Skip to main content
Erschienen in: BMC Gastroenterology 1/2015

Open Access 01.12.2015 | Research article

Spectrum of appearances on CT and MRI of hepatic epithelioid hemangioendothelioma

verfasst von: Lisha Zhou, Min-Yi Cui, Juxin Xiong, Zhi Dong, Yanji Luo, Hui Xiao, Ling Xu, Kun Huang, Zi-Ping Li, Shi-Ting Feng

Erschienen in: BMC Gastroenterology | Ausgabe 1/2015

Abstract

Background

This study aims to analyze the computed tomography (CT) and magnetic resonance imaging(MRI) characteristics of hepatic epithelioid hemangioendothelioma (HEHE).

Methods

Eleven patients with histopathologically confirmed HEHE via surgical excision or biopsy were included. Imaging findings of these 11 patients were retrospectively analyzed (CT images obtained from all patients and MR images from five patients). Patterns of growth, characteristics of distribution, density/signal features, patterns of contrast enhancement, and changes of adjacent tissues were evaluated.

Results

HEHE is characterized by multiple lesions in the liver. HEHE could be further categorized as three types when considering patterns of growth: nodular type(5 cases), coalescent type(1 case) and mixed type(5 cases). In this study, a total of 312 lesions were detected, 214(74.3 %) of which were subcapsular. All lesions appeared as hypodense while round lower density were found within 10 lesions(<2 cm) on unenhanced CT images. On MRI, all lesions demonstrated low signal intensity on T1 weighted images and high heterogeneous signal intensity on T2 weighted images when compared to the normal liver parenchyma. Other imaging features included “lollipop sign”(6 cases) and capsular retraction(6 cases). On contrast-enhanced CT and MRI, lesions smaller than 2.0 cm mostly showed mild homogeneous enhancement (214/227, 94.3 %); lesions measuring 2.0–3.0 cm in diameter showed ring-like enhancement (16/53,30.2 %) and heterogeneous delayed enhancement (29/53,54.7 %); lesions larger than 3.0 cm demonstrated heterogeneous delayed enhancement (26/32, 81.3 %).

Conclusion

The imaging findings of HEHE showed some typical imaging features and size-dependent patterns with contrast enhancement on both CT and MR images, these features can be used for accurate imaging diagnosis of HEHE.
Hinweise
Lisha Zhou, Min-Yi Cui and Juxin Xiong contributed equally to this work.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors meet the requirements for authorship and manuscript submission.ST F and ZP L conceived and carried out experiments. LS Z, MY C and JX X carried out experiments. ZD, YJ L, HX, LX and KH collected and analysed data. All authors were involved in writing the paper and had final approval of the submitted and published Versions.
Abkürzungen
CT
Computed tomography
MRI
Magnetic resonance imaging
HEHE
Hepatic epithelioid hemangioendothelioma
EHE
Epithelioid hemangioendothelioma
HIPAA
Health Insurance Portability and Accountability Act

Background

Epithelioid hemangioendothelioma (EHE) is a rare, low-grade malignant vascular tumor [13]. It was first described as a distinct entity by Weiss and Enzinger in 1982 [4]. EHE occurs mostly in soft tissues of the extremities and various visceral organs (lung, bone, brain and intestine, etc.). Primary hepatic epithelioid hemangioendothelioma (HEHE) is a very rare type of malignant tumor first reported by Ishak et al in 1984 [5]. Clinical manifestations of hepatic epithelioid hemangioendothelioma (HEHE) are nonspecific, such as right upper quadrant pain, hepatomegaly and weight loss while many patients remain asymptomatic at diagnosis [2]. The duration of clinical symptoms ranges from 3 months to 2 years before the diagnosis of HEHE is made [3]. Laboratory examination shows that liver enzymes can be moderately elevated, but tumor marker levels (alpha-fetoprotein, carcinoembryonic antigen and cancer antigen 19-9) are usually normal. Therefore, clinical diagnosis of HEHE remains very difficult where imaging investigations, especially computed tomography (CT) or magnetic resonance imaging (MRI), play an important role in the diagnosis of HEHE.
To our best knowledge, current imaging studies on HEHE remained very limited, most of which, if any, were about sporadic cases and small case series. In this study, we retrospectively analyzed the CT and MRI features of histopathologically confirmed HEHE in 11 patients. We emphatically described imaging findings of HEHE, including the patterns of growth and patterns of contrast enhancement, so as to improve the understanding of the disease.

