Skip to main content
Erschienen in: Journal of Cardiovascular Translational Research 1/2008

01.03.2008

Stem Cells and Cardiac Repair: A Critical Analysis

verfasst von: Jonathan H. Dinsmore, Nabil Dib

Erschienen in: Journal of Cardiovascular Translational Research | Ausgabe 1/2008

Einloggen, um Zugang zu erhalten

Abstract

Utilizing stem cells to repair the damaged heart has seen an intense amount of activity over the last 5 years or so. There are currently multiple clinical studies in progress to test the efficacy of various different cell therapy approaches for the repair of damaged myocardium that were only just beginning to be tested in preclinical animal studies a few years earlier. This rapid transition from preclinical to clinical testing is striking and is not typical of the customary timeframe for the progress of a therapy from bench-to-bedside. Doubtless, there will be many more trials to follow in the upcoming years. With the plethora of trials and cell alternatives, there has come not only great enthusiasm for the potential of the therapy, but also great confusion about what has been achieved. Cell therapy has the potential to do what no drug can: regenerate and replace damaged tissue with healthy tissue. Drugs may be effective at slowing the progression of heart failure, but none can stop or reverse the process. However, tissue repair is not a simple process, although the idea on its surface is quite simple. Understanding cells, the signals that they respond to, and the keys to appropriate survival and tissue formation are orders of magnitude more complicated than understanding the pathways targeted by most drugs. Drugs and their metabolites can be monitored, quantified, and their effects correlated to circulating levels in the body. Not so for most cell therapies. It is quite difficult to measure cell survival except through ex vivo techniques like histological analysis of the target organ. This makes the emphasis on preclinical research all the more important because it is only in the animal studies that research has the opportunity to readily harvest the target tissues and perform the detailed analyses of what has happened with the cells. This need for detailed and usually time-intensive research in animal studies stands in contrast to the rapidity with which therapies have progressed to the clinic. It is now becoming clear through a number of notable examples that progress to the clinic may have occurred too quickly, before adequate testing and independent verification of results could be completed (Check, Nature 446:485–486, 2007; Chien, J Clin Investig 116:1838–1840, 2006; Giles, Nature 442:344–347, 2006). Broad reproducibility and transfer of results from one lab to another has been and always will be essential for the successful application of any cell therapy. So, what is the prognosis for cell therapy to repair heart damage? Will there be an approved cell therapy, or multiple ones, or will it require combinations of more than one cell type to be successful? These are questions often asked. The answers are difficult to know and even more difficult to predict because there are so many variables associated with cell-based therapies. There is much about the biology of cell systems that we still do not understand. Much of the pluripotency or transdifferentiation phenomena (see below) being observed go against accepted and well-tested principles for cell development and fate choice, and has caused a reevaluation of long-accepted theories. Clearly, new pathways for tissue repair and regeneration have been uncovered, but will these new pathways be sufficient to effect significant tissue repair and regeneration? Despite the false starts so far, there is the strong likelihood one or possibly multiple cell therapies will succeed. Clearly, important information has been gained, which should better guide the field to achieving success. When there is the successful verification in patients of a cell therapy, there will be an explosion of technological advances around the approach(es) that succeed. Whatever cells get approved accompanying them will be: more effective delivery methods; growth and storage methods; combination therapies, mixes of cells or cells + gene therapies; combinations with biomaterials and technologies for immune protection, allowing allografting. There are many parallel paths of technology development waiting to be brought together once there is an effective cellular approach. The coming years will no doubt bring some exciting developments.
Literatur
1.
Zurück zum Zitat Check, E. (2007). Stem cells: The hard copy. Nature, 446(7135), 485–486.PubMed Check, E. (2007). Stem cells: The hard copy. Nature, 446(7135), 485–486.PubMed
2.
Zurück zum Zitat Chien, K. R. (2006). Lost and found: Cardiac stem cell therapy revisited. Journal of Clinical Investigation, 116(7), 1838–1840.PubMed Chien, K. R. (2006). Lost and found: Cardiac stem cell therapy revisited. Journal of Clinical Investigation, 116(7), 1838–1840.PubMed
3.
Zurück zum Zitat Giles, J. (2006). The trouble with replication. Nature, 442(7101), 344–347.PubMed Giles, J. (2006). The trouble with replication. Nature, 442(7101), 344–347.PubMed
4.
Zurück zum Zitat Pileggi, A., Ricordi, C., Kenyon, N. S., Froud, T., Baidal, D. A., Kahn, A., et al. (2004). Twenty years of clinical islet transplantation at the diabetes research institute-university of miami. Clinical Transplants, 177–204. Pileggi, A., Ricordi, C., Kenyon, N. S., Froud, T., Baidal, D. A., Kahn, A., et al. (2004). Twenty years of clinical islet transplantation at the diabetes research institute-university of miami. Clinical Transplants, 177–204.
5.
Zurück zum Zitat Dinsmore, J. H. (1998). Treatment of neurodegenerative diseases with neural cell transplantation. Expert Opinion on Investigational Drugs, 7(4), 527–534.PubMed Dinsmore, J. H. (1998). Treatment of neurodegenerative diseases with neural cell transplantation. Expert Opinion on Investigational Drugs, 7(4), 527–534.PubMed
6.
Zurück zum Zitat Strom, S. C., Bruzzone, P., Cai, H., Ellis, E., Lehmann, T., Mitamura, K., et al. (2006). Hepatocyte transplantation: Clinical experience and potential for future use. Cell Transplantation, 15(1), S105–S110.PubMed Strom, S. C., Bruzzone, P., Cai, H., Ellis, E., Lehmann, T., Mitamura, K., et al. (2006). Hepatocyte transplantation: Clinical experience and potential for future use. Cell Transplantation, 15(1), S105–S110.PubMed
7.
Zurück zum Zitat Murry, C. E., Field, L. J., & Menasche, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112(20), 3174–3183.PubMed Murry, C. E., Field, L. J., & Menasche, P. (2005). Cell-based cardiac repair: Reflections at the 10-year point. Circulation, 112(20), 3174–3183.PubMed
8.
Zurück zum Zitat Dib, N., & Dinsmore, J. (2006). The future of cell therapy for myocardial regeneration. American Heart Journal, 4(3), 211–215; quiz 216. Dib, N., & Dinsmore, J. (2006). The future of cell therapy for myocardial regeneration. American Heart Journal, 4(3), 211–215; quiz 216.
9.
Zurück zum Zitat Caulfield, J. B., Leinbach, R., & Gold, H. (1976). The relationship of myocardial infarct size and prognosis. Circulation, 53(3), I141–I144.PubMed Caulfield, J. B., Leinbach, R., & Gold, H. (1976). The relationship of myocardial infarct size and prognosis. Circulation, 53(3), I141–I144.PubMed
10.
Zurück zum Zitat Nag, A. C., & Zak, R. (1979). Dissociation of adult mammalian heart into single cell suspension: An ultrastructural study. Journal of Anatomy, 129, 541–559.PubMed Nag, A. C., & Zak, R. (1979). Dissociation of adult mammalian heart into single cell suspension: An ultrastructural study. Journal of Anatomy, 129, 541–559.PubMed
11.
Zurück zum Zitat Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., et al. (1979). Myocardial infarct size and ventricular function in rats. Circulation Research, 44(4), 503–512.PubMed Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., et al. (1979). Myocardial infarct size and ventricular function in rats. Circulation Research, 44(4), 503–512.PubMed
12.
Zurück zum Zitat Klug, M. G., Soonpaa, M. H., Koh, G. Y., & Field, L. J. (1996). Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. Journal of Clinical Investigation, 98(1), 216–224.PubMed Klug, M. G., Soonpaa, M. H., Koh, G. Y., & Field, L. J. (1996). Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. Journal of Clinical Investigation, 98(1), 216–224.PubMed
13.
Zurück zum Zitat Li, R. K., Mickle, D. A., Weisel, R. D., Zhang, J. & Mohabeer, M. K. (1996). In vivo survival and function of transplanted rat cardiomyocytes. Circulation Research, 78(2), 283–288.PubMed Li, R. K., Mickle, D. A., Weisel, R. D., Zhang, J. & Mohabeer, M. K. (1996). In vivo survival and function of transplanted rat cardiomyocytes. Circulation Research, 78(2), 283–288.PubMed
14.
Zurück zum Zitat Scorsin, M., Hagege, A., Vilquin, J. T., Fiszman, M., Marotte, F., Samuel, J. L., et al. (2000). Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. Journal of Thoracic and Cardiovascular Surgery, 119(6), 1169–1175.PubMed Scorsin, M., Hagege, A., Vilquin, J. T., Fiszman, M., Marotte, F., Samuel, J. L., et al. (2000). Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. Journal of Thoracic and Cardiovascular Surgery, 119(6), 1169–1175.PubMed
15.
Zurück zum Zitat Murry, C. E., Wiseman, R. W., Schwartz, S. M., & Hauschka, S. D., (1996). Skeletal myoblast transplantation for repair of myocardial necrosis. Journal of Clinical Investigation, 98(11), 2512–2523.PubMed Murry, C. E., Wiseman, R. W., Schwartz, S. M., & Hauschka, S. D., (1996). Skeletal myoblast transplantation for repair of myocardial necrosis. Journal of Clinical Investigation, 98(11), 2512–2523.PubMed
16.
Zurück zum Zitat Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutcheson, K. A., et al. (1998). Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Natural Medicines, 4(8), 929–933. Taylor, D. A., Atkins, B. Z., Hungspreugs, P., Jones, T. R., Reedy, M. C., Hutcheson, K. A., et al. (1998). Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Natural Medicines, 4(8), 929–933.
17.
Zurück zum Zitat Pouzet, B., Vilquin, J. T., Hagege, A. A., Scorsin, M., Messas, E., Fiszman, M., et al. (2000). Intramyocardial transplantation of autologous myoblasts: Can tissue processing be optimized? Circulation, 102(19 Suppl 3), III210–III215.PubMed Pouzet, B., Vilquin, J. T., Hagege, A. A., Scorsin, M., Messas, E., Fiszman, M., et al. (2000). Intramyocardial transplantation of autologous myoblasts: Can tissue processing be optimized? Circulation, 102(19 Suppl 3), III210–III215.PubMed
18.
Zurück zum Zitat Sakai, T., Li, R. K., Weisel, R. D., Mickle, D. A., Jia, Z. Q., Tomita, S., et al. (1999). Fetal cell transplantation: A comparison of three cell types. Journal of Thoracic and Cardiovascular Surgery, 118(4), 715–724.PubMed Sakai, T., Li, R. K., Weisel, R. D., Mickle, D. A., Jia, Z. Q., Tomita, S., et al. (1999). Fetal cell transplantation: A comparison of three cell types. Journal of Thoracic and Cardiovascular Surgery, 118(4), 715–724.PubMed
19.
Zurück zum Zitat Hutcheson, K. A., Atkins, B. Z., Hueman, M. T., Hopkins, M. B., Glower, D. D., & Taylor, D. A. (2000). Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplantation, 9(3), 359–368.PubMed Hutcheson, K. A., Atkins, B. Z., Hueman, M. T., Hopkins, M. B., Glower, D. D., & Taylor, D. A. (2000). Comparison of benefits on myocardial performance of cellular cardiomyoplasty with skeletal myoblasts and fibroblasts. Cell Transplantation, 9(3), 359–368.PubMed
20.
Zurück zum Zitat Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Natural Medicines, 7(4), 430–436. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Natural Medicines, 7(4), 430–436.
21.
