex-smokers
17
30
1.48
0.73-2.98
1.47
0.67-3.21
   Current smokers
31
26
3.11
1.64-5.90
4.32
1.99-9.38
   P trend
   
0.001
 
< 0.001
Noncurrent smokers
55
129
1.0
---
1.0
---
Current smokers
31
26
2.8
1.52-5.14
3.72
1.83-7.56
Average cigarette equivalents/day
   0
38
99
1.0
---
1.0
---
   > 0-< 20
26
27
2.51
1.30-4.83
2.83
1.35-5.93
   20+
22
29
1.98
1.01-3.86
2.21
1.02-4.80
   P trend
  
0.02
  
0.03
Pack-year equivalents of smoking
   0
38
99
1.0
---
1.0
---
   > 0-< 15.5
21
29
1.89
0.96-3.70
2.26
1.06-4.83
   15.5+
27
27
2.61
1.36-5.00
2.83
1.32-6.06
   P trend
   
0.003
 
0.006
Age started smoking (Ever smokers only)
   18+
27
30
1.0
---
1.0
---
   < 18
21
26
0.9
0.41-1.95
0.81
0.35-1.91
a Crude OR
b OR adjusted for age (four levels), gender, education (three levels), fruit & vegetable intake (four levels), and drinking (four levels)
Smoking level was defined in terms of average cigarette equivalents per day and pack-year equivalents. At each level of smoking, adjusted ORs were over twice as high for smokers relative to never smokers, and the tests of linear trend were statistically significant.
When we simultaneously included terms for both current smoking (current vs. noncurrent) and average cigarette-equivalents/day in the adjusted model, the OR for current smoking remained high (OR = 3.0, 95% CI: 1.28-7.03) while ORs for each smoking level were attenuated (i.e., adjusted ORs for average cigarette-equivalents/day declined from 1.0, 2.83, 2.21 (Table 2) to 1.0, 1.68, 1.23, P trend = 0.70). When we conducted an analogous analysis that added current smoking and pack-year equivalents of smoking to the adjusted model, the OR for current smoking was 2.95 (95% CI: 1.24-7.03), and the ORs for pack-year equivalents of smoking declined from 1.0, 2.26, 2.83 (Table 2) to 1.0, 1.48, 1.45 (P trend = 0.44).
Among ever smokers, the age at which smoking began did not differ significantly between the OPMD and benign conditions groups (OR = 0.81, 95% CI: 0.35-1.91).

Drinking

Table 3 presents ORs for drinking in relation to having an OPMD relative to having a benign oral tissue condition. No adjusted ORs approached statistical significance, and few point estimates exceeded 1.0, whether consumption was defined in terms of ever, current, level (drinks/week), or beverage type.
Table 3
Odds ratios for drinking associated with OPMDs relative to oral benign tissue conditions
Exposure
OPMDs (n)
Benign (n)
ORa
95% CI
ORadj b
95% CI
Never drinkers
41
73
1.0
-
1.0
---
Ever drinkers
45
82
0.98
0.58-1.66
0.63
0.33-1.21
Never drinkers
41
73
1.0
-
1.0
---
   Ex-drinkers
14
22
1.13
0.52-2.45
0.63
0.25-1.57
   Current drinkers
31
60
0.92
0.52-1.64
0.63
0.32-1.26
P trend
  
0.79
0.20
  
Drinks/week, all alcohol combined c
   0
41
73
1.0
-
1.0
---
   > 0-< 7
22
44
0.89
0.47-1.69
0.66
0.32-1.37
   7-20
10
22
0.81
0.35-1.87
0.39
0.14-1.13
   > 20
12
13
1.64
0.69-3.93
0.78
0.27-2.26
P trend
  
0.55
0.32
  
Mean drinks/wk (all types combined)
   > 0
18.8 (29.9d)
16.2 (33.8)
P = 0.68 e
   
   > 20
55.1 (38.0)
70.3 (58.9)
P = 0.46 e
   
Type of alcoholic beverages c
   Beer, drinks/wk
< 7
72
133
1.0
-
1.0
---
7+
14
22
1.18
0.57-2.44
0.66
0.27-1.61
Mean 12 oz beers/wk
 
9.4 (16.8)
8.1 (17.0)
P = 0.66 e
   
Wine, drinks/wk
< 7
83
152
1.0
-
1.0
---
7+
3
3
1.83
0.36-9.28
1.74
0.30-10.11
Mean drinks of wine/wk
 
1.1 (2.6)
0.8(1.7)
P = 0.44 e
   
   Hard Liquor, drinks/wk
< 7
76
140
1.0
-
1.0
---
7+
10
15
1.23
0.53-2.87
0.62
0.23-1.65
Mean drinks of hard liquor/wk
 
8.3(22.4)
7.4(23.3)
P = 0.84 e
   
a Crude OR
b OR adjusted for age (four levels), gender, education (three levels), fruit & vegetable intake (four levels), and current smoking
c One OPMD and three benign condition subjects did not report level of drinking
d Standard deviation
e Based on t-test
When we compared the mean number of alcoholic drinks consumed per week for ever drinkers, persons in the OPMD group had a higher mean total consumption compared to the benign conditions group but the difference did not approach statistical significance (18.8 vs. 16.2 drinks/wk, P = 0.68). On the other hand, among heavy drinkers (> 20 drinks/wk), the OPMD group consumed, on average, fewer drinks/wk than the benign conditions group (55.1 vs. 70.3 drinks/wk), but the difference was not statistically significant (P = 0.46). After stratifying on type of alcoholic beverage, consumption was marginally higher in the OPMD group (beer: 9.4 vs. 8.1; wine: 1.1 vs. 0.8; hard liquor: 8.3 vs. 7.4); but again, not statistically significant.