Methods

Patients

The study was conducted in accordance with ethical guidelines for human research and was compliant with the Health Insurance Portability and Accountability Act (HIPAA). As such, the study received IRB or ethical committee approval, and that written informed consent was obtained from all patients. The ethics approval was provided by The First Affiliated Hospital, Sun Yat-Sen University, China.
Eleven patients with HEHE, histopathologically confirmed by surgical excision or biopsy, were recruited at our centre from 2003 to 2013. Histopathologically, tumor cells of HEHE consist of epithelial and dendritic cells. Tumor cells grow along pre-existing sinusoids with intervening collagenous fibrosis. They typically exhibit intracytoplasmic lumina, containing erythrocytes. Immunohistochemistry stains are positive for Vimentin and CD34 [1].
Among these 11 cases, there were six males and five females, with ages ranging from 25 to 57 years old (mean, 37.8 years old).

CT protocol

All patients underwent contrast-enhanced CT examinations (Aquilion 64, Toshiba). The contrast medium injected was iopromide (Ultravist, 300mgI/ml) with a dose of 1.5 ml/kg and a injection rate of 3.5–4.0 ml/s. Images were obtained separately at the arterial phase (34–37 s after injection), portal venous phase (60–70s after injection) and delayed phase (3 min–5 min after injection). The scanning parameters included: tube voltage, 120 kV; tube current, 250 mA; pitch, 0.9; matrix, 512 × 512; slice thickness, 0.5 mm.

MR imaging

All MR examinations were performed on a 3.0 T scanner (Magnetom Trio, Siemens Healthcare Sector) with an eight-channel torso-array coil. All patients underwent breathing training to ensure imaging quality and were examined in supine position after a fasting period of 4 h. The scanning range covered from the dome of the diaphragm to the last plane of the liver. Unenhanced scanning included axial T1-weighted images (acquired matrix, 256 × 192; TR, 200 ms; TE, 2.2 ms) and axial T2-weighted images (acquired matrix, 256 × 192; TR, 6000 ms; TE, 80 ms). Dynamic contrast-enhanced scan was performed with a 3D-VIBE sequence (volume interpolated breath hold examination) with the following parameters: acquired matrix, 256 × 192; TR, 3.3 ms; TE, 1.1 ms; section thickness, 2 mm; intersection gap, 1 mm. The contrast medium was applied in terms of a bolus injection of Gd-DTPA with a dose of 2 mmol/ (kg body weight) and an injection rate of 2 ml/s. Dynamic images were obtained 15 s after injection. The other parameters of MRI scanning were: field of view, 380 × 380 mm; flip angle, 12°; time obtained, 16 s.

Image analysis

All CT and MR images were reviewed independently by two experienced radiologists who were blinded to the identity of patients and their clinical outcome. They analyzed the images in terms of patterns of growth, characteristics of distribution, size, characteristics of density (sign) and patterns of contrast enhancement respectively. The recorded results were based on consensus. Comparison among the three groups of contrast enhancement were made using Kruskal-Wallis H test. The three pairwise comparisons were tested and Bonferroni’s adjustment was applied, the reported P values are two-sided and reflect Bonferroni’s adjustment. All statistical calculations were performed using SPSS software (version 17.0). Two-sided P values of less than 0.05 were considered to indicate statistical significance.