Zurück zum Zitat Lanza, R., Moore, M. A., Wakayama, T., Perry, A. C., Shieh, J. H., Hendrikx, J., et al. (2004). Regeneration of the infarcted heart with stem cells derived by nuclear transplantation. Circulation Research, 94(6), 820–827.PubMed Lanza, R., Moore, M. A., Wakayama, T., Perry, A. C., Shieh, J. H., Hendrikx, J., et al. (2004). Regeneration of the infarcted heart with stem cells derived by nuclear transplantation. Circulation Research, 94(6), 820–827.PubMed
22.
Zurück zum Zitat Lu, S. J., Feng, Q., Caballero, S., Chen, Y., Moore, M. A., Grant, M. B., et al. (2007). Generation of functional hemangioblasts from human embryonic stem cells. Nature Methods, 4(6), 501–509.PubMed Lu, S. J., Feng, Q., Caballero, S., Chen, Y., Moore, M. A., Grant, M. B., et al. (2007). Generation of functional hemangioblasts from human embryonic stem cells. Nature Methods, 4(6), 501–509.PubMed
23.
Zurück zum Zitat Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94(2), 223–229.PubMed Planat-Benard, V., Menard, C., Andre, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94(2), 223–229.PubMed
24.
Zurück zum Zitat Yamada, Y., Wang, X. D., Yokoyama, S., Fukuda, N., & Takakura, N., (2006). Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochemical and Biophysical Research Communication, 342(2), 662–670. Yamada, Y., Wang, X. D., Yokoyama, S., Fukuda, N., & Takakura, N., (2006). Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochemical and Biophysical Research Communication, 342(2), 662–670.
25.
Zurück zum Zitat Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.PubMed Amado, L. C., Saliaris, A. P., Schuleri, K. H., St John, M., Xie, J. S., Cattaneo, S., et al. (2005). Cardiac repair with intramyocardial injection of allogeneic mesenchymal stem cells after myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 102(32), 11474–11479.PubMed
26.
Zurück zum Zitat Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E., et al. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: Short- and long-term effects. Circulation, 112(2), 214–223.PubMed Dai, W., Hale, S. L., Martin, B. J., Kuang, J. Q., Dow, J. S., Wold, L. E., et al. (2005). Allogeneic mesenchymal stem cell transplantation in postinfarcted rat myocardium: Short- and long-term effects. Circulation, 112(2), 214–223.PubMed
27.
Zurück zum Zitat Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., et al. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and functional effects. Annals of Thoracic Surgery, 73(6), 1919–1925; discussion 1926.PubMed Shake, J. G., Gruber, P. J., Baumgartner, W. A., Senechal, G., Meyers, J., Redmond, J. M., et al. (2002). Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and functional effects. Annals of Thoracic Surgery, 73(6), 1919–1925; discussion 1926.PubMed
28.
Zurück zum Zitat Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428(6983), 668–673.PubMed Balsam, L. B., Wagers, A. J., Christensen, J. L., Kofidis, T., Weissman, I. L., & Robbins, R. C. (2004). Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 428(6983), 668–673.PubMed
29.
Zurück zum Zitat Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001).Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229; discussion 229–230.PubMedCrossRef Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001).Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229; discussion 229–230.PubMedCrossRef
30.
Zurück zum Zitat Agbulut, O., Vandervelde, S., Al Attar, N., Larghero, J., Ghostine, S., Leobon, B., et al. (2004). Comparison of human skeletal myoblasts and bone marrow-derived cd133+ progenitors for the repair of infarcted myocardium. Journal of the American College of Cardiology, 44(2), 458–463.PubMed Agbulut, O., Vandervelde, S., Al Attar, N., Larghero, J., Ghostine, S., Leobon, B., et al. (2004). Comparison of human skeletal myoblasts and bone marrow-derived cd133+ progenitors for the repair of infarcted myocardium. Journal of the American College of Cardiology, 44(2), 458–463.PubMed
31.
Zurück zum Zitat Dezawa, M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S., et al. (2005). Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science, 309(5732), 314–317.PubMed Dezawa, M., Ishikawa, H., Itokazu, Y., Yoshihara, T., Hoshino, M., Takeda, S., et al. (2005). Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science, 309(5732), 314–317.PubMed
32.
Zurück zum Zitat Yoon, Y. S., Wecker, A., Heyd, L., Park, J. S., Tkebuchava, T., Kusano, K., et al. (2006). Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. Journal of Clinical Investigation, 115(2), 326–338. Yoon, Y. S., Wecker, A., Heyd, L., Park, J. S., Tkebuchava, T., Kusano, K., et al. (2006). Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. Journal of Clinical Investigation, 115(2), 326–338.
33.
Zurück zum Zitat Zeng, F., Chen, M. J., Baldwin, D. A., Gong, Z. J., Yan, J. B., Qian, H. (2006). Multiorgan engraftment and differentiation of human cord blood cd34+lin- cells in goats assessed by gene expression profiling. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7801–7806PubMed Zeng, F., Chen, M. J., Baldwin, D. A., Gong, Z. J., Yan, J. B., Qian, H. (2006). Multiorgan engraftment and differentiation of human cord blood cd34+lin- cells in goats assessed by gene expression profiling. Proceedings of the National Academy of Sciences of the United States of America, 103(20), 7801–7806PubMed
34.
Zurück zum Zitat Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433(7026), 647–653.PubMed Laugwitz, K. L., Moretti, A., Lam, J., Gruber, P., Chen, Y., Woodard, S., et al. (2005). Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature, 433(7026), 647–653.PubMed
35.
Zurück zum Zitat Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95(9), 911–921.PubMed Messina, E., De Angelis, L., Frati, G., Morrone, S., Chimenti, S., Fiordaliso, F., et al. (2004). Isolation and expansion of adult cardiac stem cells from human and murine heart. Circulation Research, 95(9), 911–921.PubMed
36.
Zurück zum Zitat Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., et al. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12313–12318.PubMed Oh, H., Bradfute, S. B., Gallardo, T. D., Nakamura, T., Gaussin, V., Mishina, Y., et al. (2003). Cardiac progenitor cells from adult myocardium: Homing, differentiation, and fusion after infarction. Proceedings of the National Academy of Sciences of the United States of America, 100(21), 12313–12318.PubMed
37.
Zurück zum Zitat Dinsmore, J., Ratliff, J., Deacon, T, Pakzaban, P., Jacoby, D. Galpern, W., et al. (1996). Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplantation, 5(2), 131–143.PubMed Dinsmore, J., Ratliff, J., Deacon, T, Pakzaban, P., Jacoby, D. Galpern, W., et al. (1996). Embryonic stem cells differentiated in vitro as a novel source of cells for transplantation. Cell Transplantation, 5(2), 131–143.PubMed
38.
Zurück zum Zitat Laflamme, M. A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., et al. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. American Journal of Pathology, 167(3), 663–671.PubMed Laflamme, M. A., Gold, J., Xu, C., Hassanipour, M., Rosler, E., Police, S., et al. (2005). Formation of human myocardium in the rat heart from human embryonic stem cells. American Journal of Pathology, 167(3), 663–671.PubMed
39.
Zurück zum Zitat Menard, C., Hagege, A. A., Agbulut, O., Barro, M., Morichetti, M. C., Brasselet, C., et al. (2005). Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: A preclinical study. Lancet, 366(9490), 1005–1012.PubMed Menard, C., Hagege, A. A., Agbulut, O., Barro, M., Morichetti, M. C., Brasselet, C., et al. (2005). Transplantation of cardiac-committed mouse embryonic stem cells to infarcted sheep myocardium: A preclinical study. Lancet, 366(9490), 1005–1012.PubMed
40.
Zurück zum Zitat Fazel, S., Cimini, M., Chen, L., Li, S., Angoulvant, D., Fedak, P., et al. (2006). Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. Journal of Clinical Investigation, 116(7), 1865–1877.PubMed Fazel, S., Cimini, M., Chen, L., Li, S., Angoulvant, D., Fedak, P., et al. (2006). Cardioprotective c-kit+ cells are from the bone marrow and regulate the myocardial balance of angiogenic cytokines. Journal of Clinical Investigation, 116(7), 1865–1877.PubMed
41.
Zurück zum Zitat Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., et al. (2005) Paracrine action accounts for marked protection of ischemic heart by akt-modified mesenchymal stem cells. Natural Medicines, 11(4), 367–368. Gnecchi, M., He, H., Liang, O. D., Melo, L. G., Morello, F., Mu, H., et al. (2005) Paracrine action accounts for marked protection of ischemic heart by akt-modified mesenchymal stem cells. Natural Medicines, 11(4), 367–368.
42.
Zurück zum Zitat Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., et al. (2007). Secreted frizzled related protein 2 (sfrp2) is the key akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences of United States of America, 104(5), 1643–1648. Mirotsou, M., Zhang, Z., Deb, A., Zhang, L., Gnecchi, M., Noiseux, N., et al. (2007). Secreted frizzled related protein 2 (sfrp2) is the key akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair. Proceedings of the National Academy of Sciences of United States of America, 104(5), 1643–1648.
43.
Zurück zum Zitat Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.PubMed Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., et al. (1999). Multilineage potential of adult human mesenchymal stem cells. Science, 284(5411), 143–147.PubMed
44.
Zurück zum Zitat Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.PubMed Toma, C., Pittenger, M. F., Cahill, K. S., Byrne, B. J., & Kessler, P. D. (2002). Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation, 105(1), 93–98.PubMed
45.
Zurück zum Zitat Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.PubMed Aggarwal, S., & Pittenger, M. F. (2005). Human mesenchymal stem cells modulate allogeneic immune cell responses. Blood, 105(4), 1815–1822.PubMed
46.
Zurück zum Zitat Price, M. J., Chou, C. C., Frantzen, M., Miyamoto, T., Kar, S., Lee, S., et al. (2006). Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. International Journal of Cardiology, 111 231–239.PubMed Price, M. J., Chou, C. C., Frantzen, M., Miyamoto, T., Kar, S., Lee, S., et al. (2006). Intravenous mesenchymal stem cell therapy early after reperfused acute myocardial infarction improves left ventricular function and alters electrophysiologic properties. International Journal of Cardiology, 111 231–239.PubMed
47.
Zurück zum Zitat Chang, M. G., Tung, L., Sekar, R. B., Chang, C. Y., Cysyk, J., Dong, P., et al. (2006). Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation, 113(15), 1832–1841.PubMed Chang, M. G., Tung, L., Sekar, R. B., Chang, C. Y., Cysyk, J., Dong, P., et al. (2006). Proarrhythmic potential of mesenchymal stem cell transplantation revealed in an in vitro coculture model. Circulation, 113(15), 1832–1841.PubMed
48.
Zurück zum Zitat Vulliet, P. R., Greeley, M., Halloran, S. M., MacDonald, K. A., & Kittleson, M. D. (2004). Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet, 363(9411), 783–784.PubMed Vulliet, P. R., Greeley, M., Halloran, S. M., MacDonald, K. A., & Kittleson, M. D. (2004). Intra-coronary arterial injection of mesenchymal stromal cells and microinfarction in dogs. Lancet, 363(9411), 783–784.PubMed
49.
Zurück zum Zitat Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110(4), 1362–1369.PubMed Breitbach, M., Bostani, T., Roell, W., Xia, Y., Dewald, O., Nygren, J. M., et al. (2007). Potential risks of bone marrow cell transplantation into infarcted hearts. Blood, 110(4), 1362–1369.PubMed
50.
Zurück zum Zitat Tolar, J., et al. (2007). Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 25(2), 371–379.PubMed Tolar, J., et al. (2007). Sarcoma derived from cultured mesenchymal stem cells. Stem Cells, 25(2), 371–379.PubMed
51.
