Skip to main content
Erschienen in: Journal of the Association for Research in Otolaryngology 4/2018

16.07.2018 | Research Article

Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms

verfasst von: Karolina K. Charaziak, Jonathan H. Siegel, Christopher A. Shera

Erschienen in: Journal of the Association for Research in Otolaryngology | Ausgabe 4/2018

Einloggen, um Zugang zu erhalten

Abstract

The cochlear microphonic (CM) results from the vector sum of outer hair cell transduction currents excited by a stimulus. The classical theory of CM generation—that the response measured at the round window is dominated by cellular sources located within the tail region of the basilar membrane (BM) excitation pattern—predicts that CM amplitude and phase vary little with stimulus frequency. Contrary to expectations, CM amplitude and phase-gradient delay measured in response to low-level tones in chinchillas demonstrate a striking, quasiperiodic pattern of spectral ripples, even at frequencies > 5 kHz, where interference with neurophonic potentials is unlikely. The spectral ripples were reduced in the presence of a moderate-level saturating tone at a nearby frequency. When converted to the time domain, only the delayed CM energy was diminished in the presence of the saturator. We hypothesize that the ripples represent an interference pattern produced by CM components with different phase gradients: an early-latency component originating within the tail region of the BM excitation and two delayed components that depend on active cochlear processing near the peak region of the traveling wave. Using time windowing, we show that the early, middle, and late components have delays corresponding to estimated middle-ear transmission, cochlear forward delays, and cochlear round-trip delays, respectively. By extending the classical model of CM generation to include mechanical and electrical irregularities, we propose that middle components are generated through a mechanism of “coherent summation” analogous to the production of reflection-source otoacoustic emissions (OAEs), while the late components arise through a process of internal cochlear reflection related to the generation of stimulus-frequency OAEs. Although early-latency components from the passive tail region typically dominate the round-window CM, at low stimulus levels, substantial contributions from components shaped by active cochlear processing provide a new avenue for improving CM measurements as assays of cochlear health.
Literatur
Zurück zum Zitat Ayat M, Teal PD, Searchfield GD, Razali N (2015) Cochlear microphonic broad tuning curves. AIP Conference Proceedings 1703:030010 Ayat M, Teal PD, Searchfield GD, Razali N (2015) Cochlear microphonic broad tuning curves. AIP Conference Proceedings 1703:030010
Zurück zum Zitat Charaziak KK, Siegel JH (2015) Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation. J Assoc Res Otolaryngol 16:317–329CrossRef Charaziak KK, Siegel JH (2015) Tuning of SFOAEs evoked by low-frequency tones is not compatible with localized emission generation. J Assoc Res Otolaryngol 16:317–329CrossRef
Zurück zum Zitat Charaziak KK, Shera CA, Siegel JH (2017) Using cochlear microphonic potentials to localize peripheral hearing loss. Front Neurosci 11:169CrossRef Charaziak KK, Shera CA, Siegel JH (2017) Using cochlear microphonic potentials to localize peripheral hearing loss. Front Neurosci 11:169CrossRef
Zurück zum Zitat Cheatham MA, Naik K, Dallos P (2011) Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing. J Assoc Res Otolaryngol 12:113–125CrossRef Cheatham MA, Naik K, Dallos P (2011) Using the cochlear microphonic as a tool to evaluate cochlear function in mouse models of hearing. J Assoc Res Otolaryngol 12:113–125CrossRef