Smoking & Drinking Interaction

When we fitted an interaction term for current smoking (yes/no) and alcohol consumption (< 7, 7+drinks/week) to the adjusted model (referent category: never/ex-smokers and < 7 drinks/week), adjusted OR point estimates were 2.5 or higher for current smokers who drank either < 7 or 7+ drinks/week. For noncurrent smokers who drank 7+ drinks/week, the ORadj was 0.7 (Table 4).
Table 4
Odds ratios for smoking and drinking associated with OPMDs relative to oral benign tissue conditions
Exposure
OPMDs (n)
Benign (n)
ORa
95% CI
ORadj b
95% CI
   Non-current smokers & < 7 drinks/wk (referent category)
 
47
107
1.0
---
1.0
---
   Non-current smokers & 7+ drinks/wk
 
8
22
0.83
0.34-1.99
0.66
0.25-1.79
   Current smokers & < 7 drinks/wk
 
17
13
2.98
1.34-6.62
3.58
1.53-8.37
   Current smokers & 7+ drinks/wk
 
14
13
2.45
1.07-5.62
2.53
0.96-6.68
a Crude OR
b OR adjusted for age (four levels), gender, education (three levels), and fruit & vegetable intake (four levels)

Additional Analyses

Point estimates for smoking and drinking did not change notably when we added variables for denture use and body mass index (BMI) to the adjusted model. In addition, adding lichen planus cases to the OPMD group had little impact on the adjusted ORs reported in Tables 2, 3 and 4. The adjusted ORs were also similar when age was entered into the model as a continuous, rather than categorical, variable.

Discussion

Tobacco and alcohol consumption are well-recognized risk factors for cancers of the oral cavity and pharynx [12, 17, 19]. In Puerto Rico, it is estimated that 76% of oral and pharyngeal cancer cases among men and 52% among women are attributable to smoking and/or alcohol consumption [17]. Comparatively few epidemiologic studies, however, have investigated the role of tobacco and alcohol in relation to OPMD risk. In the current study, conducted in Puerto Rico, we evaluated smoking and drinking as risk factors for OPMDs.

Smoking

The favored form of tobacco use can vary across geographic areas and cultures around the world. In the United States, Europe, Australia, and Japan, cigarettes, cigars, and pipes are the major types of smoking tobacco, while chewing tobacco and snuff are the most common forms of smokeless tobacco [20]. Although the prevalence of tobacco smoking is high in India, Pakistan, China, and other areas of Asia, smokeless tobacco, used either alone or as part of a concoction and in forms including betel quid, bidis, paan, naswar, or nass, is also popular [2023].
In our study, conducted in Puerto Rico, persons smoked tobacco primarily in the form of cigarettes, with few subjects in either the OPMD or benign conditions group claiming to smoke cigars or pipes. Although smokeless tobacco use has been implicated as a risk factor for both oral leukoplakia and oral cancer on the United States mainland [2426], in our study, no subjects with an OPMD or a benign tissue condition reported using smokeless tobacco.
In the present study and after adjusting for drinking and other potentially confounding factors, current smoking was strongly associated with OPMD risk. There was a more than four-fold increased risk among current versus never smokers; however, the risk was notably attenuated among former smokers. These findings are consistent with numerous previous studies of oral leukoplakia [21, 2732], OED [15, 33], erythroplakia [34], and oral cancer [16, 17, 35]. Our finding of a substantially decreased OPMD risk for former smokers relative to current smokers underscores the public health benefit associated with smoking cessation.
Previous studies have reported dose- and/or duration- response relationships between smoking and the risk of oral leukoplakia, erythroplakia, and OED [15, 21, 34, 36, 37]. In the current investigation, the risk of having an OPMD increased in a monotonic fashion with increasing pack-year equivalents of smoking. The linear trend for OPMD risk in relation to average cigarette equivalents smoked per day was also statistically significant, but did not increase in a stepwise fashion, perhaps due to the relatively small OPMD sample size. Of note, our findings suggest that current smoking status is a stronger risk factor for OPMDs than reported level of smoking.