Results

Multiple lesions were found in the liver. According to the patterns of growth, these 11 cases can be divided into three types: nodular type, the lesions were circular or nodular (5/11, 45.5 %) (Fig. 1); coalescent type, the multiple lesions were peripheral subcapsular distribution with partial coalescence (1/11, 9.0 %) (Fig. 2); and mixed type, the lesions with both types mentioned above (5/11, 45.5 %) (Fig. 3). A total of 312 lesions were detected, and 214 (74.3 %) of them were subcapsular. Lesions were more frequently found in the right lobe (197/312, 63.1 %). The tumors ranged from 0.3 cm to 20 cm in size with 227/312 (72.8 %) lesions smaller than 2.0 cm, 53/312(17.0 %) between 2.0 cm and 3.0 cm, and 32/312(10.2 %) larger than 3.0 cm.
All lesions were hypodense in appearance and round lower density were found within 10 lesions (<2 cm) on unenhanced CT scanning without calcifications. Five patients with MR examination had 61 lesions in MRI. All lesions demonstrated low signal intensity on T1 weighted images and high heterogeneous signal intensity on T2 weighted images compared to the normal liver parenchyma (Fig. 4).
In summary, the lesions showed three patterns of enhancement on both contrast-enhanced CT and MR images. The first pattern is mild homogeneous enhancement: mild homogeneous enhancements during the arterial phase, but no evidence of progressive enhancements during portal vein phase or delayed phase (223/312, 71.5 %) (Fig. 3). The second pattern is ring-like enhancement: peripheral enhancement in the arterial phase and progressive enhancement during portal vein phase and delayed phase (Fig. 1). The third pattern is heterogeneous delayed enhancement: heterogeneous enhancement during arterial phase and progressive enhancement during portal vein phase and delayed phase (Fig. 2). Lesions smaller than 2.0 cm mostly demonstrated mild homogeneous enhancement (214/227, 94.3 %); lesions measuring 2.0–3.0 cm showed ring-like enhancement (16/53, 30.2 %) and heterogeneous delayed enhancement (29/53, 54.7 %); and the lesions larger than 3 cm demonstrated heterogeneous delayed enhancement (26/32, 81.3 %). Retraction of the liver capsule overlying tumors was detected in six patients (6/11, 54.5 %) (Fig. 1). Six patients showed “lollipop sign” (6/11, 54.5 %), that is, the hepatic vein, portal vein and their branches are tapering toward the lesions and terminating at the edge of the tumor, which forms the appearance of a lollipop (Fig. 2). Capsular retraction and “lollipop sign” were found in lesions larger than 2.0 cm. No metastases or ascites were found in this cohort.
The imaging findings of all 11 cases are shown in Table 1. The relationship between the lesion size and the patterns of contrast enhancement is shown in Fig. 5. Comparison among the three patterns of contrast enhancement by using Kruskal-Wallis H test reported an H of 226 with P < 0.001 and two-sided P values were shown in Table 2.
Table 1
The imaging features of all cases with hepatic epithelioid hemangioendothelioma
Case No.
Growth pattern
Number of lesions
Capsular retraction
“Lollipop sign”
Patterns of contrast enhancement
Mild homogeneous enhancement
Ring-like enhancement
Heterogeneous delayed enhancement
1
nodular type
9
-
-
-
2
nodular type
35
-
3
mixed type
11
-
-
4
nodular type
16
-
-
5
mixed type
24
-
6
nodular type
105
-
-
-
7
mixed type
7
-
-
8
nodular type
19
-
-
9
coalescent type
1
-
-
10
mixed type
76
-
11
mixed type
9
-
Table 2
Two-sided P values
Groups
Mann-Whitney U
Z
P
Mild and Ring-like
1086.50
−13.141
<0.001
Mild and heterogeneous
168.00
−13.369
<0.001
Ring-like and heterogeneous
611.00
−2.546
0.022

Pathology findings

Neoplastic cells in all 11 cases demonstrated presence of epithelial and dendritic cells with pleomorphic and polyhedral appearance; CD34 was positive in all patients (Fig. 6).