Zurück zum Zitat Chertoff ME, Earl BR, Diaz FJ, Sorensen JL (2012) Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise. J Acoust Soc Am 132:3351–3362CrossRef Chertoff ME, Earl BR, Diaz FJ, Sorensen JL (2012) Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise. J Acoust Soc Am 132:3351–3362CrossRef
Zurück zum Zitat Chertoff ME, Earl BR, Diaz FJ, Sorensen JL, Thomas ML, Kamerer AM, Peppi M (2014) Predicting the location of missing outer hair cells using the electrical signal recorded at the round window. J Acoust Soc Am 136:1212–1224CrossRef Chertoff ME, Earl BR, Diaz FJ, Sorensen JL, Thomas ML, Kamerer AM, Peppi M (2014) Predicting the location of missing outer hair cells using the electrical signal recorded at the round window. J Acoust Soc Am 136:1212–1224CrossRef
Zurück zum Zitat Dallos P (1973) The auditory periphery: biophysics and physiology. Academic, New York Dallos P (1973) The auditory periphery: biophysics and physiology. Academic, New York
Zurück zum Zitat Dallos P (1984) Some electrical circuit properties of the organ of Corti. II. Analysis including reactive elements. Hear Res 14:281–291CrossRef Dallos P (1984) Some electrical circuit properties of the organ of Corti. II. Analysis including reactive elements. Hear Res 14:281–291CrossRef
Zurück zum Zitat Dallos P, Cheatham MA (1976) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512CrossRef Dallos P, Cheatham MA (1976) Production of cochlear potentials by inner and outer hair cells. J Acoust Soc Am 60:510–512CrossRef
Zurück zum Zitat Dallos P, Cheatham MA, Ferraro J (1974) Cochlear mechanics, nonlinearities, and cochlear potentials. J Acoust Soc Am 55:597–605CrossRef Dallos P, Cheatham MA, Ferraro J (1974) Cochlear mechanics, nonlinearities, and cochlear potentials. J Acoust Soc Am 55:597–605CrossRef
Zurück zum Zitat Dhar S, Talmadge CL, Long GR, Tubis A (2002) Multiple internal reflections in the cochlea and their effect on DPOAE fine structure. J Acoust Soc Am 112:2882–2897CrossRef Dhar S, Talmadge CL, Long GR, Tubis A (2002) Multiple internal reflections in the cochlea and their effect on DPOAE fine structure. J Acoust Soc Am 112:2882–2897CrossRef
Zurück zum Zitat Dong W, Olson ES (2013) Detection of cochlear amplification and its activation. Biophys J 105:1067–1078CrossRef Dong W, Olson ES (2013) Detection of cochlear amplification and its activation. Biophys J 105:1067–1078CrossRef
Zurück zum Zitat Elgueda D, Delano PH, Robles L (2011) Effects of electrical stimulation of olivocochlear fibers in cochlear potentials in the chinchilla. J Assoc Res Otolaryngol 12:317–327CrossRef Elgueda D, Delano PH, Robles L (2011) Effects of electrical stimulation of olivocochlear fibers in cochlear potentials in the chinchilla. J Assoc Res Otolaryngol 12:317–327CrossRef
Zurück zum Zitat Fitzgerald JJ, Robertson D, Johnstone BM (1993) Effects of intra-cochlear perfusion of salicylates on cochlear microphonic and other auditory responses in the guinea pig. Hear Res 67:147–156CrossRef Fitzgerald JJ, Robertson D, Johnstone BM (1993) Effects of intra-cochlear perfusion of salicylates on cochlear microphonic and other auditory responses in the guinea pig. Hear Res 67:147–156CrossRef
Zurück zum Zitat Fridberger A, Zheng J, Parthasarathi A, Ren T, Nuttall A (2002) Loud sound-induced changes in cochlear mechanics. J Neurophys 88:2341–2348CrossRef Fridberger A, Zheng J, Parthasarathi A, Ren T, Nuttall A (2002) Loud sound-induced changes in cochlear mechanics. J Neurophys 88:2341–2348CrossRef