Drinking

Alcohol consumption is an established risk factor for oral cancer [12, 16, 17, 35]. Nevertheless, findings from investigations into the association between alcohol consumption and either oral leukoplakia or other potentially premalignant oral diagnoses have not been consistent across studies. In the current investigation, we found little evidence that overall alcohol consumption is associated with increased OPMD risk. Our results are in keeping with several earlier studies reporting inverse or null findings for total alcohol consumption [21, 28, 29, 38, 39]; but not with others that reported a positive association for either leukoplakia in general, erythroplakia, or OED [15, 34, 40, 41].
Some studies of premalignant lesions and OED have found that risks associated with drinking are dependent upon the level of alcohol intake, with the highest risks observed for the highest level of alcohol intake [15, 34, 41]. After adjusting for various potential confounders; however, we found no evidence of an increased OMPD risk even among those persons who consumed > 20 drinks/wk.
Previous studies have reported that the risk of oral cancer and OPMDs can vary by beverage type, i.e., beer, wine, and hard liquor [15, 16, 39, 4244]. In Puerto Rico, the consumption of hard liquor, particularly when used without a mixer, has been associated with a much stronger risk of oral cancer than beer or wine [44]. In our analysis of OPMD risk, however, we found little evidence that any type of alcoholic beverage consumption was associated with an increased OPMD risk in Puerto Rico.

Smoking and Drinking Interaction

Previous studies have reported evidence of a more than additive effect of both smoking and drinking on the risk of oral cancer and OED [12, 1517]. Our exploratory analyses revealed no evidence that alcohol consumption modified the effect of smoking in terms of OPMD risk, although this finding is based on a relatively small sample that hindered an in-depth examination of the potential interaction.

Limitations

When interpreting our findings, it is important to consider study limitations. The relatively small sample size reflects a comparatively low rate of OPMD diagnosis in Puerto Rico [45] and limited our ability to conduct subgroup analyses related to smoking, drinking, and their interaction.
We utilized a comparison group comprised of persons diagnosed with a benign oral soft tissue condition rather than a traditional "disease-free" group. The strategy used provides an estimate of exposure patterns among persons diagnosed with asymptomatic oral lesions in Puerto Rico. It is possible, however, that one or another oral condition included in our benign conditions group is positively associated with either smoking or alcohol consumption; in that instance, the prevalence of smoking and drinking in our comparison group may exceed that of the background PR source population. Had we used a "disease-free" comparison group, ORs for smoking may have been higher than our current estimates, and ORs for drinking may have been closer to or exceeded the null value, 1.0.
Adjustment was made for a number of potential confounders, and further adjustment for denture use and BMI had little impact on the reported ORs; however, our results may reflect some uncontrolled confounding.
All exposures were measured based upon subject self-reports, and some degree of exposure misclassification may have occurred. In addition, since many OPMDs and benign oral tissue conditions are asymptomatic and may not be biopsied, we cannot rule out the possibility that undiagnosed cases are different from subjects included in the study in terms of the risk factors of interest.

Conclusion

We compared smoking and drinking patterns between individuals diagnosed with an oral potentially malignant disorder relative to persons diagnosed with a benign oral tissue condition. Our findings suggest that current smoking is a substantial risk factor for OPMDs while former smokers have a considerably reduced risk compared to current smokers. There was little evidence suggesting that alcohol consumption was positively associated with OPMD risk in Puerto Rico.

Acknowledgements

We appreciate the assistance of Drs. Eleuterio Bravo and Jose Wiscovitch, who served as study consultants, Dr. Ralph Katz, the overall PI of the UPR-NYU Oral Cancer RAAHP Center Grant, and Ms. Jennifer Guadalupe, who served as a study interviewer. We also thank the surgeons, pathology laboratories, and study participants who made the investigation possible. The project was supported by NIDCR/NIH grants U54 DE 14257 and T32 DE 07255.
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://​creativecommons.​org/​licenses/​by/​2.​0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