Zurück zum Zitat Rubio, D., Garcia-Castro, J., Martin, M. C., de la Fuente, R., Cigudosa, J. C., Lloyd, A. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65(8), 3035–3039.PubMed Rubio, D., Garcia-Castro, J., Martin, M. C., de la Fuente, R., Cigudosa, J. C., Lloyd, A. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65(8), 3035–3039.PubMed
52.
Zurück zum Zitat Wang, Y., Huso, D. L., Harrington, J., Kellner, J., Jeong, D. K., Turney, J., et al. (2005). Outgrowth of a transformed cell population derived from normal human bm mesenchymal stem cell culture. Cytotherapy, 7(6), 509–519.PubMed Wang, Y., Huso, D. L., Harrington, J., Kellner, J., Jeong, D. K., Turney, J., et al. (2005). Outgrowth of a transformed cell population derived from normal human bm mesenchymal stem cell culture. Cytotherapy, 7(6), 509–519.PubMed
53.
Zurück zum Zitat Zhang, Z. X., Guan, L. X., Zhang, K., Wang, S., Cao, P. C., Wang, Y. H., et al. (2007). Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biology International, 31(6), 645–648.PubMed Zhang, Z. X., Guan, L. X., Zhang, K., Wang, S., Cao, P. C., Wang, Y. H., et al. (2007). Cytogenetic analysis of human bone marrow-derived mesenchymal stem cells passaged in vitro. Cell Biology International, 31(6), 645–648.PubMed
54.
Zurück zum Zitat Blau, O., Hofmann, W. K., Baldus, C. D., Thiel, G., Serbent, V., Schumann, E., et al. (2007). Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Experimental Hematology, 35(2), 221–229.PubMed Blau, O., Hofmann, W. K., Baldus, C. D., Thiel, G., Serbent, V., Schumann, E., et al. (2007). Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Experimental Hematology, 35(2), 221–229.PubMed
55.
Zurück zum Zitat Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499–3506.PubMed Nauta, A. J., & Fibbe, W. E. (2007). Immunomodulatory properties of mesenchymal stromal cells. Blood, 110(10), 3499–3506.PubMed
56.
Zurück zum Zitat Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B, Lurvink, E. G., Willemze, R., & Fibbe, W. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108(6), 2114–2120.PubMed Nauta, A. J., Westerhuis, G., Kruisselbrink, A. B, Lurvink, E. G., Willemze, R., & Fibbe, W. E. (2006). Donor-derived mesenchymal stem cells are immunogenic in an allogeneic host and stimulate donor graft rejection in a nonmyeloablative setting. Blood, 108(6), 2114–2120.PubMed
57.
Zurück zum Zitat Schmalbruch, H. (1976). The morphology of regeneration of skeletal muscles in the rat. Tissue Cell, 8(4), 673–692.PubMed Schmalbruch, H. (1976). The morphology of regeneration of skeletal muscles in the rat. Tissue Cell, 8(4), 673–692.PubMed
58.
Zurück zum Zitat Law, P. K., Bertorini, T. E., Goodwin, T. G., Chen, M., Fang, Q. W., Li, H. J., et al. (1990). Dystrophin production induced by myoblast transfer therapy in duchenne muscular dystrophy. Lancet, 336(8707), 114–115.PubMed Law, P. K., Bertorini, T. E., Goodwin, T. G., Chen, M., Fang, Q. W., Li, H. J., et al. (1990). Dystrophin production induced by myoblast transfer therapy in duchenne muscular dystrophy. Lancet, 336(8707), 114–115.PubMed
59.
Zurück zum Zitat Karpati, G., Pouliot, Y., Zubrzycka-Gaarn, E., Carpenter, S., Ray, P. N., Worton, R. G., et al. (1989). Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation. American Journal of Pathology, 135(1), 27–32.PubMed Karpati, G., Pouliot, Y., Zubrzycka-Gaarn, E., Carpenter, S., Ray, P. N., Worton, R. G., et al. (1989). Dystrophin is expressed in mdx skeletal muscle fibers after normal myoblast implantation. American Journal of Pathology, 135(1), 27–32.PubMed
60.
Zurück zum Zitat Guerette, B., Skuk, D., Celestin, F., Huard, C., Tardif, F., Asselin, I., et al. (1997). Prevention by anti-lfa-1 of acute myoblast death following transplantation. Journal of Immunology, 159(5), 2522–2531. Guerette, B., Skuk, D., Celestin, F., Huard, C., Tardif, F., Asselin, I., et al. (1997). Prevention by anti-lfa-1 of acute myoblast death following transplantation. Journal of Immunology, 159(5), 2522–2531.
61.
Zurück zum Zitat Neumeyer, A. M., Cros, D., McKenna-Yasek, D., Zawadzka, A., Hoffman, E. P., Pegoraro, E., et al. (1998). Pilot study of myoblast transfer in the treatment of becker muscular dystrophy. Neurology, 51(2), 589–592.PubMed Neumeyer, A. M., Cros, D., McKenna-Yasek, D., Zawadzka, A., Hoffman, E. P., Pegoraro, E., et al. (1998). Pilot study of myoblast transfer in the treatment of becker muscular dystrophy. Neurology, 51(2), 589–592.PubMed
62.
Zurück zum Zitat Koh, G.Y., Klug, M. G., Soonpaa, M. H., & Field, L. J. (1993). Differentiation and long-term survival of c2c12 myoblast grafts in heart. Journal of Clinical Investigation, 92(3), 1548–1554.PubMed Koh, G.Y., Klug, M. G., Soonpaa, M. H., & Field, L. J. (1993). Differentiation and long-term survival of c2c12 myoblast grafts in heart. Journal of Clinical Investigation, 92(3), 1548–1554.PubMed
63.
Zurück zum Zitat Chiu, R. C., Zibaitis, A., & Kao, R. L. (1995). Cellular cardiomyoplasty: Myocardial regeneration with satellite cell implantation. Annals of Thoracic Surgery, 60(1), 12–18.PubMed Chiu, R. C., Zibaitis, A., & Kao, R. L. (1995). Cellular cardiomyoplasty: Myocardial regeneration with satellite cell implantation. Annals of Thoracic Surgery, 60(1), 12–18.PubMed
64.
Zurück zum Zitat Van Meter, C. H., Jr., Claycomb, W. C., Delcarpio, J. B., Smith, D. M., deGruiter, H., Smart, F. (1995). Myoblast transplantation in the porcine model: A potential technique for myocardial repair. Journal of Thoracic and Cardiovascular Surgery, 110(5), 1442–1448.PubMed Van Meter, C. H., Jr., Claycomb, W. C., Delcarpio, J. B., Smith, D. M., deGruiter, H., Smart, F. (1995). Myoblast transplantation in the porcine model: A potential technique for myocardial repair. Journal of Thoracic and Cardiovascular Surgery, 110(5), 1442–1448.PubMed
65.
Zurück zum Zitat Yoon, P. D., Kao, R. L., & Magovern, G. J. (1995). Myocardial regeneration. Transplanting satellite cells into damaged myocardium. Texas Heart Institute Journal, 22(2), 119–125.PubMed Yoon, P. D., Kao, R. L., & Magovern, G. J. (1995). Myocardial regeneration. Transplanting satellite cells into damaged myocardium. Texas Heart Institute Journal, 22(2), 119–125.PubMed
66.
Zurück zum Zitat Atkins, B. Z., Lewis, C. W., Kraus, W. E., Hutcheson, K. A., Glower, D. D., & Taylor, D. A. (1999). Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Annals of Thoracic Surgery, 67(1), 124–129.PubMed Atkins, B. Z., Lewis, C. W., Kraus, W. E., Hutcheson, K. A., Glower, D. D., & Taylor, D. A. (1999). Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Annals of Thoracic Surgery, 67(1), 124–129.PubMed
67.
Zurück zum Zitat Murtuza, B., Suzuki, K., Bou-Gharios, G., Beauchamp, J. R., Smolenski, R. T., Partridge, T. A., et al. (2004). Transplantation of skeletal myoblasts secreting an il-1 inhibitor modulates adverse remodeling in infarcted murine myocardium. Proceedings of the National Academy of Sciences of the United States of America, 101(12), 4216–4221.PubMed Murtuza, B., Suzuki, K., Bou-Gharios, G., Beauchamp, J. R., Smolenski, R. T., Partridge, T. A., et al. (2004). Transplantation of skeletal myoblasts secreting an il-1 inhibitor modulates adverse remodeling in infarcted murine myocardium. Proceedings of the National Academy of Sciences of the United States of America, 101(12), 4216–4221.PubMed
68.
Zurück zum Zitat Niagara, M. I., Haider, H., Jiang, S., & Ashraf, M. (2007). Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circulation Research, 100(4), 545–555.PubMed Niagara, M. I., Haider, H., Jiang, S., & Ashraf, M. (2007). Pharmacologically preconditioned skeletal myoblasts are resistant to oxidative stress and promote angiomyogenesis via release of paracrine factors in the infarcted heart. Circulation Research, 100(4), 545–555.PubMed
69.
Zurück zum Zitat Agbulut, O., Menot, M. L., Li, Z., Marotte, F., Paulin, D., Hagege, A. A., et al. (2003). Temporal patterns of bone marrow cell differentiation following transplantation in doxorubicin-induced cardiomyopathy. Cardiovascular Research, 58(2), 451–459.PubMed Agbulut, O., Menot, M. L., Li, Z., Marotte, F., Paulin, D., Hagege, A. A., et al. (2003). Temporal patterns of bone marrow cell differentiation following transplantation in doxorubicin-induced cardiomyopathy. Cardiovascular Research, 58(2), 451–459.PubMed
70.
Zurück zum Zitat Oshima, H., Payne, T. R., Urish, K. L., Sakai, T., Ling, Y., Gharaibeh, B., et al. (2005). Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Molecular Therapy, 12(6), 1130–1141.PubMed Oshima, H., Payne, T. R., Urish, K. L., Sakai, T., Ling, Y., Gharaibeh, B., et al. (2005). Differential myocardial infarct repair with muscle stem cells compared to myoblasts. Molecular Therapy, 12(6), 1130–1141.PubMed
71.
Zurück zum Zitat Reinecke, H., Minami, E., Poppa, V., & Murry, C. E. (2004). Evidence for fusion between cardiac and skeletal muscle cells. Circulation Research, 94(6), e56–e60.PubMed Reinecke, H., Minami, E., Poppa, V., & Murry, C. E. (2004). Evidence for fusion between cardiac and skeletal muscle cells. Circulation Research, 94(6), e56–e60.PubMed
72.
Zurück zum Zitat Roell, W., et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 450(7171), 819–824.PubMed Roell, W., et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 450(7171), 819–824.PubMed
73.
Zurück zum Zitat Rubart, M., Soonpaa, M. H., Nakajima, H., & Field, L. J. (2004). Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. Journal of Clinical Investigation, 114(6), 775–783.PubMed Rubart, M., Soonpaa, M. H., Nakajima, H., & Field, L. J. (2004). Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. Journal of Clinical Investigation, 114(6), 775–783.PubMed
74.
Zurück zum Zitat Khan, M., Kutala, V. K., Vikram, D. S., Wisel, S., Chacko, S. M., Kuppusamy, M. L., et al. (2007). Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. American Journal of Physiology. Heart and Circulatory Physiology, 293(4), H2129–H2139. Khan, M., Kutala, V. K., Vikram, D. S., Wisel, S., Chacko, S. M., Kuppusamy, M. L., et al. (2007). Skeletal myoblasts transplanted in the ischemic myocardium enhance in situ oxygenation and recovery of contractile function. American Journal of Physiology. Heart and Circulatory Physiology, 293(4), H2129–H2139.
75.