Discussion

HEHE is a rare, low-grade malignant vascular tumor. The risk factors are currently unknown. It may be related to the use of oral contraceptive pills, chronic hepatitis B, excessive drinking and past history of chloroethylene exposure [1, 6]. The tumor is usually found in adults and shows a slight female predominance (male-to-female ratio, 2:3). The peak age of diagnosis is 30–40 years old [1, 3, 7]. HEHE can be divided into solitary lesion and multiple lesions in the liver. It has been reported that most of HEHE cases are characterized by multiple lesions, solitary lesion only accounts for 13 % – 18 % [1, 2]. All patients in the study were characterized by multiple lesions in the liver. Metastases have been reported in 27 %–37 % of patients, usually in the lung, and other common sites including regional lymph nodes, peritoneum, omentum, mesentery and bone. However, no metastases or ascites were found in the study.
Pathologically, HEHE tumor cells in our study demonstrated presence of intracytoplasmic lumina and erythrocytes with positive CD34 which were consistent with the findings obtained from previous reports,
Lesions of HEHE are more frequently subcapsular [8, 9], and 74.3 % of the lesions were subcapsular in our study. According to previous reports, there are two patterns of growth in the gross appearance of HEHE: the nodular type and the diffuse type [10]. However, three types were identified in our study, including nodular type, coalescent type and mixed type, in HEHE, in which the coalescent type has seldom been reported in previous reports. Nodular type (45.5 %) and mixed type (45.5 %) accounted for the vast majority of HEHE in the study. The simple coalescent type presented in only one case, however there were six cases (54.5 %) with coalescent growth. We consider that mild mass effect of coalescent type is a characteristic manifestation of HEHE. In other tumors the pattern of coalescent growth was rarely found, hence this pattern may be an important implication to the diagnosis of HEHE.
All lesions were hypodense on unenhanced CT. Calcification is considered as one of the common features seen in approximately 15 %–25 % of patients as suggested by previous reports, however, our findings showed inconsistent data. This may be due to the relatively small sample size (11) in our study. All lesions observed demonstrated low signal intensity on T1 weighted images and high heterogeneous signal intensity on T2 weighted images compared to the normal liver parenchyma.
Miller et al [11] reported capsular retraction as an important finding of HEHE. The pathological basis is hepatic fibrosis caused by the lesion and compensatory hypertrophy of unaffected hepatic segments [1214]. In our study, six cases showed capsular retraction in lesions larger than 2.0 cm. This may be explained by that larger tumors are more likely to be located in the hepatic subcapsule or to cause local hepatic fibrosis. However, capsular retraction may also be one of the features seen in other benign or malignant liver lesions, such as cholangiocarcinoma and metastatic carcinoma. Therefore, capsular retraction remains an important finding but not a specific sign of HEHE.
Another important finding of HEHE is the “lollipop sign” as reported by Alomari et al in 2006 [15], who thought that “lollipop sign” was a characteristic finding of HEHE. Six cases showed “lollipop sign” in the study. “Lollipop sign” rarely occurs in most benign and malignant hepatic tumors, hence it can be considered as more characteristic finding of HEHE.
Dynamic contrast-enhanced scanning plays an important role in the diagnosis of HEHE. In general, as a vascular tumor, HEHE shows delayed enhancement in dynamic enhanced scanning. In this study, we found that the lesions showed three patterns of contrast enhancement, including mild homogeneous enhancement, ring-like enhancement and heterogeneous delayed enhancement. We also found that the patterns of contrast enhancement were closely related to the size of lesions. Smaller lesions (<2.0 cm) mostly showed mild homogeneous enhancement. With the enlargement of the lesions, HEHE could be characterized by multiple enhanced patterns. Lager lesions (>3.0 cm) mostly showed heterogeneous delayed enhancement. We consider that different patterns of contrast enhancement are related to pathological basis. Pathologically, the tumor tissues include epithelial and dendritic cells in variable proportions [1, 3, 16]. Larger tumor cells typically demonstrate presence of intracytoplasmic lumina containing erythrocytes, which resembles signet ring-like structures [17]. The peripheral tumor cells grow along preexisting sinusoids and terminal hepatic venules. Atrophic hepatocytes are obliterated. These may lead to heterogeneous enhancement of HEHE [1]. The presence of peripheral rich cellular zone and tissue edema may contribute to high density during enhanced scanning. The presence of abundant mucinous and stroma may contribute to the lack of central unenhanced areas [10, 18].
Based on our findings, HEHE could be discriminated from its differential diagnosis such as hepatic metastatic carcinoma, cholangiocarcinoma, and other liver vascular tumors like hepatic angiosarcoma or cavernous hemangioma.
The image features of hepatic metastatic carcinoma are more complicated. Similar to HEHE, this disease shows ring-like enhancement or nonspecific enhancement. However, the following tips could be applied in distinguishing hepatic metastatic carcinoma from HEHE: a known history of a primary malignancy; most commonly seen as peripheral enhancement lesions together with less common features such as delayed enhancement and invading blood vessels. Further more, HEHE lesions mostly demonstrate mild to moderate FDG uptake, while hepatic metastatic carcinoma commonly demonstrate intense FDG uptake. PET-CT could be used to detect the presence of metastatic tumor affecting distant organs to provide accurate staging.
For cholangiocarcinoma, it usually grows along the bile ducts. The adjacent bile ducts are nearly always dilated or are embedded by tumors. Invaded blood vessels are also shown. Cancer antigen 19-9 is usually elevated.
Other hepatic vascular tumors can be discriminated from HEHE, Hepatic cavernous hemangioma usually demonstrate more regular and obvious enhancement with similar appearances to arteries during arterial phase. On the other hand, hepatic angiosarcoma, a high-grade malignant vascular tumor, is often characterized by its irregular enhancement during arterial phase with enhanced nodular edge during portal vein phase or in delayed phase. Capsular retraction are usually not seen in hepatic vascular tumors.