Zurück zum Zitat Fridberger A, de Monvel JB, Zheng J, Hu N, Zou Y, Ren T, Nuttall A (2004) Organ of Corti potentials and the motion of the basilar membrane. J Neurosci 24:10057–10063CrossRef Fridberger A, de Monvel JB, Zheng J, Hu N, Zou Y, Ren T, Nuttall A (2004) Organ of Corti potentials and the motion of the basilar membrane. J Neurosci 24:10057–10063CrossRef
Zurück zum Zitat Geisler CD, Yates GK, Patuzzi RB, Johnstone BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–256CrossRef Geisler CD, Yates GK, Patuzzi RB, Johnstone BM (1990) Saturation of outer hair cell receptor currents causes two-tone suppression. Hear Res 44:241–256CrossRef
Zurück zum Zitat Gifford ML, Guinan JJ Jr (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res 29:179–194CrossRef Gifford ML, Guinan JJ Jr (1987) Effects of electrical stimulation of medial olivocochlear neurons on ipsilateral and contralateral cochlear responses. Hear Res 29:179–194CrossRef
Zurück zum Zitat He DZ, Jia S, Dallos P (2004) Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429:766–770CrossRef He DZ, Jia S, Dallos P (2004) Mechanoelectrical transduction of adult outer hair cells studied in a gerbil hemicochlea. Nature 429:766–770CrossRef
Zurück zum Zitat He W, Porsov E, Kemp D, Nuttall AL, Ren T (2012) The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window. PLoS One 7:e34356CrossRef He W, Porsov E, Kemp D, Nuttall AL, Ren T (2012) The group delay and suppression pattern of the cochlear microphonic potential recorded at the round window. PLoS One 7:e34356CrossRef
Zurück zum Zitat Henry KR (1995) Auditory nerve neurophonic recorded from the round window of the Mongolian gerbil. Hear Res 90:176–184CrossRef Henry KR (1995) Auditory nerve neurophonic recorded from the round window of the Mongolian gerbil. Hear Res 90:176–184CrossRef
Zurück zum Zitat Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122CrossRef Johnson DH (1980) The relationship between spike rate and synchrony in responses of auditory-nerve fibers to single tones. J Acoust Soc Am 68:1115–1122CrossRef
Zurück zum Zitat Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637CrossRef Kalluri R, Shera CA (2001) Distortion-product source unmixing: a test of the two-mechanism model for DPOAE generation. J Acoust Soc Am 109:622–637CrossRef
Zurück zum Zitat Kemp DT (1986) Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear Res 22:95–104CrossRef Kemp DT (1986) Otoacoustic emissions, travelling waves and cochlear mechanisms. Hear Res 22:95–104CrossRef
Zurück zum Zitat Kemp DT, Brown AM (1983) An integrated view of cochlear mechanical nonlinearities observable from the ear canal. In: de Boer E, Viergever MA (eds) Mechanics of hearing. Springer, Dordrecht, pp 75–82CrossRef Kemp DT, Brown AM (1983) An integrated view of cochlear mechanical nonlinearities observable from the ear canal. In: de Boer E, Viergever MA (eds) Mechanics of hearing. Springer, Dordrecht, pp 75–82CrossRef
Zurück zum Zitat Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions—two tone suppression. In: de Boer E, Viergever MA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–41CrossRef Kemp DT, Chum RA (1980) Observations on the generator mechanism of stimulus frequency acoustic emissions—two tone suppression. In: de Boer E, Viergever MA (eds) Psychophysical, physiological and behavioral studies in hearing. Delft University Press, Delft, pp 34–41CrossRef
Zurück zum Zitat Knight RD, Kemp DT (2001) Wave and place fixed DPOAE maps of the human ear. J Acoust Soc Am 109:1513–1525CrossRef Knight RD, Kemp DT (2001) Wave and place fixed DPOAE maps of the human ear. J Acoust Soc Am 109:1513–1525CrossRef