Zurück zum Zitat Azarnoush, K., Maurel, A., Sebbah, L., Carrion, C., Bissery, A., Mandet, C., et al. (2005). Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1alpha. Journal of Thoracic and Cardiovascular Surgery, 130(1), 173–179.PubMed Azarnoush, K., Maurel, A., Sebbah, L., Carrion, C., Bissery, A., Mandet, C., et al. (2005). Enhancement of the functional benefits of skeletal myoblast transplantation by means of coadministration of hypoxia-inducible factor 1alpha. Journal of Thoracic and Cardiovascular Surgery, 130(1), 173–179.PubMed
76.
Zurück zum Zitat Bonaros, N., Rauf, R., Werner, E., Schlechta, B., Rohde, E., Kocher, A., et al. (2007). Neoangiogenesis after combined transplantation of skeletal myoblasts and angiopoietic progenitors leads to increased cell engraftment and lower apoptosis rates in ischemic heart failure. Interactive Cardiovascular Thoracic Surgery (In press). Bonaros, N., Rauf, R., Werner, E., Schlechta, B., Rohde, E., Kocher, A., et al. (2007). Neoangiogenesis after combined transplantation of skeletal myoblasts and angiopoietic progenitors leads to increased cell engraftment and lower apoptosis rates in ischemic heart failure. Interactive Cardiovascular Thoracic Surgery (In press).
77.
Zurück zum Zitat Bonaros, N., Rauf, R., Wolf, D., Margreiter, E., Tzankov, A., Schlechta, B., et al. (2006). Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 132(6), 1321–1328.PubMed Bonaros, N., Rauf, R., Wolf, D., Margreiter, E., Tzankov, A., Schlechta, B., et al. (2006). Combined transplantation of skeletal myoblasts and angiopoietic progenitor cells reduces infarct size and apoptosis and improves cardiac function in chronic ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 132(6), 1321–1328.PubMed
78.
Zurück zum Zitat Guarita-Souza, L. C., Carvalho, K. A., Rebelatto, C., Senegaglia, A., Hansen, P., & Furuta, M., (2005). Cell transplantation: Differential effects of myoblasts and mesenchymal stem cells. International Journal of Cardiology 111, 423–429.PubMed Guarita-Souza, L. C., Carvalho, K. A., Rebelatto, C., Senegaglia, A., Hansen, P., & Furuta, M., (2005). Cell transplantation: Differential effects of myoblasts and mesenchymal stem cells. International Journal of Cardiology 111, 423–429.PubMed
79.
Zurück zum Zitat Guarita-Souza, L. C., Carvalho, K. A., Woitowicz, V., Rebelatto, C., Senegaglia, A., Hansen, P., et al. (2006). Simultaneous autologous transplantation of cocultured mesenchymal stem cells and skeletal myoblasts improves ventricular function in a murine model of chagas disease. Circulation, 114(1), I120–I124.PubMed Guarita-Souza, L. C., Carvalho, K. A., Woitowicz, V., Rebelatto, C., Senegaglia, A., Hansen, P., et al. (2006). Simultaneous autologous transplantation of cocultured mesenchymal stem cells and skeletal myoblasts improves ventricular function in a murine model of chagas disease. Circulation, 114(1), I120–I124.PubMed
80.
Zurück zum Zitat Jain, M., DerSimonian, H., Brenner, D. A., Ngoy, S., Teller, P., Edge, A. S., et al. (2001). Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation, 103(14), 1920–1927.PubMed Jain, M., DerSimonian, H., Brenner, D. A., Ngoy, S., Teller, P., Edge, A. S., et al. (2001). Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation, 103(14), 1920–1927.PubMed
81.
Zurück zum Zitat Reinecke, H., Poppa, V., & Murry, C. E. (2002). Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. Journal of Molecular and Cellular Cardiology, 34(2), 241–249.PubMed Reinecke, H., Poppa, V., & Murry, C. E. (2002). Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. Journal of Molecular and Cellular Cardiology, 34(2), 241–249.PubMed
82.
Zurück zum Zitat Al Attar, N., Carrion, C., Ghostine, S., Garcin, I., Vilquin, J. T., Hagege, A. A., et al. (2003). Long-term (1 year) functional and histological results of autologous skeletal muscle cells transplantation in rat. Cardiovascular Research, 58(1), 142–148.PubMed Al Attar, N., Carrion, C., Ghostine, S., Garcin, I., Vilquin, J. T., Hagege, A. A., et al. (2003). Long-term (1 year) functional and histological results of autologous skeletal muscle cells transplantation in rat. Cardiovascular Research, 58(1), 142–148.PubMed
83.
Zurück zum Zitat Tambara, K., Premaratne, G. U., Sakaguchi, G., Kanemitsu, N., Lin, X., Nakajima, H., et al. (2005). Administration of control-released hepatocyte growth factor enhances the efficacy of skeletal myoblast transplantation in rat infarcted hearts by greatly increasing both quantity and quality of the graft. Circulation, 112(9 Suppl), I129–I134.PubMed Tambara, K., Premaratne, G. U., Sakaguchi, G., Kanemitsu, N., Lin, X., Nakajima, H., et al. (2005). Administration of control-released hepatocyte growth factor enhances the efficacy of skeletal myoblast transplantation in rat infarcted hearts by greatly increasing both quantity and quality of the graft. Circulation, 112(9 Suppl), I129–I134.PubMed
84.
Zurück zum Zitat Tambara, K., Sakakibara, Y., Sakaguchi, G., Lu, F., Premaratne, G. U., Lin, X., et al. (2003). Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation, 108(Suppl 1), II259–II263.PubMed Tambara, K., Sakakibara, Y., Sakaguchi, G., Lu, F., Premaratne, G. U., Lin, X., et al. (2003). Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation, 108(Suppl 1), II259–II263.PubMed
85.
Zurück zum Zitat Ott, H. C., Bonaros, N., Marksteiner, R., Wolf, D., Margreiter, E., Schachner, T., et al. (2004). Combined transplantation of skeletal myoblasts and bone marrow stem cells for myocardial repair in rats. European Journal of Cardio-Thoracic Surgery, 25(4), 627–634.PubMed Ott, H. C., Bonaros, N., Marksteiner, R., Wolf, D., Margreiter, E., Schachner, T., et al. (2004). Combined transplantation of skeletal myoblasts and bone marrow stem cells for myocardial repair in rats. European Journal of Cardio-Thoracic Surgery, 25(4), 627–634.PubMed
86.
Zurück zum Zitat Ott, H. C., Kroess, R., Bonaros, N., Marksteiner, R., Margreiter, E., Schachner, T., et al. (2005). Intramyocardial microdepot injection increases the efficacy of skeletal myoblast transplantation. European Journal of Cardio-Thoracic Surgery, 27(6), 1017–1021.PubMed Ott, H. C., Kroess, R., Bonaros, N., Marksteiner, R., Margreiter, E., Schachner, T., et al. (2005). Intramyocardial microdepot injection increases the efficacy of skeletal myoblast transplantation. European Journal of Cardio-Thoracic Surgery, 27(6), 1017–1021.PubMed
87.
Zurück zum Zitat Siepe, M., Giraud, M. N., Liljensten, E., Nydegger, U., Menasche, P., Carrel, T., et al. (2007). Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artificial Organs, 31(6), 425–433.PubMed Siepe, M., Giraud, M. N., Liljensten, E., Nydegger, U., Menasche, P., Carrel, T., et al. (2007). Construction of skeletal myoblast-based polyurethane scaffolds for myocardial repair. Artificial Organs, 31(6), 425–433.PubMed
88.
Zurück zum Zitat Siepe, M., Giraud, M. N., Pavlovic, M., Receputo, C., Beyersdorf, F., Menasche, P., et al. (2006). Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. Journal of Thoracic and Cardiovascular Surgery, 132(1), 124–131.PubMed Siepe, M., Giraud, M. N., Pavlovic, M., Receputo, C., Beyersdorf, F., Menasche, P., et al. (2006). Myoblast-seeded biodegradable scaffolds to prevent post-myocardial infarction evolution toward heart failure. Journal of Thoracic and Cardiovascular Surgery, 132(1), 124–131.PubMed
89.
Zurück zum Zitat Chanseaume, S., Azarnoush, K., Maurel, A., Bellamy, V., Peyrard, S., Bruneval, P., et al. (2007). Can erythropoietin improve skeletal myoblast engraftment in infarcted myocardium? Interactive Cardiovascular Thoracic Surgery, 6(3), 293–297. Chanseaume, S., Azarnoush, K., Maurel, A., Bellamy, V., Peyrard, S., Bruneval, P., et al. (2007). Can erythropoietin improve skeletal myoblast engraftment in infarcted myocardium? Interactive Cardiovascular Thoracic Surgery, 6(3), 293–297.
90.
Zurück zum Zitat Christman, K. L., Vardanian, A. J., Fang, Q., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660.PubMed Christman, K. L., Vardanian, A. J., Fang, Q., Sievers, R. E., Fok, H. H., & Lee, R. J. (2004). Injectable fibrin scaffold improves cell transplant survival, reduces infarct expansion, and induces neovasculature formation in ischemic myocardium. Journal of the American College of Cardiology, 44(3), 654–660.PubMed
91.
Zurück zum Zitat Memon, I. A., Sawa, Y., Fukushima, N., Matsumiya, G., Miyagawa, S., Taketani, S., et al. (2005). Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. Journal of Thoracic and Cardiovascular Surgery, 130(5), 1333–1341.PubMed Memon, I. A., Sawa, Y., Fukushima, N., Matsumiya, G., Miyagawa, S., Taketani, S., et al. (2005). Repair of impaired myocardium by means of implantation of engineered autologous myoblast sheets. Journal of Thoracic and Cardiovascular Surgery, 130(5), 1333–1341.PubMed
92.
Zurück zum Zitat Kondoh, H., Sawa, Y., Fukushima, N., Matsumiya, G., Miyagawa, S., Kitagawa-Sakakida, S., et al. (2007). Combined strategy using myoblasts and hepatocyte growth factor in dilated cardiomyopathic hamsters. Annals of Thoracic Surgery, 84(1), 134–141.PubMed Kondoh, H., Sawa, Y., Fukushima, N., Matsumiya, G., Miyagawa, S., Kitagawa-Sakakida, S., et al. (2007). Combined strategy using myoblasts and hepatocyte growth factor in dilated cardiomyopathic hamsters. Annals of Thoracic Surgery, 84(1), 134–141.PubMed
93.
Zurück zum Zitat Ohno, N., Fedak, P. W., Weisel, R. D., Mickle, D. A., Fujii, T., & Li, R. K. (2003). Transplantation of cryopreserved muscle cells in dilated cardiomyopathy: Effects on left ventricular geometry and function. Journal of Thoracic and Cardiovascular Surgery, 126(5), 1537–1548.PubMed Ohno, N., Fedak, P. W., Weisel, R. D., Mickle, D. A., Fujii, T., & Li, R. K. (2003). Transplantation of cryopreserved muscle cells in dilated cardiomyopathy: Effects on left ventricular geometry and function. Journal of Thoracic and Cardiovascular Surgery, 126(5), 1537–1548.PubMed
94.
Zurück zum Zitat Pouly, J., Hagege, A. A., Vilquin, J. T., Bissery, A., Rouche, A., Bruneval, P., et al. (2004). Does the functional efficacy of skeletal myoblast transplantation extend to nonischemic cardiomyopathy? Circulation, 110(12), 1626–1631.PubMed Pouly, J., Hagege, A. A., Vilquin, J. T., Bissery, A., Rouche, A., Bruneval, P., et al. (2004). Does the functional efficacy of skeletal myoblast transplantation extend to nonischemic cardiomyopathy? Circulation, 110(12), 1626–1631.PubMed
95.