Conclusion

In conclusion, HEHE is rare, but it demonstrates several characteristics on imaging such as the presence of coalescent growth and “lollipop sign” to allow differentiation from other hepatic tumors. When interpreting these images, it should be kept in mind that the pattern of contrast enhancement are related to the size of lesions. Therefore, the pattern of enhancement can be variable on both MRI and CT, it can be used as a reliable indicator for the diagnosis of HEHE.

Acknowledgment

This work was funded by National Natural Science Foundation of China (81000626), Natural Science Foundation of Guangdong Province (S2013010016004, 2014A030311018), S&T Programs (2014A020212125, 2012B031800086) of Guangdong Province, Zhujiang Scientific and Technological New Star Foundation (2012J2200084), and the Fundamental Research Funds for the Central Universities (10ykpy11). 
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
The Creative Commons Public Domain Dedication waiver (https://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors meet the requirements for authorship and manuscript submission.ST F and ZP L conceived and carried out experiments. LS Z, MY C and JX X carried out experiments. ZD, YJ L, HX, LX and KH collected and analysed data. All authors were involved in writing the paper and had final approval of the submitted and published Versions.
Literatur
1.
Zurück zum Zitat Makhlouf HR, Ishak KG, Goodman ZD. Epithelioid hemangioendothelioma of the liver: a clinicopathologic study of 137 cases. Cancer. 1999;85(3):562–82.CrossRefPubMed Makhlouf HR, Ishak KG, Goodman ZD. Epithelioid hemangioendothelioma of the liver: a clinicopathologic study of 137 cases. Cancer. 1999;85(3):562–82.CrossRefPubMed
2.
Zurück zum Zitat Mehrabi A, Kashfi AR, Fonouni H, et al. Primary malignant hepatic epithelioid hemangioendothelioma. Cancer. 2006;107(9):2108–21.CrossRefPubMed Mehrabi A, Kashfi AR, Fonouni H, et al. Primary malignant hepatic epithelioid hemangioendothelioma. Cancer. 2006;107(9):2108–21.CrossRefPubMed
3.
Zurück zum Zitat Earnest IV F, Johnson CD. Case 96: Hepatic Epithelioid Hemangioendothelioma 1. Radiology. 2006;240(1):295–8.CrossRefPubMed Earnest IV F, Johnson CD. Case 96: Hepatic Epithelioid Hemangioendothelioma 1. Radiology. 2006;240(1):295–8.CrossRefPubMed
4.
Zurück zum Zitat Weiss SW, Enzinger FM. Epithelioid hemangioendothelioma a vascular tumor often mistaken for a carcinoma. Cancer. 1982;50(5):970–81.CrossRefPubMed Weiss SW, Enzinger FM. Epithelioid hemangioendothelioma a vascular tumor often mistaken for a carcinoma. Cancer. 1982;50(5):970–81.CrossRefPubMed
5.
Zurück zum Zitat Ishak KG, Sesterhenn IA, Goodman ZD, Rabin L, Stromeyer FW. Epithelioid hemangioendothelioma of the liver: a clinicopathologic and follow-up study of 32 cases. Hum Pathol. 1984;15(9):839–52.CrossRefPubMed Ishak KG, Sesterhenn IA, Goodman ZD, Rabin L, Stromeyer FW. Epithelioid hemangioendothelioma of the liver: a clinicopathologic and follow-up study of 32 cases. Hum Pathol. 1984;15(9):839–52.CrossRefPubMed
6.
Zurück zum Zitat Idilman R, Dokmeci A, Beyler AR, et al. Successful medical treatment of an epithelioid hemangioendothelioma of liver. Oncology. 1997;54(2):171–5.CrossRefPubMed Idilman R, Dokmeci A, Beyler AR, et al. Successful medical treatment of an epithelioid hemangioendothelioma of liver. Oncology. 1997;54(2):171–5.CrossRefPubMed
7.
Zurück zum Zitat Lauffer JM, Zimmermann A, Krahenbuhl L, Triller J, Baer H. Epithelioid hemangioendothelioma of the liver: a rare hepatic tumor. Cancer. 1996;78(11):2318–27.CrossRefPubMed Lauffer JM, Zimmermann A, Krahenbuhl L, Triller J, Baer H. Epithelioid hemangioendothelioma of the liver: a rare hepatic tumor. Cancer. 1996;78(11):2318–27.CrossRefPubMed
8.