LL: conducted the statistical analysis, contributed to the interpretation of study results, and was the lead author of the manuscript. WJP: assisted in designing the study, contributed to the writing of the grant proposal that supported the research, assisted in the interpretation of study results, and contributed to the preparation of the final manuscript. CJB: served as the primary study interviewer, constructed and maintained the database, assisted in the interpretation of study results, and contributed to the writing of the final manuscript. AE: assisted in designing the study, in overseeing study activities in Puerto Rico, and contributed to writing of the final manuscript. LC: generated all study documents, coordinated day-to-day study activities in Puerto Rico, and maintained the overall study database. DEM: as Principal Investigator, designed the study, wrote the grant proposal that supported the research, assisted with the statistical analysis, and contributed to interpretation of study results and preparation of the final manuscript.
All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Warnakulasuriya S, Reibel J, Bouquot J, Dabelsteen E: Oral epithelial dysplasia classification systems: predictive value, utility, weaknesses and scope for improvement. Journal of Oral Pathology & Medicine. 2008, 37 (3): 127-133. 10.1111/j.1600-0714.2007.00584.x.CrossRef Warnakulasuriya S, Reibel J, Bouquot J, Dabelsteen E: Oral epithelial dysplasia classification systems: predictive value, utility, weaknesses and scope for improvement. Journal of Oral Pathology & Medicine. 2008, 37 (3): 127-133. 10.1111/j.1600-0714.2007.00584.x.CrossRef
2.
Zurück zum Zitat Neville D, Allen Bouquet: Epithelial Pathology. Oral and Maxillofacial Pathology. Edited by: Chi CA. 2009, St Louis: Mosby, 362-452. 3 Neville D, Allen Bouquet: Epithelial Pathology. Oral and Maxillofacial Pathology. Edited by: Chi CA. 2009, St Louis: Mosby, 362-452. 3
3.
Zurück zum Zitat Pindborg JJ, Smith CJ: Histological Typing Of Cancer and Precancer Of the Oral Mucosa. 1997, SpringerCrossRef Pindborg JJ, Smith CJ: Histological Typing Of Cancer and Precancer Of the Oral Mucosa. 1997, SpringerCrossRef
4.
Zurück zum Zitat Hsue SS, Wang WC, Chen CH, Lin CC, Chen YK, Lin LM: Malignant transformation in 1458 patients with potentially malignant oral mucosal disorders: a follow-up study based in a Taiwanese hospital. J Oral Pathol Med. 2007, 36 (1): 25-29.CrossRefPubMed Hsue SS, Wang WC, Chen CH, Lin CC, Chen YK, Lin LM: Malignant transformation in 1458 patients with potentially malignant oral mucosal disorders: a follow-up study based in a Taiwanese hospital. J Oral Pathol Med. 2007, 36 (1): 25-29.CrossRefPubMed
5.
Zurück zum Zitat Silverman S, Gorsky M, Lozada F: Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer. 1984, 53 (3): 563-568. 10.1002/1097-0142(19840201)53:3<563::AID-CNCR2820530332>3.0.CO;2-F.CrossRefPubMed Silverman S, Gorsky M, Lozada F: Oral leukoplakia and malignant transformation. A follow-up study of 257 patients. Cancer. 1984, 53 (3): 563-568. 10.1002/1097-0142(19840201)53:3<563::AID-CNCR2820530332>3.0.CO;2-F.CrossRefPubMed
6.
Zurück zum Zitat Napier SS, Speight PM: Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med. 2008, 37 (1): 1-10.CrossRefPubMed Napier SS, Speight PM: Natural history of potentially malignant oral lesions and conditions: an overview of the literature. J Oral Pathol Med. 2008, 37 (1): 1-10.CrossRefPubMed
7.
Zurück zum Zitat Lumerman H, Freedman P, Kerpel S: Oral epithelial dysplasia and the development of invasive squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995, 79 (3): 321-329. 10.1016/S1079-2104(05)80226-4.CrossRefPubMed Lumerman H, Freedman P, Kerpel S: Oral epithelial dysplasia and the development of invasive squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1995, 79 (3): 321-329. 10.1016/S1079-2104(05)80226-4.CrossRefPubMed
8.
Zurück zum Zitat Schepman KP, van der Meij EH, Smeele LE, van der Waal I: Malignant transformation of oral leukoplakia: a follow-up study of a hospital-based population of 166 patients with oral leukoplakia from The Netherlands. Oral Oncol. 1998, 34 (4): 270-275.CrossRefPubMed Schepman KP, van der Meij EH, Smeele LE, van der Waal I: Malignant transformation of oral leukoplakia: a follow-up study of a hospital-based population of 166 patients with oral leukoplakia from The Netherlands. Oral Oncol. 1998, 34 (4): 270-275.CrossRefPubMed