Zurück zum Zitat He, K. L., Yi, G. H., Sherman, W., Zhou, H., Zhang, G. P., Gu, A., et al. (2005). Autologous skeletal myoblast transplantation improved hemodynamics and left ventricular function in chronic heart failure dogs. Journal of Heart and Lung Transplantation, 24(11), 1940–1949.PubMed He, K. L., Yi, G. H., Sherman, W., Zhou, H., Zhang, G. P., Gu, A., et al. (2005). Autologous skeletal myoblast transplantation improved hemodynamics and left ventricular function in chronic heart failure dogs. Journal of Heart and Lung Transplantation, 24(11), 1940–1949.PubMed
96.
Zurück zum Zitat Memon, I. A., Sawa, Y., Miyagawa, S., Taketani, S., & Matsuda, H. (2005). Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 130(3), 646–653.PubMed Memon, I. A., Sawa, Y., Miyagawa, S., Taketani, S., & Matsuda, H. (2005). Combined autologous cellular cardiomyoplasty with skeletal myoblasts and bone marrow cells in canine hearts for ischemic cardiomyopathy. Journal of Thoracic and Cardiovascular Surgery, 130(3), 646–653.PubMed
97.
Zurück zum Zitat Dib, N., Diethrich, E. B., Campbell, A., Goodwin, N., Robinson, B., Gilbert, J., et al. (2002). Endoventricular transplantation of allogenic skeletal myoblasts in a porcine model of myocardial infarction. Journal of Endovascular Surgery, 9(3), 313–319. Dib, N., Diethrich, E. B., Campbell, A., Goodwin, N., Robinson, B., Gilbert, J., et al. (2002). Endoventricular transplantation of allogenic skeletal myoblasts in a porcine model of myocardial infarction. Journal of Endovascular Surgery, 9(3), 313–319.
98.
Zurück zum Zitat Kim, B. O., Tian, H., Prasongsukarn, K., Wu, J., Angoulvant, D., Wnendt, S., et al. (2005). Cell transplantation improves ventricular function after a myocardial infarction: A preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation, 112(9 Suppl), I96–I104.PubMed Kim, B. O., Tian, H., Prasongsukarn, K., Wu, J., Angoulvant, D., Wnendt, S., et al. (2005). Cell transplantation improves ventricular function after a myocardial infarction: A preclinical study of human unrestricted somatic stem cells in a porcine model. Circulation, 112(9 Suppl), I96–I104.PubMed
99.
Zurück zum Zitat Gavira, J. J., Perez-Ilzarbe, M., Abizanda, G., Garcia-Rodriguez, A., Orbe, J., Paramo, J. A., et al. (2006). A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Cardiovascular Research, 71(4), 744–753.PubMed Gavira, J. J., Perez-Ilzarbe, M., Abizanda, G., Garcia-Rodriguez, A., Orbe, J., Paramo, J. A., et al. (2006). A comparison between percutaneous and surgical transplantation of autologous skeletal myoblasts in a swine model of chronic myocardial infarction. Cardiovascular Research, 71(4), 744–753.PubMed
100.
Zurück zum Zitat Chachques, J. C., Cattadori, B., Herreros, J., Prosper, F., Trainini, J. C., Blanchard, D., et al. (2002). Treatment of heart failure with autologous skeletal myoblasts. Herz, 27(7), 570–578.PubMed Chachques, J. C., Cattadori, B., Herreros, J., Prosper, F., Trainini, J. C., Blanchard, D., et al. (2002). Treatment of heart failure with autologous skeletal myoblasts. Herz, 27(7), 570–578.PubMed
101.
Zurück zum Zitat Chachques, J. C., Duarte, F., Cattadori, B., Shafy, A., Lila, N., Chatellier, G., et al. (2004). Carpentier, Angiogenic growth factors and/or cellular therapy for myocardial regeneration: A comparative study. Journal of Thoracic and Cardiovascular Surgery, 128(2), 245–253.PubMed Chachques, J. C., Duarte, F., Cattadori, B., Shafy, A., Lila, N., Chatellier, G., et al. (2004). Carpentier, Angiogenic growth factors and/or cellular therapy for myocardial regeneration: A comparative study. Journal of Thoracic and Cardiovascular Surgery, 128(2), 245–253.PubMed
102.
Zurück zum Zitat Ghostine, S., Carrion, C., Souza, L. C., Richard, P., Bruneval, P., Vilquin, J. T., et al. (2002). Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation, 106(12 Suppl 1), I131–I136.PubMed Ghostine, S., Carrion, C., Souza, L. C., Richard, P., Bruneval, P., Vilquin, J. T., et al. (2002). Long-term efficacy of myoblast transplantation on regional structure and function after myocardial infarction. Circulation, 106(12 Suppl 1), I131–I136.PubMed
103.
Zurück zum Zitat McConnell, P. I., del Rio, C. L., Jacoby, D. B., Pavlicova, M., Kwiatkowski, P., Zawadzka, A., et al. (2005). Correlation of autologous skeletal myoblast survival with changes in left ventricular remodeling in dilated ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 130(4), 1001.PubMed McConnell, P. I., del Rio, C. L., Jacoby, D. B., Pavlicova, M., Kwiatkowski, P., Zawadzka, A., et al. (2005). Correlation of autologous skeletal myoblast survival with changes in left ventricular remodeling in dilated ischemic heart failure. Journal of Thoracic and Cardiovascular Surgery, 130(4), 1001.PubMed
104.
Zurück zum Zitat Brasselet, C., Morichetti, M. C., Messas, E., Carrion, C., Bissery, A., Bruneval, P., et al. (2005). Skeletal myoblast transplantation through a catheter-based coronary sinus approach: An effective means of improving function of infarcted myocardium. European Heart Journal, 26(15), 1551–1556.PubMed Brasselet, C., Morichetti, M. C., Messas, E., Carrion, C., Bissery, A., Bruneval, P., et al. (2005). Skeletal myoblast transplantation through a catheter-based coronary sinus approach: An effective means of improving function of infarcted myocardium. European Heart Journal, 26(15), 1551–1556.PubMed
105.
Zurück zum Zitat Dib, N., et al. (2005). Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: Four-year follow-up. Circulation, 112(12), 1748–1755.PubMed Dib, N., et al. (2005). Safety and feasibility of autologous myoblast transplantation in patients with ischemic cardiomyopathy: Four-year follow-up. Circulation, 112(12), 1748–1755.PubMed
106.
Zurück zum Zitat Hagege, A. A., Carrion, C., Menasche, P., Vilquin, J. T., Duboc, D., & Marolleau, J. P. (2003). Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet, 361(9356), 491–492.PubMed Hagege, A. A., Carrion, C., Menasche, P., Vilquin, J. T., Duboc, D., & Marolleau, J. P. (2003). Viability and differentiation of autologous skeletal myoblast grafts in ischaemic cardiomyopathy. Lancet, 361(9356), 491–492.PubMed
107.
Zurück zum Zitat Hagege, A. A., Marolleau, J. P., Vilquin, J. T., Alheritiere, A., Peyrard, S., Duboc, D., et al. (2006). Skeletal myoblast transplantation in ischemic heart failure: Long-term follow-up of the first phase i cohort of patients. Circulation, 114(1 Suppl), I108–I113.PubMed Hagege, A. A., Marolleau, J. P., Vilquin, J. T., Alheritiere, A., Peyrard, S., Duboc, D., et al. (2006). Skeletal myoblast transplantation in ischemic heart failure: Long-term follow-up of the first phase i cohort of patients. Circulation, 114(1 Suppl), I108–I113.PubMed
108.
Zurück zum Zitat Menasche, P., Hagege, A. A., Vilquin, J. T., Desnos, M., Abergel, E., Pouzet, B., et al. (2003). Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. Journal of the American College of Cardiology, 41(7), 1078–1083.PubMed Menasche, P., Hagege, A. A., Vilquin, J. T., Desnos, M., Abergel, E., Pouzet, B., et al. (2003). Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. Journal of the American College of Cardiology, 41(7), 1078–1083.PubMed
109.
Zurück zum Zitat Pagani, F. D., DerSimonian, H., Zawadzka, A., Wetzel, K., Edge, A. S., Jacoby, D. B., et al. (2003). Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. Journal of the American College of Cardiology, 41(5), 879–888.PubMed Pagani, F. D., DerSimonian, H., Zawadzka, A., Wetzel, K., Edge, A. S., Jacoby, D. B., et al. (2003). Autologous skeletal myoblasts transplanted to ischemia-damaged myocardium in humans. Histological analysis of cell survival and differentiation. Journal of the American College of Cardiology, 41(5), 879–888.PubMed
110.
Zurück zum Zitat Siminiak, T., Fiszer, D., Jerzykowska, O., Grygielska, B., Rozwadowska, N., Kalmucki, P., et al. (2005). Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: The poznan trial. European Heart Journal, 26(12), 1188–1195.PubMed Siminiak, T., Fiszer, D., Jerzykowska, O., Grygielska, B., Rozwadowska, N., Kalmucki, P., et al. (2005). Percutaneous trans-coronary-venous transplantation of autologous skeletal myoblasts in the treatment of post-infarction myocardial contractility impairment: The poznan trial. European Heart Journal, 26(12), 1188–1195.PubMed
111.
Zurück zum Zitat Smits, P. C., van Geuns, R. J., Poldermans, D., Bountioukos, M., Onderwater, E. E., Lee, C. H., et al. (2003). Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: Clinical experience with six-month follow-up. Journal of the American College of Cardiology, 42(12), 2063–2069.PubMed Smits, P. C., van Geuns, R. J., Poldermans, D., Bountioukos, M., Onderwater, E. E., Lee, C. H., et al. (2003). Catheter-based intramyocardial injection of autologous skeletal myoblasts as a primary treatment of ischemic heart failure: Clinical experience with six-month follow-up. Journal of the American College of Cardiology, 42(12), 2063–2069.PubMed
112.
Zurück zum Zitat Gavira, J. J., Herreros, J., Perez, A., Garcia-Velloso, M. J., Barba, J., Martin-Herrero, F., et al. (2006). Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. Journal of Thoracic and Cardiovascular Surgery, 131(4), 799–804.PubMed Gavira, J. J., Herreros, J., Perez, A., Garcia-Velloso, M. J., Barba, J., Martin-Herrero, F., et al. (2006). Autologous skeletal myoblast transplantation in patients with nonacute myocardial infarction: 1-year follow-up. Journal of Thoracic and Cardiovascular Surgery, 131(4), 799–804.PubMed
113.
Zurück zum Zitat Herreros, J., Prosper, F., Perez, A., Gavira, J. J., Garcia-Velloso, M. J., Barba, J., et al. (2003). Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. European Heart Journal, 24(22), 2012–2020.PubMed Herreros, J., Prosper, F., Perez, A., Gavira, J. J., Garcia-Velloso, M. J., Barba, J., et al. (2003). Autologous intramyocardial injection of cultured skeletal muscle-derived stem cells in patients with non-acute myocardial infarction. European Heart Journal, 24(22), 2012–2020.PubMed
114.
Zurück zum Zitat Smits, P. C., Nienaber, C., Colombo, A., Ince, H., Carlino, M., Theuns, D. A. M. J., et al. (2006). Myocardial repair by percutaneous cell transplantation of autologous skeletal myoblast as a stand alone procedure in post myocardial infarction chronic heart failure patients. EuroIntervention, 1, 417–424.PubMed Smits, P. C., Nienaber, C., Colombo, A., Ince, H., Carlino, M., Theuns, D. A. M. J., et al. (2006). Myocardial repair by percutaneous cell transplantation of autologous skeletal myoblast as a stand alone procedure in post myocardial infarction chronic heart failure patients. EuroIntervention, 1, 417–424.PubMed
115.