Zurück zum Zitat Radin DR, Craig JR, Colletti PM, Ralls PW, Halls JM. Hepatic epithelioid hemangioendothelioma. Radiology. 2008;169(1):145–8.CrossRef Radin DR, Craig JR, Colletti PM, Ralls PW, Halls JM. Hepatic epithelioid hemangioendothelioma. Radiology. 2008;169(1):145–8.CrossRef
9.
Zurück zum Zitat Lin J, Ji Y. CT and MRI diagnosis of hepatic epithelioid hemangioendothelioma. Hepatobiliary Pancreat Dis Int. 2010;9(2):154–8.PubMed Lin J, Ji Y. CT and MRI diagnosis of hepatic epithelioid hemangioendothelioma. Hepatobiliary Pancreat Dis Int. 2010;9(2):154–8.PubMed
10.
Zurück zum Zitat Woodall CE, Scoggins CR, Lewis AM, McMasters KM, Robert CG. Hepatic malignant epithelioid hemangioendothelioma: a case report and review of the literature. Am Surg. 2008;74(1):64–8.PubMed Woodall CE, Scoggins CR, Lewis AM, McMasters KM, Robert CG. Hepatic malignant epithelioid hemangioendothelioma: a case report and review of the literature. Am Surg. 2008;74(1):64–8.PubMed
11.
Zurück zum Zitat Miller WJ, Dodd III GD, Federle MP, Baron RL. Epithelioid hemangioendothelioma of the liver: imaging findings with pathologic correlation. Am J Roentgenol. 1992;159(1):53–7.CrossRef Miller WJ, Dodd III GD, Federle MP, Baron RL. Epithelioid hemangioendothelioma of the liver: imaging findings with pathologic correlation. Am J Roentgenol. 1992;159(1):53–7.CrossRef
12.
Zurück zum Zitat Soyer P. Capsular retraction of the liver in malignant tumor of the biliary tract MRI findings. Clin Imaging. 1994;18(4):255–7.CrossRefPubMed Soyer P. Capsular retraction of the liver in malignant tumor of the biliary tract MRI findings. Clin Imaging. 1994;18(4):255–7.CrossRefPubMed
13.
Zurück zum Zitat Sans N, Fajadet P, Galy-Fourcade D, et al. Is capsular retraction a specific CT sign of malignant liver tumor. Eur Radiol. 1999;9(8):1543–5.CrossRefPubMed Sans N, Fajadet P, Galy-Fourcade D, et al. Is capsular retraction a specific CT sign of malignant liver tumor. Eur Radiol. 1999;9(8):1543–5.CrossRefPubMed
14.
Zurück zum Zitat Blachar A, Federle MP, Brancatelli G. Hepatic capsular retraction: spectrum of benign and malignant etiologies. Abdom Imaging. 2002;27(6):690–9.CrossRefPubMed Blachar A, Federle MP, Brancatelli G. Hepatic capsular retraction: spectrum of benign and malignant etiologies. Abdom Imaging. 2002;27(6):690–9.CrossRefPubMed
15.
Zurück zum Zitat Alomari AI. The lollipop sign: a new cross-sectional sign of hepatic epithelioid hemangioendothelioma. Eur J Radiol. 2006;59(3):460–4.CrossRefPubMed Alomari AI. The lollipop sign: a new cross-sectional sign of hepatic epithelioid hemangioendothelioma. Eur J Radiol. 2006;59(3):460–4.CrossRefPubMed
16.
Zurück zum Zitat Uchimura K, Nakamuta M, Osoegawa M, et al. Hepatic epithelioid hemangioendothelioma. J Clin Gastroenterol. 2001;32(5):431–4.CrossRefPubMed Uchimura K, Nakamuta M, Osoegawa M, et al. Hepatic epithelioid hemangioendothelioma. J Clin Gastroenterol. 2001;32(5):431–4.CrossRefPubMed
17.
Zurück zum Zitat Choi KH, Moon WS. Epithelioid hemangioendothelioma of the liver. Clin Mol Hepatol. 2013;M(3):315–9.CrossRef Choi KH, Moon WS. Epithelioid hemangioendothelioma of the liver. Clin Mol Hepatol. 2013;M(3):315–9.CrossRef
18.
Zurück zum Zitat Paolantonio P, Laghi A, Vanzulli A, et al. MRI of Hepatic Epithelioid Hemangioendothelioma (HEH). J Magn Reson Imaging. 2013;40(3):1–7. Paolantonio P, Laghi A, Vanzulli A, et al. MRI of Hepatic Epithelioid Hemangioendothelioma (HEH). J Magn Reson Imaging. 2013;40(3):1–7.
Metadaten
Titel
Spectrum of appearances on CT and MRI of hepatic epithelioid hemangioendothelioma
verfasst von
Lisha Zhou
Min-Yi Cui
Juxin Xiong
Zhi Dong
Yanji Luo
Hui Xiao
Ling Xu
Kun Huang
Zi-Ping Li
Shi-Ting Feng
Publikationsdatum
01.12.2015
Verlag
BioMed Central
Erschienen in
BMC Gastroenterology / Ausgabe 1/2015
Elektronische ISSN: 1471-230X
DOI
https://doi.org/10.1186/s12876-015-0299-x