9.
Zurück zum Zitat Ho P-S, Chen P-L, Warnakulasuriya S, Shieh T-Y, Chen Y-K, Huang I-Y: Malignant transformation of oral potentially malignant disorders in males: a retrospective cohort study. BMC Cancer. 2009, 9 (1): 260-10.1186/1471-2407-9-260.CrossRefPubMedPubMedCentral Ho P-S, Chen P-L, Warnakulasuriya S, Shieh T-Y, Chen Y-K, Huang I-Y: Malignant transformation of oral potentially malignant disorders in males: a retrospective cohort study. BMC Cancer. 2009, 9 (1): 260-10.1186/1471-2407-9-260.CrossRefPubMedPubMedCentral
10.
Zurück zum Zitat IARC: IARC Monograph on the Evaluation of Carcinogenic Risks to Humans: Alcohol Drinking. 1988, Lyon, France: World Health Organization, 44: 35- IARC: IARC Monograph on the Evaluation of Carcinogenic Risks to Humans: Alcohol Drinking. 1988, Lyon, France: World Health Organization, 44: 35-
11.
Zurück zum Zitat IARC: IARC Monograph on the Evaluation of Carcinogenic Risks to Humans: Tabacco Smoking and Involuntary Smoking. 2004, Lyon, France: World Health Organization, 83: IARC: IARC Monograph on the Evaluation of Carcinogenic Risks to Humans: Tabacco Smoking and Involuntary Smoking. 2004, Lyon, France: World Health Organization, 83:
12.
Zurück zum Zitat Mayne ST, Morse DE, Winn DM: Cancer of the oral cavity and pharynx. Cancer Epidemiology & Prevention. Edited by: Schottenfeld D, Fraumeni JF, Jr. 2006, New York: Oxford University Press, 674-696. 3CrossRef Mayne ST, Morse DE, Winn DM: Cancer of the oral cavity and pharynx. Cancer Epidemiology & Prevention. Edited by: Schottenfeld D, Fraumeni JF, Jr. 2006, New York: Oxford University Press, 674-696. 3CrossRef
13.
Zurück zum Zitat GLOBOCAN, Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DMG: Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. 2010, Lyon, France: International Agency for Research on Cancer, [updated 2010; cited], [http://globocan.iarc.fr] GLOBOCAN, Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DMG: Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 10 [Internet]. 2010, Lyon, France: International Agency for Research on Cancer, [updated 2010; cited], [http://​globocan.​iarc.​fr]
14.
Zurück zum Zitat Al-Hashimi I, Mark S, Peter BL, David W, Michael B, Cesar AM, Tony A, Alison JB, William C, Ellen E, et al: Oral lichen planus and oral lichenoid lesions: diagnostic and therapeutic considerations. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2007, 103: S25.e21-S25.e12.CrossRef Al-Hashimi I, Mark S, Peter BL, David W, Michael B, Cesar AM, Tony A, Alison JB, William C, Ellen E, et al: Oral lichen planus and oral lichenoid lesions: diagnostic and therapeutic considerations. Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics. 2007, 103: S25.e21-S25.e12.CrossRef
15.
Zurück zum Zitat Morse DE, Katz RV, Pendrys DG, Holford TR, Krutchkoff DJ, Eisenberg E, Kosis D, Mayne ST: Smoking and drinking in relation to oral epithelial dysplasia. Cancer Epidemiology Biomarkers & Prevention. 1996, 5 (10): 769-777. Morse DE, Katz RV, Pendrys DG, Holford TR, Krutchkoff DJ, Eisenberg E, Kosis D, Mayne ST: Smoking and drinking in relation to oral epithelial dysplasia. Cancer Epidemiology Biomarkers & Prevention. 1996, 5 (10): 769-777.
16.
Zurück zum Zitat Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, Bernstein L, Schoenberg JB, Stemhagen A, Fraumeni JF: Smoking and Drinking in Relation to Oral and Pharyngeal Cancer. Cancer Research. 1988, 48 (11): 3282-3287.PubMed Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, Bernstein L, Schoenberg JB, Stemhagen A, Fraumeni JF: Smoking and Drinking in Relation to Oral and Pharyngeal Cancer. Cancer Research. 1988, 48 (11): 3282-3287.PubMed
17.
Zurück zum Zitat Hayes RB, Bravo-Otero E, Kleinman DV, Brown LM, J FF, Harty LC, Winn DM: Tobacco and Alcohol Use and Oral Cancer in Puerto Rico. Cancer Causes & Control. 1999, 10 (1): 27-33. 10.1023/A:1008876115797.CrossRef Hayes RB, Bravo-Otero E, Kleinman DV, Brown LM, J FF, Harty LC, Winn DM: Tobacco and Alcohol Use and Oral Cancer in Puerto Rico. Cancer Causes & Control. 1999, 10 (1): 27-33. 10.1023/A:1008876115797.CrossRef
18.
Zurück zum Zitat Hosmer DW, Lemeshow S: Applied Logistic Regression. 2000, New York: John Wiley & Sons, Inc, 2CrossRef Hosmer DW, Lemeshow S: Applied Logistic Regression. 2000, New York: John Wiley & Sons, Inc, 2CrossRef
19.