Zurück zum Zitat Chachques, J. C., Herreros, J., Trainini, J., Juffe, A., Rendal, E., Prosper, F., et al. (2004). Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. International journal of Cardiology, 95(Suppl 1), S29–S33.PubMed Chachques, J. C., Herreros, J., Trainini, J., Juffe, A., Rendal, E., Prosper, F., et al. (2004). Autologous human serum for cell culture avoids the implantation of cardioverter-defibrillators in cellular cardiomyoplasty. International journal of Cardiology, 95(Suppl 1), S29–S33.PubMed
116.
Zurück zum Zitat Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., Fike, J. R., Lee, H. O., Pfeffer, K., et al. (2003). Fusion of bone-marrow-derived cells with purkinje neurons, cardiomyocytes and hepatocytes. Nature, 425(6961), 968–973.PubMed Alvarez-Dolado, M., Pardal, R., Garcia-Verdugo, J. M., Fike, J. R., Lee, H. O., Pfeffer, K., et al. (2003). Fusion of bone-marrow-derived cells with purkinje neurons, cardiomyocytes and hepatocytes. Nature, 425(6961), 968–973.PubMed
117.
Zurück zum Zitat Menasche, P. (2007). Myoblast autologous grafting in ischemic cardiomyopathy (magic) trial. Clinical Cardiology, 30(2), 98. Menasche, P. (2007). Myoblast autologous grafting in ischemic cardiomyopathy (magic) trial. Clinical Cardiology, 30(2), 98.
118.
Zurück zum Zitat Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (topcare-ami). Circulation, 106(24), 3009–3017.PubMed Assmus, B., Schachinger, V., Teupe, C., Britten, M., Lehmann, R., Dobert, N., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (topcare-ami). Circulation, 106(24), 3009–3017.PubMed
119.
Zurück zum Zitat Dobert, N., Britten, M., Assmus, B., Berner, U., Menzel, C., Lehmann, R., et al. (2004). Transplantation of progenitor cells after reperfused acute myocardial infarction: Evaluation of perfusion and myocardial viability with fdg-pet and thallium spect. European Journal of Nuclear Medicine and Molecular Imaging, 31(8), 1146–1151.PubMed Dobert, N., Britten, M., Assmus, B., Berner, U., Menzel, C., Lehmann, R., et al. (2004). Transplantation of progenitor cells after reperfused acute myocardial infarction: Evaluation of perfusion and myocardial viability with fdg-pet and thallium spect. European Journal of Nuclear Medicine and Molecular Imaging, 31(8), 1146–1151.PubMed
120.
Zurück zum Zitat Engelmann, M. G., Theiss, H. D., Hennig-Theiss, C., Huber, A., Wintersperger, B. J., Werle-Ruedinger, A. E., et al. (2006). Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute st-segment elevation myocardial infarction undergoing late revascularization: Final results from the g-csf-stemi (granulocyte colony-stimulating factor st-segment elevation myocardial infarction) trial. Journal of the American College of Cardiology, 48(8), 1712–1721.PubMed Engelmann, M. G., Theiss, H. D., Hennig-Theiss, C., Huber, A., Wintersperger, B. J., Werle-Ruedinger, A. E., et al. (2006). Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute st-segment elevation myocardial infarction undergoing late revascularization: Final results from the g-csf-stemi (granulocyte colony-stimulating factor st-segment elevation myocardial infarction) trial. Journal of the American College of Cardiology, 48(8), 1712–1721.PubMed
121.
Zurück zum Zitat Perin, E. C., et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 107(18), 2294–2302.PubMed Perin, E. C., et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 107(18), 2294–2302.PubMed
122.
Zurück zum Zitat Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Silva, G. V., et al. (2004). Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation, 110(11 Suppl 1), II213–II218.PubMed Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Silva, G. V., et al. (2004). Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation, 110(11 Suppl 1), II213–II218.PubMed
123.
Zurück zum Zitat Stamm, C., Westphal, B., Kleine, H. D., Petzsch, M., Kittner, C., Klinge, H., et al. (2003). Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 361(9351), 45–46.PubMed Stamm, C., Westphal, B., Kleine, H. D., Petzsch, M., Kittner, C., Klinge, H., et al. (2003). Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 361(9351), 45–46.PubMed
124.
Zurück zum Zitat Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–1918.PubMed Strauer, B. E., Brehm, M., Zeus, T., Kostering, M., Hernandez, A., Sorg, R. V., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106(15), 1913–1918.PubMed
125.
Zurück zum Zitat Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The boost randomised controlled clinical trial. Lancet, 364(9429), 141–148.PubMed Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The boost randomised controlled clinical trial. Lancet, 364(9429), 141–148.PubMed
126.
Zurück zum Zitat Zohlnhofer, D., Ott, I., Mehilli, J., Schomig, K., Michalk, F., Ibrahim, T., et al. (2006). Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: A randomized controlled trial. JAMA, 295(9), 1003–1010.PubMed Zohlnhofer, D., Ott, I., Mehilli, J., Schomig, K., Michalk, F., Ibrahim, T., et al. (2006). Stem cell mobilization by granulocyte colony-stimulating factor in patients with acute myocardial infarction: A randomized controlled trial. JAMA, 295(9), 1003–1010.PubMed
127.
Zurück zum Zitat Ausoni, S., Zaglia, T., Dedja, A., Di Lisi, R., Seveso, M., Ancona, E. (2005). Host-derived circulating cells do not significantly contribute to cardiac regeneration in heterotopic rat heart transplants. Cardiovascular Research, 68(3), 394–404.PubMed Ausoni, S., Zaglia, T., Dedja, A., Di Lisi, R., Seveso, M., Ancona, E. (2005). Host-derived circulating cells do not significantly contribute to cardiac regeneration in heterotopic rat heart transplants. Cardiovascular Research, 68(3), 394–404.PubMed
128.
Zurück zum Zitat Matsuura, K., Wada, H., Nagai, T., Iijima, Y., Minamino, T., & Sano, M. (2004). Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. Journal of Cell Biology, 167(2), 351–363.PubMed Matsuura, K., Wada, H., Nagai, T., Iijima, Y., Minamino, T., & Sano, M. (2004). Cardiomyocytes fuse with surrounding noncardiomyocytes and reenter the cell cycle. Journal of Cell Biology, 167(2), 351–363.PubMed
129.
Zurück zum Zitat McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., Ferrari, G., Mavilio, F., & Goodell, M. A. (2002). Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1341–1346. McKinney-Freeman, S. L., Jackson, K. A., Camargo, F. D., Ferrari, G., Mavilio, F., & Goodell, M. A. (2002). Muscle-derived hematopoietic stem cells are hematopoietic in origin. Proceedings of the National Academy of Sciences of the United States of America, 99(3), 1341–1346.
130.
Zurück zum Zitat Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428(6983), 664–668.PubMed Murry, C. E., Soonpaa, M. H., Reinecke, H., Nakajima, H., Nakajima, H. O., Rubart, M., et al. (2004). Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 428(6983), 664–668.PubMed
131.
Zurück zum Zitat Nygren, J. M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., et al. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Natural Medicines, 10(5), 494–501. Nygren, J. M., Jovinge, S., Breitbach, M., Sawen, P., Roll, W., Hescheler, J., et al. (2004). Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Natural Medicines, 10(5), 494–501.
132.
Zurück zum Zitat Wagers, A. J., Sherwood, R. I. Christensen, J. L., & Weissman, I. L. (2002). Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 297(5590), 2256–2259.PubMed Wagers, A. J., Sherwood, R. I. Christensen, J. L., & Weissman, I. L. (2002). Little evidence for developmental plasticity of adult hematopoietic stem cells. Science, 297(5590), 2256–2259.PubMed
133.
Zurück zum Zitat Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. Cell, 116(5), 639–648.PubMed Wagers, A. J., & Weissman, I. L. (2004). Plasticity of adult stem cells. Cell, 116(5), 639–648.PubMed
134.
Zurück zum Zitat Okada, T. S., Yasuda, K., Kondoh, H., Nomura, K., Takagi, S., & Okuyama, K. (1982). Transdetermination and transdifferentiation of neural retinal cells into lens in cell culture. Progress in Clinical and Biological Research, 85(Pt A), 249–255.PubMed Okada, T. S., Yasuda, K., Kondoh, H., Nomura, K., Takagi, S., & Okuyama, K. (1982). Transdetermination and transdifferentiation of neural retinal cells into lens in cell culture. Progress in Clinical and Biological Research, 85(Pt A), 249–255.PubMed
135.
Zurück zum Zitat Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., & Vescovi, A. L. (1999). Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science, 283(5401)534–537.PubMed Bjornson, C. R., Rietze, R. L., Reynolds, B. A., Magli, M. C., & Vescovi, A. L. (1999). Turning brain into blood: A hematopoietic fate adopted by adult neural stem cells in vivo. Science, 283(5401)534–537.PubMed
136.
Zurück zum Zitat Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279(5356), 1528–1530.PubMed Ferrari, G., Cusella-De Angelis, G., Coletta, M., Paolucci, E., Stornaiuolo, A., Cossu, G., et al. (1998). Muscle regeneration by bone marrow-derived myogenic progenitors. Science, 279(5356), 1528–1530.PubMed
137.
Zurück zum Zitat Camargo, F. D., Green, R., Capetanaki, Y., Jackson, K. A., & Goodell, M. A. (2003). Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Natural Medicines, 9(12), 1520–1527. Camargo, F. D., Green, R., Capetanaki, Y., Jackson, K. A., & Goodell, M. A. (2003). Single hematopoietic stem cells generate skeletal muscle through myeloid intermediates. Natural Medicines, 9(12), 1520–1527.
138.
Zurück zum Zitat Corbel, S. Y., Lee, A., Yi, L., Duenas, J., Brazelton, T. R., Blau, H. M. (2003). Contribution of hematopoietic stem cells to skeletal muscle. Natural Medicines, 9(12), 1528–1532. Corbel, S. Y., Lee, A., Yi, L., Duenas, J., Brazelton, T. R., Blau, H. M. (2003). Contribution of hematopoietic stem cells to skeletal muscle. Natural Medicines, 9(12), 1528–1532.
139.
Zurück zum Zitat Jackson, K. A., Mi, T., & Goodell, M. A. (1999). Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 96(25), 14482–14486.PubMed Jackson, K. A., Mi, T., & Goodell, M. A. (1999). Hematopoietic potential of stem cells isolated from murine skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America, 96(25), 14482–14486.PubMed
140.
Zurück zum Zitat Kotton, D. N., Ma, B. Y., Cardoso, W. V., Sanderson, E. A., Summer, R. S., Williams, M. C., et al. (2001). Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development, 128(24), 5181–5188.PubMed Kotton, D. N., Ma, B. Y., Cardoso, W. V., Sanderson, E. A., Summer, R. S., Williams, M. C., et al. (2001). Bone marrow-derived cells as progenitors of lung alveolar epithelium. Development, 128(24), 5181–5188.PubMed
141.
Zurück zum Zitat Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S., Gardner, R., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105(3), 369–377.PubMed Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S., Gardner, R., et al. (2001). Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell, 105(3), 369–377.PubMed
142.
Zurück zum Zitat Yamada, M., Kubo, H., Kobayashi, S., Ishizawa, K., Numasaki, M., & Ueda, S. (2004). Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. Journal of Immunology, 172(2), 1266–1272. Yamada, M., Kubo, H., Kobayashi, S., Ishizawa, K., Numasaki, M., & Ueda, S. (2004). Bone marrow-derived progenitor cells are important for lung repair after lipopolysaccharide-induced lung injury. Journal of Immunology, 172(2), 1266–1272.