Zurück zum Zitat Lichtenhan JT, Cooper NP, Guinan JJ Jr (2013) A new auditory threshold estimation technique for low frequencies: proof of concept. Ear Hear 34:42–51CrossRef Lichtenhan JT, Cooper NP, Guinan JJ Jr (2013) A new auditory threshold estimation technique for low frequencies: proof of concept. Ear Hear 34:42–51CrossRef
Zurück zum Zitat Moleti A, Longo F, Sisto R (2012) Time-frequency domain filtering of evoked otoacoustic emissions. J Acoust Soc Am 132:2455–2467CrossRef Moleti A, Longo F, Sisto R (2012) Time-frequency domain filtering of evoked otoacoustic emissions. J Acoust Soc Am 132:2455–2467CrossRef
Zurück zum Zitat Muller M, Hoidis S, Smolders JW (2010) A physiological frequency-position map of the chinchilla cochlea. Hear Res 268:184–193CrossRef Muller M, Hoidis S, Smolders JW (2010) A physiological frequency-position map of the chinchilla cochlea. Hear Res 268:184–193CrossRef
Zurück zum Zitat Neely S, Liu Z (2011) EMAV: otoacoustic emission averager. In: Technical memorandum. Omaha: Boys Town National Research Hospital Neely S, Liu Z (2011) EMAV: otoacoustic emission averager. In: Technical memorandum. Omaha: Boys Town National Research Hospital
Zurück zum Zitat Nuttall AL, Dolan DF (1991) Cochlear microphonic enhancement in two tone interactions. Hear Res 51:235–245CrossRef Nuttall AL, Dolan DF (1991) Cochlear microphonic enhancement in two tone interactions. Hear Res 51:235–245CrossRef
Zurück zum Zitat Patuzzi RB (1987) A model of the generation of the cochlear microphonic with nonlinear hair cell transduction and nonlinear basilar membrane mechanics. Hear Res 30:73–82CrossRef Patuzzi RB (1987) A model of the generation of the cochlear microphonic with nonlinear hair cell transduction and nonlinear basilar membrane mechanics. Hear Res 30:73–82CrossRef
Zurück zum Zitat Patuzzi RB, Yates GK, Johnstone BM (1989) The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig. Hear Res 39:177–188CrossRef Patuzzi RB, Yates GK, Johnstone BM (1989) The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig. Hear Res 39:177–188CrossRef
Zurück zum Zitat Ponton CW, Don M, Eggermont JJ (1992) Place-specific derived cochlear microphonics from human ears. Scand Audiol 21:131–141CrossRef Ponton CW, Don M, Eggermont JJ (1992) Place-specific derived cochlear microphonics from human ears. Scand Audiol 21:131–141CrossRef
Zurück zum Zitat Rhode WS (2007a) Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 121:2805–2818CrossRef Rhode WS (2007a) Mutual suppression in the 6 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 121:2805–2818CrossRef
Zurück zum Zitat Rhode WS (2007b) Basilar membrane mechanics in the 6–9 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 121:2792–2804CrossRef Rhode WS (2007b) Basilar membrane mechanics in the 6–9 kHz region of sensitive chinchilla cochleae. J Acoust Soc Am 121:2792–2804CrossRef
Zurück zum Zitat Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352CrossRef Robles L, Ruggero MA (2001) Mechanics of the mammalian cochlea. Physiol Rev 81:1305–1352CrossRef
Zurück zum Zitat Robles L, Temchin AN, Fan Y-H, Ruggero MA (2015) Stapes vibration in the chinchilla middle ear: relation to behavioral and auditory-nerve thresholds. J Assoc Res Otolaryngol 16:447–457CrossRef Robles L, Temchin AN, Fan Y-H, Ruggero MA (2015) Stapes vibration in the chinchilla middle ear: relation to behavioral and auditory-nerve thresholds. J Assoc Res Otolaryngol 16:447–457CrossRef
Zurück zum Zitat Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163CrossRef Ruggero MA, Rich NC, Recio A, Narayan SS, Robles L (1997) Basilar-membrane responses to tones at the base of the chinchilla cochlea. J Acoust Soc Am 101:2151–2163CrossRef