Zurück zum Zitat Hashibe M, Brennan P, Chuang S-c, Boccia S, Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova E, et al: Interaction between Tobacco and Alcohol Use and the Risk of Head and Neck Cancer: Pooled Analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiology Biomarkers & Prevention. 2009, 18 (2): 541-550. 10.1158/1055-9965.EPI-08-0347.CrossRef Hashibe M, Brennan P, Chuang S-c, Boccia S, Castellsague X, Chen C, Curado MP, Dal Maso L, Daudt AW, Fabianova E, et al: Interaction between Tobacco and Alcohol Use and the Risk of Head and Neck Cancer: Pooled Analysis in the International Head and Neck Cancer Epidemiology Consortium. Cancer Epidemiology Biomarkers & Prevention. 2009, 18 (2): 541-550. 10.1158/1055-9965.EPI-08-0347.CrossRef
20.
Zurück zum Zitat Adami H-OH, John David, Trichopoulos , Dimitrios : Textbook of cancer epidemiology. 2008, Oxford University Press, 2CrossRef Adami H-OH, John David, Trichopoulos , Dimitrios : Textbook of cancer epidemiology. 2008, Oxford University Press, 2CrossRef
21.
Zurück zum Zitat Evstifeeva TV, Zaridze DG: Nass use, cigarette smoking, alcohol consumption and risk of oral and oesophageal precancer. European Journal of Cancer Part B: Oral Oncology. 1992, 28 (1): 29-35. 10.1016/0964-1955(92)90008-O.CrossRef Evstifeeva TV, Zaridze DG: Nass use, cigarette smoking, alcohol consumption and risk of oral and oesophageal precancer. European Journal of Cancer Part B: Oral Oncology. 1992, 28 (1): 29-35. 10.1016/0964-1955(92)90008-O.CrossRef
22.
Zurück zum Zitat Gupta P: Survey of sociodemographic characteristics of tobacco use among 99,598 individuals in Bombay, India using handheld computers. Tob Control. 1996, 5 (2): 114-120. 10.1136/tc.5.2.114.CrossRefPubMedPubMedCentral Gupta P: Survey of sociodemographic characteristics of tobacco use among 99,598 individuals in Bombay, India using handheld computers. Tob Control. 1996, 5 (2): 114-120. 10.1136/tc.5.2.114.CrossRefPubMedPubMedCentral
23.
Zurück zum Zitat Bhonsle RB, Murti PR, PC G: Tobacco habits in India. 1992, Bombay: Oxford University Press Bhonsle RB, Murti PR, PC G: Tobacco habits in India. 1992, Bombay: Oxford University Press
24.
Zurück zum Zitat Winn D: Snuff dipping and oral cancer among women in the southern United States. New England Journal of Medicine. 1981, 304 (13): 745-749. 10.1056/NEJM198103263041301.CrossRefPubMed Winn D: Snuff dipping and oral cancer among women in the southern United States. New England Journal of Medicine. 1981, 304 (13): 745-749. 10.1056/NEJM198103263041301.CrossRefPubMed
25.
Zurück zum Zitat Grady D, Greene J, Daniels TE, Ernster VL, Robertson PB, Hauck W, Greenspan D, Greenspan J, Silverman S: Oral mucosal lesions found in smokeless tobacco users. The Journal of the American Dental Association. 1990, 121 (1): 117-123.CrossRefPubMed Grady D, Greene J, Daniels TE, Ernster VL, Robertson PB, Hauck W, Greenspan D, Greenspan J, Silverman S: Oral mucosal lesions found in smokeless tobacco users. The Journal of the American Dental Association. 1990, 121 (1): 117-123.CrossRefPubMed
26.
Zurück zum Zitat Martin GC, Brown JP, Eifler CW, Houston GD: Oral Leukoplakia Status Six Weeks After Cessation of Smokeless Tobacco Use. J Am Dent Assoc. 1999, 130 (7): 945-954.CrossRefPubMed Martin GC, Brown JP, Eifler CW, Houston GD: Oral Leukoplakia Status Six Weeks After Cessation of Smokeless Tobacco Use. J Am Dent Assoc. 1999, 130 (7): 945-954.CrossRefPubMed
27.
Zurück zum Zitat Macigo FGMD, Guthua SW: The association between oral leukoplakia and use of tobacco, alcohol and khat based on relative risks assessment in Kenya. Eur J Oral Sci. 1995, 103 (5): 268-273. 10.1111/j.1600-0722.1995.tb00025.x.CrossRefPubMed Macigo FGMD, Guthua SW: The association between oral leukoplakia and use of tobacco, alcohol and khat based on relative risks assessment in Kenya. Eur J Oral Sci. 1995, 103 (5): 268-273. 10.1111/j.1600-0722.1995.tb00025.x.CrossRefPubMed
28.
Zurück zum Zitat Lee CH, Ko YC, Huang HL, Chao YY, Tsai CC, Shieh TY, Lin LM: The precancer risk of betel quid chewing, tobacco use and alcohol consumption in oral leukoplakia and oral submucous fibrosis in southern Taiwan. Br J Cancer. 2003, 88 (3): 366-372. 10.1038/sj.bjc.6600727.CrossRefPubMedPubMedCentral Lee CH, Ko YC, Huang HL, Chao YY, Tsai CC, Shieh TY, Lin LM: The precancer risk of betel quid chewing, tobacco use and alcohol consumption in oral leukoplakia and oral submucous fibrosis in southern Taiwan. Br J Cancer. 2003, 88 (3): 366-372. 10.1038/sj.bjc.6600727.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Dietrich T, Peter AR, Christian S: Clinical risk factors of oral leukoplakia in a representative sample of the US population. Oral oncology. 2004, 40 (2): 158-163. 10.1016/S1368-8375(03)00145-3.CrossRefPubMed Dietrich T, Peter AR, Christian S: Clinical risk factors of oral leukoplakia in a representative sample of the US population. Oral oncology. 2004, 40 (2): 158-163. 10.1016/S1368-8375(03)00145-3.CrossRefPubMed
