Skip to main content
Erschienen in: Brain Structure and Function 5/2015

01.09.2015 | Original Article

Spinal cord projections to the cerebellum in the mouse

verfasst von: Gulgun Sengul, YuHong Fu, You Yu, George Paxinos

Erschienen in: Brain Structure and Function | Ausgabe 5/2015

Einloggen, um Zugang zu erhalten

Abstract

The projections from the spinal cord to the cerebellar cortex were studied using retrograde neuronal tracers. Thus far, no study has shown the detailed topographic mapping of the projections from the spinal neuron clusters to the cerebellar cortex regions for experimental animals, and there are no studies for the mouse. Tracers Fluoro-Gold and cholera toxin B were injected into circumscribed regions of the cerebellar cortex, and retrogradely labeled spinal cord neurons were mapped throughout the spinal cord. Spinal projections to the cerebellar cortex were mainly from five neuronal columns—central cervical nucleus, dorsal nucleus, lumbar and sacral precerebellar nuclei, and lumbar border precerebellar cells—and from scattered neurons located in the deep dorsal horn and laminae 6–8. The spinocerebellar projections to the cortex were mainly to the vermis. All five precerebellar cell columns projected to both anterior and posterior parts of the cerebellar cortex. Results of this study provide an amendment to the known rostral and caudal boundaries of the precerebellar cell columns in the mouse. Scattered precerebellar neurons in the most caudal deep dorsal horn and laminae 6–8 projected exclusively to the anterior part of the cerebellar cortex. In this study, no labeled spinal neurons were found to project to the lobules 6 and 7 of the cerebellar vermis, the flocculus, and the paraflocculus. Spinocerebellar neurons were located bilaterally, but the majority of the projections were contralateral for the central cervical nucleus, and ipsilateral for the remaining spinal precerebellar neuronal clusters.
Literatur
Zurück zum Zitat Berretta S, Perciavalle V, Poppele RE (1991) Origin of spinal projections to the anterior and posterior lobes of the rat cerebellum. J Comp Neurol 305:273–281CrossRefPubMed Berretta S, Perciavalle V, Poppele RE (1991) Origin of spinal projections to the anterior and posterior lobes of the rat cerebellum. J Comp Neurol 305:273–281CrossRefPubMed
Zurück zum Zitat Burke R, Lundberg A, Weight F (1971) Spinal border cell origin of the ventral spinocerebellar tract. Exp Brain Res 12:283–294CrossRefPubMed Burke R, Lundberg A, Weight F (1971) Spinal border cell origin of the ventral spinocerebellar tract. Exp Brain Res 12:283–294CrossRefPubMed
Zurück zum Zitat Fu Y, Sengul G, Paxinos G, Watson C (2012) The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse. Neurosci Lett 518:161–166CrossRefPubMed Fu Y, Sengul G, Paxinos G, Watson C (2012) The spinal precerebellar nuclei: calcium binding proteins and gene expression profile in the mouse. Neurosci Lett 518:161–166CrossRefPubMed
Zurück zum Zitat Grant G (1962) Spinal course and somatotopically localized termination of the spinocerebellar tracts. An experimental study in the cat. Acta Physiol Scand Suppl 56:1–61CrossRefPubMed Grant G (1962) Spinal course and somatotopically localized termination of the spinocerebellar tracts. An experimental study in the cat. Acta Physiol Scand Suppl 56:1–61CrossRefPubMed
Zurück zum Zitat Grant G, Xu Q (1988) Routes of entry into the cerebellum of spinocerebellar axons from the lower part of the spinal cord. An experimental anatomical study in the cat. Exp Brain Res 72:543–561CrossRefPubMed Grant G, Xu Q (1988) Routes of entry into the cerebellum of spinocerebellar axons from the lower part of the spinal cord. An experimental anatomical study in the cat. Exp Brain Res 72:543–561CrossRefPubMed
Zurück zum Zitat Grant G, Wiksten B, Berkley KJ, Aldskogius H (1982) The location of cerebellar-projecting neurons within the lumbosacral spinal cord in the cat. An anatomical study with HRP and retrograde chromatolysis. J Comp Neurol 204:336–348CrossRefPubMed Grant G, Wiksten B, Berkley KJ, Aldskogius H (1982) The location of cerebellar-projecting neurons within the lumbosacral spinal cord in the cat. An anatomical study with HRP and retrograde chromatolysis. J Comp Neurol 204:336–348CrossRefPubMed
Zurück zum Zitat Ji Z, Hawkes R (1994) Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 61:935–954CrossRefPubMed Ji Z, Hawkes R (1994) Topography of Purkinje cell compartments and mossy fiber terminal fields in lobules II and III of the rat cerebellar cortex: spinocerebellar and cuneocerebellar projections. Neuroscience 61:935–954CrossRefPubMed