143.
Zurück zum Zitat Spees, J. L., Whitney, M. J., Sullivan, D. E., Lasky, J. A., Laboy, M., Ylostalo, J., and Prockop, D. J. (2007). Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a rat model of progressive pulmonary hypertension. FASEB J, DOI 10.1096/fj.07-8076com. Spees, J. L., Whitney, M. J., Sullivan, D. E., Lasky, J. A., Laboy, M., Ylostalo, J., and Prockop, D. J. (2007). Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a rat model of progressive pulmonary hypertension. FASEB J, DOI 10.​1096/​fj.​07-8076com.
144.
Zurück zum Zitat Brazelton, T. R., Rossi, F. M., Keshet, G. I., & Blau, H. M. (2000). From marrow to brain: Expression of neuronal phenotypes in adult mice. Science, 290(5497), 1775–1779.PubMed Brazelton, T. R., Rossi, F. M., Keshet, G. I., & Blau, H. M. (2000). From marrow to brain: Expression of neuronal phenotypes in adult mice. Science, 290(5497), 1775–1779.PubMed
145.
Zurück zum Zitat Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., & McKercher, S. R. (2000). Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science, 290(5497), 1779–1782.PubMed Mezey, E., Chandross, K. J., Harta, G., Maki, R. A., & McKercher, S. R. (2000). Turning blood into brain: Cells bearing neuronal antigens generated in vivo from bone marrow. Science, 290(5497), 1779–1782.PubMed
146.
Zurück zum Zitat Cogle, C. R., Yachnis, A. T., Laywell, E. D., Zander, D. S., Wingard, J. R., Steindler, D. A., et al. (2004). Bone marrow transdifferentiation in brain after transplantation: A retrospective study. Lancet, 363(9419), 1432–1437.PubMed Cogle, C. R., Yachnis, A. T., Laywell, E. D., Zander, D. S., Wingard, J. R., Steindler, D. A., et al. (2004). Bone marrow transdifferentiation in brain after transplantation: A retrospective study. Lancet, 363(9419), 1432–1437.PubMed
147.
Zurück zum Zitat Kohyama, J., Abe, H., Shimazaki, T., Koizumi, A., Nakashima, K., Gojo, S., et al. (2001). Brain from bone: Efficient “Meta-differentiation” Of marrow stroma-derived mature osteoblasts to neurons with noggin or a demethylating agent. Differentiation, 68(4–5), 235–244.PubMed Kohyama, J., Abe, H., Shimazaki, T., Koizumi, A., Nakashima, K., Gojo, S., et al. (2001). Brain from bone: Efficient “Meta-differentiation” Of marrow stroma-derived mature osteoblasts to neurons with noggin or a demethylating agent. Differentiation, 68(4–5), 235–244.PubMed
148.
Zurück zum Zitat Galli, R., Borello, U., Gritti, A., Minasi, M. G., Bjornson, C., Coletta, M., et al. (2000). Skeletal myogenic potential of human and mouse neural stem cells. Nature Neuroscience, 3(10), 986–991.PubMed Galli, R., Borello, U., Gritti, A., Minasi, M. G., Bjornson, C., Coletta, M., et al. (2000). Skeletal myogenic potential of human and mouse neural stem cells. Nature Neuroscience, 3(10), 986–991.PubMed
149.
Zurück zum Zitat Theise, N. D., Badve, S., Saxena, R., Henegariu, O., Sell, S., Crawford, J. M., et al. (2000). Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology, 31(1), 235–240.PubMed Theise, N. D., Badve, S., Saxena, R., Henegariu, O., Sell, S., Crawford, J. M., et al. (2000). Derivation of hepatocytes from bone marrow cells in mice after radiation-induced myeloablation. Hepatology, 31(1), 235–240.PubMed
150.
Zurück zum Zitat Theise, N. D., Nimmakayalu, M., Gardner, R., Illei, P. B., Morgan, G., Teperman, L., et al. (2000). Liver from bone marrow in humans. Hepatology, 32(1), 11–16.PubMed Theise, N. D., Nimmakayalu, M., Gardner, R., Illei, P. B., Morgan, G., Teperman, L., et al. (2000). Liver from bone marrow in humans. Hepatology, 32(1), 11–16.PubMed
151.
Zurück zum Zitat Palapattu, G. S., Meeker, A., Harris, T., Collector, M. I., Sharkis, S. J., DeMarzo, A. M., et al. (2006). Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium. Journal of Urology, 176(2), 813–818.PubMed Palapattu, G. S., Meeker, A., Harris, T., Collector, M. I., Sharkis, S. J., DeMarzo, A. M., et al. (2006). Epithelial architectural destruction is necessary for bone marrow derived cell contribution to regenerating prostate epithelium. Journal of Urology, 176(2), 813–818.PubMed
152.
Zurück zum Zitat Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J. Majesky, M. W., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 107(11), 1395–1402.PubMedCrossRef Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J. Majesky, M. W., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. Journal of Clinical Investigation, 107(11), 1395–1402.PubMedCrossRef
153.
Zurück zum Zitat Vassilopoulos, G., Wang, P. R., & Russell, D. W. (2003). Transplanted bone marrow regenerates liver by cell fusion. Nature, 422(6934), 901–904.PubMed Vassilopoulos, G., Wang, P. R., & Russell, D. W. (2003). Transplanted bone marrow regenerates liver by cell fusion. Nature, 422(6934), 901–904.PubMed
154.
Zurück zum Zitat Wang, X., Willenbring, H., Akkari, Y., Torimaru, Y., Foster, M., Al-Dhalimy, M., et al. (2003). Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 422(6934), 897–901.PubMed Wang, X., Willenbring, H., Akkari, Y., Torimaru, Y., Foster, M., Al-Dhalimy, M., et al. (2003). Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 422(6934), 897–901.PubMed
155.
Zurück zum Zitat Morshead, C. M., Benveniste, P., Iscove, N. N., & van der Kooy, D. (2002). Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Natural Medicines, 8(3), 268–273. Morshead, C. M., Benveniste, P., Iscove, N. N., & van der Kooy, D. (2002). Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations. Natural Medicines, 8(3), 268–273.
156.
Zurück zum Zitat Kotton, D.N., Fabian, A. J., & Mulligan, R. C. (2005). Failure of bone marrow to reconstitute lung epithelium. American Journal of Respiratory Cell and Molecular Biology, 33(4), 328–334.PubMed Kotton, D.N., Fabian, A. J., & Mulligan, R. C. (2005). Failure of bone marrow to reconstitute lung epithelium. American Journal of Respiratory Cell and Molecular Biology, 33(4), 328–334.PubMed
157.
Zurück zum Zitat Chang, J. C., Summer, R., Sun, X., Fitzsimmons, K., & Fine, A. (2005). Evidence that bone marrow cells do not contribute to the alveolar epithelium. American Journal of Respiratory Cell and Molecular Biology, 33(4), 335–342.PubMed Chang, J. C., Summer, R., Sun, X., Fitzsimmons, K., & Fine, A. (2005). Evidence that bone marrow cells do not contribute to the alveolar epithelium. American Journal of Respiratory Cell and Molecular Biology, 33(4), 335–342.PubMed
158.
Zurück zum Zitat Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al.(2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705.PubMed Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al.(2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705.PubMed
159.
Zurück zum Zitat Janssens, S., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with st-segment elevation myocardial infarction: Double-blind, randomised controlled trial. Lancet, 367(9505), 113–121.PubMed Janssens, S., et al. (2006). Autologous bone marrow-derived stem-cell transfer in patients with st-segment elevation myocardial infarction: Double-blind, randomised controlled trial. Lancet, 367(9505), 113–121.PubMed
160.
Zurück zum Zitat Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months’ follow-up data from the randomized, controlled boost (bone marrow transfer to enhance st-elevation infarct regeneration) trial. Circulation, 113(10), 1287–1294.PubMed Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months’ follow-up data from the randomized, controlled boost (bone marrow transfer to enhance st-elevation infarct regeneration) trial. Circulation, 113(10), 1287–1294.PubMed
161.
Zurück zum Zitat Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.PubMed Beltrami, A. P., Barlucchi, L., Torella, D., Baker, M., Limana, F., Chimenti, S., et al. (2003). Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell, 114(6), 763–776.PubMed
162.
Zurück zum Zitat Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., et al. (2004). Persistent expression of the atp-binding cassette transporter, abcg2, identifies cardiac sp cells in the developing and adult heart. Developments in Biologicals, 265(1), 262–275. Martin, C. M., Meeson, A. P., Robertson, S. M., Hawke, T. J., Richardson, J. A., Bates, S., et al. (2004). Persistent expression of the atp-binding cassette transporter, abcg2, identifies cardiac sp cells in the developing and adult heart. Developments in Biologicals, 265(1), 262–275.
163.
Zurück zum Zitat Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., Fine, A., et al. (2005). Cd31- but not cd31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research, 97(1), 52–61.PubMed Pfister, O., Mouquet, F., Jain, M., Summer, R., Helmes, M., Fine, A., et al. (2005). Cd31- but not cd31+ cardiac side population cells exhibit functional cardiomyogenic differentiation. Circulation Research, 97(1), 52–61.PubMed
164.
Zurück zum Zitat Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115(7), 896–908.PubMed Smith, R. R., Barile, L., Cho, H. C., Leppo, M. K., Hare, J. M., Messina, E., et al. (2007). Regenerative potential of cardiosphere-derived cells expanded from percutaneous endomyocardial biopsy specimens. Circulation, 115(7), 896–908.PubMed
165.
Zurück zum Zitat Dawn, B., Stein, A. B., Urbanek, K., Rota, M., Whang, B., Rastaldo, R., et al. (2005). Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3766–3771.PubMed Dawn, B., Stein, A. B., Urbanek, K., Rota, M., Whang, B., Rastaldo, R., et al. (2005). Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proceedings of the National Academy of Sciences of the United States of America, 102(10), 3766–3771.PubMed
166.
Zurück zum Zitat Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., et al. (2004). Adult cardiac sca-1-positive cells differentiate into beating cardiomyocytes. Journal of Biological Chemistry, 279(12), 11384–11391.PubMed Matsuura, K., Nagai, T., Nishigaki, N., Oyama, T., Nishi, J., Wada, H., et al. (2004). Adult cardiac sca-1-positive cells differentiate into beating cardiomyocytes. Journal of Biological Chemistry, 279(12), 11384–11391.PubMed
167.
Zurück zum Zitat Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., et al. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell, 5(6), 877–889.PubMed Cai, C. L., Liang, X., Shi, Y., Chu, P. H., Pfaff, S. L., Chen, J., et al. (2003). Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev Cell, 5(6), 877–889.PubMed
168.
Zurück zum Zitat Sun, Y., Liang, X., Najafi, N., Cass, M., Lin, L., Cai, C. L., et al. (2007). Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Developments in Biologicals, 304(1), 286–296. Sun, Y., Liang, X., Najafi, N., Cass, M., Lin, L., Cai, C. L., et al. (2007). Islet 1 is expressed in distinct cardiovascular lineages, including pacemaker and coronary vascular cells. Developments in Biologicals, 304(1), 286–296.
169.
Zurück zum Zitat Cao, F., Lin, S., Xie, X., Ray, P., Patel, M., Zhang, X., et al. (2006). In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation, 113(7), 1005–1014.PubMed Cao, F., Lin, S., Xie, X., Ray, P., Patel, M., Zhang, X., et al. (2006). In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation, 113(7), 1005–1014.PubMed
170.