30.
Zurück zum Zitat Roed-Petersen B: Effect on oral leukoplakia of reducing or ceasing tobacco smoking. Acta Derm Venereol. 1982, 62 (2): 164-167.PubMed Roed-Petersen B: Effect on oral leukoplakia of reducing or ceasing tobacco smoking. Acta Derm Venereol. 1982, 62 (2): 164-167.PubMed
31.
Zurück zum Zitat Gupta P, Pindborg J, Bhonsle RB, Murti PR, Mehta F, Aghi MB, Daftary DK, Shah HT, Sinor PN: Intervention study for primary prevention of oral cancer among 36000 Indian tobacco users. The Lancet. 1986, 327 (8492): 1235-1239. 10.1016/S0140-6736(86)91386-3.CrossRef Gupta P, Pindborg J, Bhonsle RB, Murti PR, Mehta F, Aghi MB, Daftary DK, Shah HT, Sinor PN: Intervention study for primary prevention of oral cancer among 36000 Indian tobacco users. The Lancet. 1986, 327 (8492): 1235-1239. 10.1016/S0140-6736(86)91386-3.CrossRef
32.
Zurück zum Zitat Gupta P, Murti PR, Bhonsle RB, Mehta F, Pindborg J: Effect of cessation of tobacco use on the incidence of oral mucosal lesions in a 10-yr follow-up study of 12,212 users. Oral diseases. 1995, 1 (1): 54-58.CrossRefPubMed Gupta P, Murti PR, Bhonsle RB, Mehta F, Pindborg J: Effect of cessation of tobacco use on the incidence of oral mucosal lesions in a 10-yr follow-up study of 12,212 users. Oral diseases. 1995, 1 (1): 54-58.CrossRefPubMed
33.
Zurück zum Zitat Kulasegaram R, Downer MC, Jullien JA, Zakrzewska JM, Speight PM: Case-control study of oral dysplasia and risk habits among patients of a dental hospital. European Journal of Cancer Part B: Oral Oncology. 1995, 31 (4): 227-231. 10.1016/0964-1955(95)00012-7.CrossRef Kulasegaram R, Downer MC, Jullien JA, Zakrzewska JM, Speight PM: Case-control study of oral dysplasia and risk habits among patients of a dental hospital. European Journal of Cancer Part B: Oral Oncology. 1995, 31 (4): 227-231. 10.1016/0964-1955(95)00012-7.CrossRef
34.
Zurück zum Zitat Hashibe M, Mathew B, Kuruvilla B, Thomas G, Sankaranarayanan R, Parkin DM, Zhang Z-F: Chewing Tobacco, Alcohol, and the Risk of Erythroplakia. Cancer Epidemiology Biomarkers & Prevention. 2000, 9 (7): 639-645. Hashibe M, Mathew B, Kuruvilla B, Thomas G, Sankaranarayanan R, Parkin DM, Zhang Z-F: Chewing Tobacco, Alcohol, and the Risk of Erythroplakia. Cancer Epidemiology Biomarkers & Prevention. 2000, 9 (7): 639-645.
35.
Zurück zum Zitat Martinez I: Factors associated with cancer of the esophagus, mouth, and pharynx in Puerto Rico. J Natl Cancer Inst. 1969, 42 (6): 1069-1094.PubMed Martinez I: Factors associated with cancer of the esophagus, mouth, and pharynx in Puerto Rico. J Natl Cancer Inst. 1969, 42 (6): 1069-1094.PubMed
36.
Zurück zum Zitat Gupta PC: A study of dose-response relationship between tobacco habits and oral leukoplakia. Br J Cancer. 1984, 50 (4): 527-531. 10.1038/bjc.1984.210.CrossRefPubMedPubMedCentral Gupta PC: A study of dose-response relationship between tobacco habits and oral leukoplakia. Br J Cancer. 1984, 50 (4): 527-531. 10.1038/bjc.1984.210.CrossRefPubMedPubMedCentral
37.
Zurück zum Zitat Banoczy J, Gintner Z, Dombi C: Tobacco use and oral leukoplakia. J Dent Educ. 2001, 65 (4): 322-327.PubMed Banoczy J, Gintner Z, Dombi C: Tobacco use and oral leukoplakia. J Dent Educ. 2001, 65 (4): 322-327.PubMed
38.
Zurück zum Zitat Nagao T, Warnakulasuriya S, Gelbier S, Yuasa H, Tsuboi S, Nakagaki H: Oral pre-cancer and the associated risk factors among industrial workers in Japan's overseas enterprises in the UK. Journal of Oral Pathology & Medicine. 2003, 32 (5): 257-264. 10.1034/j.1600-0714.2003.00027.x.CrossRef Nagao T, Warnakulasuriya S, Gelbier S, Yuasa H, Tsuboi S, Nakagaki H: Oral pre-cancer and the associated risk factors among industrial workers in Japan's overseas enterprises in the UK. Journal of Oral Pathology & Medicine. 2003, 32 (5): 257-264. 10.1034/j.1600-0714.2003.00027.x.CrossRef
39.