Zurück zum Zitat Matsushita M (1988) Spinocerebellar projections from the lowest lumbar and sacral-caudal segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 274:239–254CrossRefPubMed Matsushita M (1988) Spinocerebellar projections from the lowest lumbar and sacral-caudal segments in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 274:239–254CrossRefPubMed
Zurück zum Zitat Matsushita M (1999) Projections from the upper lumbar cord to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol 412:633–648CrossRefPubMed Matsushita M (1999) Projections from the upper lumbar cord to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol 412:633–648CrossRefPubMed
Zurück zum Zitat Matsushita M, Gao X (1997) Projections from the thoracic cord to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol 386:409–421CrossRefPubMed Matsushita M, Gao X (1997) Projections from the thoracic cord to the cerebellar nuclei in the rat, studied by anterograde axonal tracing. J Comp Neurol 386:409–421CrossRefPubMed
Zurück zum Zitat Matsushita M, Ikeda M (1980) Spinocerebellar projections to the vermis of the posterior lobe and the paramedian lobule in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 192:143–162CrossRefPubMed Matsushita M, Ikeda M (1980) Spinocerebellar projections to the vermis of the posterior lobe and the paramedian lobule in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 192:143–162CrossRefPubMed
Zurück zum Zitat Matsushita M, Ikeda M (1987) Spinocerebellar projections from the cervical enlargement in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 263:223–240CrossRefPubMed Matsushita M, Ikeda M (1987) Spinocerebellar projections from the cervical enlargement in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 263:223–240CrossRefPubMed
Zurück zum Zitat Matsushita M, Tanami T (1987) Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 266:376–397CrossRefPubMed Matsushita M, Tanami T (1987) Spinocerebellar projections from the central cervical nucleus in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 266:376–397CrossRefPubMed
Zurück zum Zitat Matsushita M, Yaginuma H (1989) Spinocerebellar projections from spinal border cells in the cat as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 288:19–38CrossRefPubMed Matsushita M, Yaginuma H (1989) Spinocerebellar projections from spinal border cells in the cat as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 288:19–38CrossRefPubMed
Zurück zum Zitat Matsushita M, Hosoya Y, Ikeda M (1979) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184:81–106CrossRefPubMed Matsushita M, Hosoya Y, Ikeda M (1979) Anatomical organization of the spinocerebellar system in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184:81–106CrossRefPubMed
Zurück zum Zitat Okado N, Ito R, Homma S (1987) The terminal distribution pattern of spinocerebellar fibers. An anterograde labelling study in the posthatching chick. Anat Embryol 176:175–182CrossRefPubMed Okado N, Ito R, Homma S (1987) The terminal distribution pattern of spinocerebellar fibers. An anterograde labelling study in the posthatching chick. Anat Embryol 176:175–182CrossRefPubMed
Zurück zum Zitat Oscarsson O (1965) Functional organization of the spino- and cuneocerebellar Tracts. Physiol Rev 45:495–522PubMed Oscarsson O (1965) Functional organization of the spino- and cuneocerebellar Tracts. Physiol Rev 45:495–522PubMed
Zurück zum Zitat Rivero-Melián C, Grant G (1990) Lumbar dorsal root projections to spinocerebellar cell groups in the rat spinal cord: a double labeling study. Exp Brain Res 81:85–94CrossRefPubMed Rivero-Melián C, Grant G (1990) Lumbar dorsal root projections to spinocerebellar cell groups in the rat spinal cord: a double labeling study. Exp Brain Res 81:85–94CrossRefPubMed
Zurück zum Zitat Robertson B, Grant G, Bjorkeland M (1983) Demonstration of spinocerebellar projections in cat using anterograde transport of WGA-HRP, with some observations on spinomesencephalic and spinothalamic projections. Exp Brain Res 52:99–104PubMed Robertson B, Grant G, Bjorkeland M (1983) Demonstration of spinocerebellar projections in cat using anterograde transport of WGA-HRP, with some observations on spinomesencephalic and spinothalamic projections. Exp Brain Res 52:99–104PubMed
Zurück zum Zitat Snyder RL, Faull RL, Mehler WR (1978) A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. J Comp Neurol 181:833–852CrossRefPubMed Snyder RL, Faull RL, Mehler WR (1978) A comparative study of the neurons of origin of the spinocerebellar afferents in the rat, cat and squirrel monkey based on the retrograde transport of horseradish peroxidase. J Comp Neurol 181:833–852CrossRefPubMed