Weitere Artikel der Ausgabe 1/2015

BMC Gastroenterology 1/2015 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Reizdarmsyndrom: Diäten wirksamer als Medikamente

29.04.2024 Reizdarmsyndrom Nachrichten

Bei Reizdarmsyndrom scheinen Diäten, wie etwa die FODMAP-arme oder die kohlenhydratreduzierte Ernährung, effektiver als eine medikamentöse Therapie zu sein. Das hat eine Studie aus Schweden ergeben, die die drei Therapieoptionen im direkten Vergleich analysierte.

Notfall-TEP der Hüfte ist auch bei 90-Jährigen machbar

26.04.2024 Hüft-TEP Nachrichten

Ob bei einer Notfalloperation nach Schenkelhalsfraktur eine Hemiarthroplastik oder eine totale Endoprothese (TEP) eingebaut wird, sollte nicht allein vom Alter der Patientinnen und Patienten abhängen. Auch über 90-Jährige können von der TEP profitieren.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Bei schweren Reaktionen auf Insektenstiche empfiehlt sich eine spezifische Immuntherapie

Insektenstiche sind bei Erwachsenen die häufigsten Auslöser einer Anaphylaxie. Einen wirksamen Schutz vor schweren anaphylaktischen Reaktionen bietet die allergenspezifische Immuntherapie. Jedoch kommt sie noch viel zu selten zum Einsatz.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.