Zurück zum Zitat Ruggero MA, Narayan SS, Temchin AN, Recio A (2000) Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. Proc Natl Acad Sci U S A 97:11744–11750CrossRef Ruggero MA, Narayan SS, Temchin AN, Recio A (2000) Mechanical bases of frequency tuning and neural excitation at the base of the cochlea: comparison of basilar-membrane vibrations and auditory-nerve-fiber responses in chinchilla. Proc Natl Acad Sci U S A 97:11744–11750CrossRef
Zurück zum Zitat Russell IJ (2008) Cochlear receptor potentials. In: Albright TD, Albright TD, Masland RH, Dallos P, Oertel D, Firestein S, Beauchamp GK, Bushnell MC, Basbaum AI, Kaas JH, Gardner EP (eds) The senses: a comprehensive reference. Academic, New York, pp 319–358CrossRef Russell IJ (2008) Cochlear receptor potentials. In: Albright TD, Albright TD, Masland RH, Dallos P, Oertel D, Firestein S, Beauchamp GK, Bushnell MC, Basbaum AI, Kaas JH, Gardner EP (eds) The senses: a comprehensive reference. Academic, New York, pp 319–358CrossRef
Zurück zum Zitat Shera CA, Cooper NP (2013) Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves. J Acoust Soc Am 133:2224–2239CrossRef Shera CA, Cooper NP (2013) Basilar-membrane interference patterns from multiple internal reflection of cochlear traveling waves. J Acoust Soc Am 133:2224–2239CrossRef
Zurück zum Zitat Shera CA, Guinan JJ (2008) Mechanisms of mammalian otoacoustic emission. In: Manley GA, Fay RR, Popper AN (eds) Active processes and otoacoustic emissions in hearing. Springer, New York, pp 305–342 Shera CA, Guinan JJ (2008) Mechanisms of mammalian otoacoustic emission. In: Manley GA, Fay RR, Popper AN (eds) Active processes and otoacoustic emissions in hearing. Springer, New York, pp 305–342
Zurück zum Zitat Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798CrossRef Shera CA, Guinan JJ Jr (1999) Evoked otoacoustic emissions arise by two fundamentally different mechanisms: a taxonomy for mammalian OAEs. J Acoust Soc Am 105:782–798CrossRef
Zurück zum Zitat Shera CA, Guinan JJ Jr (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772CrossRef Shera CA, Guinan JJ Jr (2003) Stimulus-frequency-emission group delay: a test of coherent reflection filtering and a window on cochlear tuning. J Acoust Soc Am 113:2762–2772CrossRef
Zurück zum Zitat Shera CA, Zweig G (1993) Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am 93:3333–3352CrossRef Shera CA, Zweig G (1993) Noninvasive measurement of the cochlear traveling-wave ratio. J Acoust Soc Am 93:3333–3352CrossRef
Zurück zum Zitat Shera CA, Tubis A, Talmadge CL (2008) Testing coherent reflection in chinchilla: auditory-nerve responses predict stimulus-frequency emissions. J Acoust Soc Am 124:381–395CrossRef Shera CA, Tubis A, Talmadge CL (2008) Testing coherent reflection in chinchilla: auditory-nerve responses predict stimulus-frequency emissions. J Acoust Soc Am 124:381–395CrossRef
Zurück zum Zitat Shera CA, Guinan JJ Jr, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365CrossRef Shera CA, Guinan JJ Jr, Oxenham AJ (2010) Otoacoustic estimation of cochlear tuning: validation in the chinchilla. J Assoc Res Otolaryngol 11:343–365CrossRef
Zurück zum Zitat Siegel JH (2007) Calibration of otoacoustic emission probes. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications, 3rd edn. Thieme, New York, pp 403–429 Siegel JH (2007) Calibration of otoacoustic emission probes. In: Robinette MS, Glattke TJ (eds) Otoacoustic emissions: clinical applications, 3rd edn. Thieme, New York, pp 403–429
Zurück zum Zitat Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443CrossRef Siegel JH, Cerka AJ, Recio-Spinoso A, Temchin AN, van Dijk P, Ruggero MA (2005) Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. J Acoust Soc Am 118:2434–2443CrossRef