Zurück zum Zitat Petti S, Scully C: Association between different alcoholic beverages and leukoplakia among non- to moderate-drinking adults: A matched case-control study. European journal of cancer (Oxford, England: 1990). 2006, 42 (4): 521-527.CrossRef Petti S, Scully C: Association between different alcoholic beverages and leukoplakia among non- to moderate-drinking adults: A matched case-control study. European journal of cancer (Oxford, England: 1990). 2006, 42 (4): 521-527.CrossRef
40.
Zurück zum Zitat Hashibe M, Sankaranarayanan R, Thomas G, Kuruvilla B, Mathew B, Somanathan T, Parkin DM, Zhang Z-F: Alcohol drinking, body mass index and the risk of oral leukoplakia in an Indian population. International Journal of Cancer. 2000, 88 (1): 129-134. 10.1002/1097-0215(20001001)88:1<129::AID-IJC20>3.0.CO;2-U.CrossRefPubMed Hashibe M, Sankaranarayanan R, Thomas G, Kuruvilla B, Mathew B, Somanathan T, Parkin DM, Zhang Z-F: Alcohol drinking, body mass index and the risk of oral leukoplakia in an Indian population. International Journal of Cancer. 2000, 88 (1): 129-134. 10.1002/1097-0215(20001001)88:1<129::AID-IJC20>3.0.CO;2-U.CrossRefPubMed
41.
Zurück zum Zitat Macigo FGMD, Guthua SW: Influence of dose and cessation of kiraiku, cigarettes and alcohol use on the risk of developing oral leukoplakia. European journal of oral sciences. 1996, 104 (5-6): 498-502. 10.1111/j.1600-0722.1996.tb00132.x.CrossRefPubMed Macigo FGMD, Guthua SW: Influence of dose and cessation of kiraiku, cigarettes and alcohol use on the risk of developing oral leukoplakia. European journal of oral sciences. 1996, 104 (5-6): 498-502. 10.1111/j.1600-0722.1996.tb00132.x.CrossRefPubMed
42.
Zurück zum Zitat Kabat GC, Chang CJ, Wynder EL: The Role of Tobacco, Alcohol Use, and Body Mass Index in Oral and Pharyngeal Cancer. Int J Epidemiol. 1994, 23 (6): 1137-1144. 10.1093/ije/23.6.1137.CrossRefPubMed Kabat GC, Chang CJ, Wynder EL: The Role of Tobacco, Alcohol Use, and Body Mass Index in Oral and Pharyngeal Cancer. Int J Epidemiol. 1994, 23 (6): 1137-1144. 10.1093/ije/23.6.1137.CrossRefPubMed
43.
Zurück zum Zitat Castellsagué X, Quintana MJ, Martínez MC, Nieto A, Sánchez MJ, Juan A, Monner A, Carrera M, Agudo A, Quer M, et al: The role of type of tobacco and type of alcoholic beverage in oral carcinogenesis. International Journal of Cancer. 2004, 108 (5): 741-749. 10.1002/ijc.11627.CrossRefPubMed Castellsagué X, Quintana MJ, Martínez MC, Nieto A, Sánchez MJ, Juan A, Monner A, Carrera M, Agudo A, Quer M, et al: The role of type of tobacco and type of alcoholic beverage in oral carcinogenesis. International Journal of Cancer. 2004, 108 (5): 741-749. 10.1002/ijc.11627.CrossRefPubMed
44.
Zurück zum Zitat Huang W-Y, Winn DM, Brown LM, Gridley G, Bravo-Otero E, Diehl SR, Fraumeni JF, Hayes RB: Alcohol Concentration and Risk of Oral Cancer in Puerto Rico. Am J Epidemiol. 2003, 157 (10): 881-887. 10.1093/aje/kwg055.CrossRefPubMed Huang W-Y, Winn DM, Brown LM, Gridley G, Bravo-Otero E, Diehl SR, Fraumeni JF, Hayes RB: Alcohol Concentration and Risk of Oral Cancer in Puerto Rico. Am J Epidemiol. 2003, 157 (10): 881-887. 10.1093/aje/kwg055.CrossRefPubMed
45.
Zurück zum Zitat Morse DE, Psoter WJ, Cuadrado L, Jean YA, Phelan J, Mittal K, Buxó CJ, Cruz GD, Elias A: A deficit in biopsying potentially premalignant oral lesions in Puerto Rico. Cancer Detection and Prevention. 2009, 32 (5-6): 424-430. 10.1016/j.cdp.2009.01.004.CrossRefPubMedPubMedCentral Morse DE, Psoter WJ, Cuadrado L, Jean YA, Phelan J, Mittal K, Buxó CJ, Cruz GD, Elias A: A deficit in biopsying potentially premalignant oral lesions in Puerto Rico. Cancer Detection and Prevention. 2009, 32 (5-6): 424-430. 10.1016/j.cdp.2009.01.004.CrossRefPubMedPubMedCentral
Metadaten
Titel
Smoking and drinking in relation to oral potentially malignant disorders in Puerto Rico: a case-control study
verfasst von
Lin Li
Walter J Psoter
Carmen J Buxó
Augusto Elias
Lumarie Cuadrado
Douglas E Morse
Publikationsdatum
01.12.2011
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2011
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/1471-2407-11-324

Weitere Artikel der Ausgabe 1/2011

BMC Cancer 1/2011 Zur Ausgabe

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Adjuvante Immuntherapie verlängert Leben bei RCC

25.04.2024 Nierenkarzinom Nachrichten

Nun gibt es auch Resultate zum Gesamtüberleben: Eine adjuvante Pembrolizumab-Therapie konnte in einer Phase-3-Studie das Leben von Menschen mit Nierenzellkarzinom deutlich verlängern. Die Sterberate war im Vergleich zu Placebo um 38% geringer.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.