Zurück zum Zitat Verburgh CA, Kuypers HG, Voogd J, Stevens HP (1989) Spinocerebellar neurons and propriospinal neurons in the cervical spinal cord: a fluorescent double-labeling study in the rat and the cat. Exp Brain Res 75:73–82CrossRefPubMed Verburgh CA, Kuypers HG, Voogd J, Stevens HP (1989) Spinocerebellar neurons and propriospinal neurons in the cervical spinal cord: a fluorescent double-labeling study in the rat and the cat. Exp Brain Res 75:73–82CrossRefPubMed
Zurück zum Zitat Voogd J (1967) Comparative aspects of the structure and fibre connexions of the mammalian cerebellum. Prog Brain Res 25:94–134CrossRefPubMed Voogd J (1967) Comparative aspects of the structure and fibre connexions of the mammalian cerebellum. Prog Brain Res 25:94–134CrossRefPubMed
Zurück zum Zitat Watson C, Paxinos G, Kayalioglu G, Heise C (2009) Atlas of the mouse spinal cord. A christopher and dana reeve foundation text and atlas. In: Watson C, Paxinos G, Kayalioglu G (eds) The Spinal Cord. Elsevier Academic Press, San Diego, pp 308–379CrossRef Watson C, Paxinos G, Kayalioglu G, Heise C (2009) Atlas of the mouse spinal cord. A christopher and dana reeve foundation text and atlas. In: Watson C, Paxinos G, Kayalioglu G (eds) The Spinal Cord. Elsevier Academic Press, San Diego, pp 308–379CrossRef
Zurück zum Zitat Wiksten B, Grant G (1986) Cerebellar projections from the cervical enlargement: an experimental study with silver impregnation and autoradiographic techniques in the cat. Exp Brain Res 61:513–518CrossRefPubMed Wiksten B, Grant G (1986) Cerebellar projections from the cervical enlargement: an experimental study with silver impregnation and autoradiographic techniques in the cat. Exp Brain Res 61:513–518CrossRefPubMed
Zurück zum Zitat Xu Q, Grant G (1988) Do certain spinocerebellar neurons in lamina IX at lumbosacral levels send collaterals to peripheral nerves? A retrograde fluorescent double labeling study in the cat. Arch Ital Biol 126:179–192PubMed Xu Q, Grant G (1988) Do certain spinocerebellar neurons in lamina IX at lumbosacral levels send collaterals to peripheral nerves? A retrograde fluorescent double labeling study in the cat. Arch Ital Biol 126:179–192PubMed
Zurück zum Zitat Xu Q, Grant G (1990) The projection of spinocerebellar neurons from the sacrococcygeal region of the spinal cord in the cat. An experimental study using anterograde transport of WGA-HRP and degeneration. Arch Ital Biol 128:209–228PubMed Xu Q, Grant G (1990) The projection of spinocerebellar neurons from the sacrococcygeal region of the spinal cord in the cat. An experimental study using anterograde transport of WGA-HRP and degeneration. Arch Ital Biol 128:209–228PubMed
Zurück zum Zitat Xu Q, Grant G (1994) Course of spinocerebellar axons in the ventral and lateral funiculi of the spinal cord with projections to the anterior lobe: an experimental anatomical study in the cat with retrograde tracing techniques. J Comp Neurol 345:288–302CrossRefPubMed Xu Q, Grant G (1994) Course of spinocerebellar axons in the ventral and lateral funiculi of the spinal cord with projections to the anterior lobe: an experimental anatomical study in the cat with retrograde tracing techniques. J Comp Neurol 345:288–302CrossRefPubMed
Zurück zum Zitat Xu Q, Grant G (2005) Course of spinocerebellar axons in the ventral and lateral funiculi of the spinal cord with projections to the posterior cerebellar termination area: an experimental anatomical study in the cat, using a retrograde tracing technique. Exp Brain Res 162:250–256CrossRefPubMed Xu Q, Grant G (2005) Course of spinocerebellar axons in the ventral and lateral funiculi of the spinal cord with projections to the posterior cerebellar termination area: an experimental anatomical study in the cat, using a retrograde tracing technique. Exp Brain Res 162:250–256CrossRefPubMed
Zurück zum Zitat Yaginuma H, Matsushita M (1987) Spinocerebellar projections from the thoracic cord in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 258:1–27CrossRefPubMed Yaginuma H, Matsushita M (1987) Spinocerebellar projections from the thoracic cord in the cat, as studied by anterograde transport of wheat germ agglutinin-horseradish peroxidase. J Comp Neurol 258:1–27CrossRefPubMed
Metadaten
Titel
Spinal cord projections to the cerebellum in the mouse
verfasst von
Gulgun Sengul
YuHong Fu
You Yu
George Paxinos
Publikationsdatum
01.09.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 5/2015
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-014-0840-7

Weitere Artikel der Ausgabe 5/2015

Brain Structure and Function 5/2015 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.