Zurück zum Zitat Siegel JH, Charaziak K, Cheatham MA (2011) Transient- and tone-evoked otoacoustic emissions in three species. In: Shera C, Olson E (eds) What fire is in mine ears: progress in auditory biomechanics. Springer, New York, pp 307–314 Siegel JH, Charaziak K, Cheatham MA (2011) Transient- and tone-evoked otoacoustic emissions in three species. In: Shera C, Olson E (eds) What fire is in mine ears: progress in auditory biomechanics. Springer, New York, pp 307–314
Zurück zum Zitat Slama MC, Ravicz ME, Rosowski JJ (2010) Middle ear function and cochlear input impedance in chinchilla. J Acoust Soc Am 127:1397–1410CrossRef Slama MC, Ravicz ME, Rosowski JJ (2010) Middle ear function and cochlear input impedance in chinchilla. J Acoust Soc Am 127:1397–1410CrossRef
Zurück zum Zitat Songer JE, Rosowski JJ (2005) The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla. Hear Res 210:53–62CrossRef Songer JE, Rosowski JJ (2005) The effect of superior canal dehiscence on cochlear potential in response to air-conducted stimuli in chinchilla. Hear Res 210:53–62CrossRef
Zurück zum Zitat Verschooten E, Joris PX (2014) Estimation of neural phase locking from stimulus-evoked potentials. J Assoc Res Otolaryngol 15:767–787CrossRef Verschooten E, Joris PX (2014) Estimation of neural phase locking from stimulus-evoked potentials. J Assoc Res Otolaryngol 15:767–787CrossRef
Zurück zum Zitat Weiss TF, Rose C (1988) A comparison of synchronization filters in different auditory receptor organs. Hear Res 33:175–179CrossRef Weiss TF, Rose C (1988) A comparison of synchronization filters in different auditory receptor organs. Hear Res 33:175–179CrossRef
Zurück zum Zitat Wever EG, Bray CW (1930) Action currents in the auditory nerve in response to acoustic stimulation. Proc Natl Acad Sci U S A 16:344–350CrossRef Wever EG, Bray CW (1930) Action currents in the auditory nerve in response to acoustic stimulation. Proc Natl Acad Sci U S A 16:344–350CrossRef
Zurück zum Zitat Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047CrossRef Zweig G, Shera CA (1995) The origin of periodicity in the spectrum of evoked otoacoustic emissions. J Acoust Soc Am 98:2018–2047CrossRef
Zurück zum Zitat Zwicker E, Schloth E (1984) Interrelation of different oto-acoustic emissions. J Acoust Soc Am 75:1148–1154CrossRef Zwicker E, Schloth E (1984) Interrelation of different oto-acoustic emissions. J Acoust Soc Am 75:1148–1154CrossRef
Metadaten
Titel
Spectral Ripples in Round-Window Cochlear Microphonics: Evidence for Multiple Generation Mechanisms
verfasst von
Karolina K. Charaziak
Jonathan H. Siegel
Christopher A. Shera
Publikationsdatum
16.07.2018
Verlag
Springer US
Erschienen in
Journal of the Association for Research in Otolaryngology / Ausgabe 4/2018
Print ISSN: 1525-3961
Elektronische ISSN: 1438-7573
DOI
https://doi.org/10.1007/s10162-018-0668-6

Weitere Artikel der Ausgabe 4/2018

Journal of the Association for Research in Otolaryngology 4/2018 Zur Ausgabe

Kinder mit anhaltender Sinusitis profitieren häufig von Antibiotika

30.04.2024 Rhinitis und Sinusitis Nachrichten

Persistieren Sinusitisbeschwerden bei Kindern länger als zehn Tage, ist eine Antibiotikatherapie häufig gut wirksam: Ein Therapieversagen ist damit zu über 40% seltener zu beobachten als unter Placebo.

CUP-Syndrom: Künstliche Intelligenz kann Primärtumor finden

30.04.2024 Künstliche Intelligenz Nachrichten

Krebserkrankungen unbekannten Ursprungs (CUP) sind eine diagnostische Herausforderung. KI-Systeme können Pathologen dabei unterstützen, zytologische Bilder zu interpretieren, um den Primärtumor zu lokalisieren.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Update HNO

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.