Zurück zum Zitat Swijnenburg, R. J., Tanaka, M., Vogel, H., Baker, J., Kofidis, T., Gunawan, F., et al. (2005). Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation, 112(9 Suppl), I166–I172.PubMed Swijnenburg, R. J., Tanaka, M., Vogel, H., Baker, J., Kofidis, T., Gunawan, F., et al. (2005). Embryonic stem cell immunogenicity increases upon differentiation after transplantation into ischemic myocardium. Circulation, 112(9 Suppl), I166–I172.PubMed
171.
Zurück zum Zitat Passier, R., Oostwaard, D. W., Snapper, J., Kloots, J., Hassink, R. J., Kuijk, E., et al. (2005). Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells, 23(6), 772–780.PubMed Passier, R., Oostwaard, D. W., Snapper, J., Kloots, J., Hassink, R. J., Kuijk, E., et al. (2005). Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells, 23(6), 772–780.PubMed
172.
Zurück zum Zitat Zandstra, P. W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., et al. (2003). Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Engineering, 9(4), 767–778.PubMed Zandstra, P. W., Bauwens, C., Yin, T., Liu, Q., Schiller, H., Zweigerdt, R., et al. (2003). Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Engineering, 9(4), 767–778.PubMed
173.
Zurück zum Zitat Lanza, R. P., Chung, H. Y., Yoo, J. J., Wettstein, P. J., Blackwell, C., Borson, N., et al. (2002). Generation of histocompatible tissues using nuclear transplantation. Nature Biotechnology, 20(7), 689–696.PubMed Lanza, R. P., Chung, H. Y., Yoo, J. J., Wettstein, P. J., Blackwell, C., Borson, N., et al. (2002). Generation of histocompatible tissues using nuclear transplantation. Nature Biotechnology, 20(7), 689–696.PubMed
174.
Zurück zum Zitat Newell, K. A., Larsen, C. P., & Kirk, A. D. (2006). Transplant tolerance: Converging on a moving target. Transplantation, 81(1), 1–6.PubMed Newell, K. A., Larsen, C. P., & Kirk, A. D. (2006). Transplant tolerance: Converging on a moving target. Transplantation, 81(1), 1–6.PubMed
175.
Zurück zum Zitat Rubart, M., & Field, L. J. (2007). Es cells for troubled hearts. Nature Biotechnology, 25(9), 993–994.PubMed Rubart, M., & Field, L. J. (2007). Es cells for troubled hearts. Nature Biotechnology, 25(9), 993–994.PubMed
176.
Zurück zum Zitat Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.PubMed Laflamme, M. A., Chen, K. Y., Naumova, A. V., Muskheli, V., Fugate, J. A., Dupras, S. K., et al. (2007). Cardiomyocytes derived from human embryonic stem cells in pro-survival factors enhance function of infarcted rat hearts. Nature Biotechnology, 25(9), 1015–1024.PubMed
177.
Zurück zum Zitat Pasumarthi, K. B., & Field, L. J. (2002). Cardiomyocyte enrichment in differentiating es cell cultures: Strategies and applications. Methods in Molecular Biology, 185, 157–168.PubMed Pasumarthi, K. B., & Field, L. J. (2002). Cardiomyocyte enrichment in differentiating es cell cultures: Strategies and applications. Methods in Molecular Biology, 185, 157–168.PubMed
178.
Zurück zum Zitat Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21(7), 1345–1357.PubMed Nussbaum, J., Minami, E., Laflamme, M. A., Virag, J. A., Ware, C. B., Masino, A., et al. (2007). Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB Journal, 21(7), 1345–1357.PubMed
179.
Zurück zum Zitat Deacon, T., Dinsmore, J., Costantini, L. C., Ratliff, J., & Isacson, O. (1998). Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Experimental Neurology, 149(1), 28–41.PubMed Deacon, T., Dinsmore, J., Costantini, L. C., Ratliff, J., & Isacson, O. (1998). Blastula-stage stem cells can differentiate into dopaminergic and serotonergic neurons after transplantation. Experimental Neurology, 149(1), 28–41.PubMed
180.
Zurück zum Zitat Henning, R. J., Abu-Ali, H., Balis, J. U., Morgan, M. B., Willing, A. E., & Sanberg, P. R. (2004). Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant, 13(7–8), 729–739.PubMed Henning, R. J., Abu-Ali, H., Balis, J. U., Morgan, M. B., Willing, A. E., & Sanberg, P. R. (2004). Human umbilical cord blood mononuclear cells for the treatment of acute myocardial infarction. Cell Transplant, 13(7–8), 729–739.PubMed
181.
Zurück zum Zitat Ma, N., Stamm, C., Kaminski, A., Li, W., Kleine, H. D., Muller-Hilke, B., et al. (2005). Human cord blood cells induce angiogenesis following myocardial infarction in nod/scid-mice. Cardiovascular Research, 66(1), 45–54.PubMed Ma, N., Stamm, C., Kaminski, A., Li, W., Kleine, H. D., Muller-Hilke, B., et al. (2005). Human cord blood cells induce angiogenesis following myocardial infarction in nod/scid-mice. Cardiovascular Research, 66(1), 45–54.PubMed
182.
Zurück zum Zitat Koller, M. R., Manchel, I., Maher, R. J., Goltry, K. L., Armstrong, R. D., & Smith, A. K. (1998). Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplant, 21(7), 653–663.PubMed Koller, M. R., Manchel, I., Maher, R. J., Goltry, K. L., Armstrong, R. D., & Smith, A. K. (1998). Clinical-scale human umbilical cord blood cell expansion in a novel automated perfusion culture system. Bone Marrow Transplant, 21(7), 653–663.PubMed
183.
Zurück zum Zitat Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., & McKay, R. D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnology, 18(6), 675–679.PubMed Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., & McKay, R. D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnology, 18(6), 675–679.PubMed
184.
Zurück zum Zitat Agbulut, O., Coirault, C., Niederlander, N., Huet, A., Vicart, P., Hagege, A., et al. (2006). Gfp expression in muscle cells impairs actin–myosin interactions: Implications for cell therapy. Nature Methods, 3(5), 331.PubMed Agbulut, O., Coirault, C., Niederlander, N., Huet, A., Vicart, P., Hagege, A., et al. (2006). Gfp expression in muscle cells impairs actin–myosin interactions: Implications for cell therapy. Nature Methods, 3(5), 331.PubMed
185.
Zurück zum Zitat Niagara, M. I., Haider, H., Ye, L., Koh, V. S., Lim, Y. T., Poh, K. K., et al. (2004). Autologous skeletal myoblasts transduced with a new adenoviral bicistronic vector for treatment of hind limb ischemia. Journal of Vascular Surgery, 40(4), 774–785. Niagara, M. I., Haider, H., Ye, L., Koh, V. S., Lim, Y. T., Poh, K. K., et al. (2004). Autologous skeletal myoblasts transduced with a new adenoviral bicistronic vector for treatment of hind limb ischemia. Journal of Vascular Surgery, 40(4), 774–785.
186.
Zurück zum Zitat Suzuki, K., Murtuza, B., Beauchamp, J. R., Brand, N. J., Barton, P. J., Varela-Carver, A., et al. (2004). Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation, 110(11 Suppl 1), II219–II224.PubMed Suzuki, K., Murtuza, B., Beauchamp, J. R., Brand, N. J., Barton, P. J., Varela-Carver, A., et al. (2004). Role of interleukin-1beta in acute inflammation and graft death after cell transplantation to the heart. Circulation, 110(11 Suppl 1), II219–II224.PubMed
187.
Zurück zum Zitat Suzuki, K., Murtuza, B., Beauchamp, J. R., Smolenski, R. T., Varela-Carver, A., Fukushima, S., et al. (2004). Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB Journal, 18(10)1153–1155.PubMed Suzuki, K., Murtuza, B., Beauchamp, J. R., Smolenski, R. T., Varela-Carver, A., Fukushima, S., et al. (2004). Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. FASEB Journal, 18(10)1153–1155.PubMed
188.
Zurück zum Zitat Xu, H. X., Li, G. S., Jiang, H., Wang, J., Lu, J. J., Jiang, W., et al. (2004). Implantation of bm cells transfected with phvegf165 enhances functional improvement of the infarcted heart. Cytotherapy, 6(3), 204–211.PubMed Xu, H. X., Li, G. S., Jiang, H., Wang, J., Lu, J. J., Jiang, W., et al. (2004). Implantation of bm cells transfected with phvegf165 enhances functional improvement of the infarcted heart. Cytotherapy, 6(3), 204–211.PubMed
189.
Zurück zum Zitat Yau, T. M., Kim, C., Li, G., Zhang, Y., Weisel, R. D., & Li, R. K. (2005). Maximizing ventricular function with multimodal cell-based gene therapy. Circulation, 112(9 Suppl), I123–I128.PubMed Yau, T. M., Kim, C., Li, G., Zhang, Y., Weisel, R. D., & Li, R. K. (2005). Maximizing ventricular function with multimodal cell-based gene therapy. Circulation, 112(9 Suppl), I123–I128.PubMed
190.
Zurück zum Zitat Barbero, A., Benelli, R., Minghelli, S., Tosetti, F., Dorcaratto, A., Ponzetto, C., et al. (2001). Growth factor supplemented matrigel improves ectopic skeletal muscle formation—a cell therapy approach. Journal of Cellular Physiology, 186(2), 183–192.PubMed Barbero, A., Benelli, R., Minghelli, S., Tosetti, F., Dorcaratto, A., Ponzetto, C., et al. (2001). Growth factor supplemented matrigel improves ectopic skeletal muscle formation—a cell therapy approach. Journal of Cellular Physiology, 186(2), 183–192.PubMed
191.
Zurück zum Zitat Christman, K. L., Fang, Q., Yee, M. S., Johnson, K. R., Sievers, R. E., & Lee, R. J. (2005). Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials, 26(10), 1139–1144.PubMed Christman, K. L., Fang, Q., Yee, M. S., Johnson, K. R., Sievers, R. E., & Lee, R. J. (2005). Enhanced neovasculature formation in ischemic myocardium following delivery of pleiotrophin plasmid in a biopolymer. Biomaterials, 26(10), 1139–1144.PubMed
192.
Zurück zum Zitat Kawamoto, A., Murayama, T., Kusano, K., Ii, M., Tkebuchava, T., Shintani, S., et al. (2004). Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation, 110(11), 1398–1405.PubMed Kawamoto, A., Murayama, T., Kusano, K., Ii, M., Tkebuchava, T., Shintani, S., et al. (2004). Synergistic effect of bone marrow mobilization and vascular endothelial growth factor-2 gene therapy in myocardial ischemia. Circulation, 110(11), 1398–1405.PubMed
193.
Zurück zum Zitat Kofidis, T., de Bruin, J. L., Yamane, T., Tanaka, M., Lebl, D. R., Swijnenburg, R. J., et al. (2005). Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation, 111(19), 2486–2493.PubMed Kofidis, T., de Bruin, J. L., Yamane, T., Tanaka, M., Lebl, D. R., Swijnenburg, R. J., et al. (2005). Stimulation of paracrine pathways with growth factors enhances embryonic stem cell engraftment and host-specific differentiation in the heart after ischemic myocardial injury. Circulation, 111(19), 2486–2493.PubMed
194.
Zurück zum Zitat Kofidis, T., Lebl, D. R., Martinez, E. C., Hoyt, G., Tanaka, M., & Robbins, R. C. (2005). Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation, 112(9 Suppl), I173–I177.PubMed Kofidis, T., Lebl, D. R., Martinez, E. C., Hoyt, G., Tanaka, M., & Robbins, R. C. (2005). Novel injectable bioartificial tissue facilitates targeted, less invasive, large-scale tissue restoration on the beating heart after myocardial injury. Circulation, 112(9 Suppl), I173–I177.PubMed
195.
Zurück zum Zitat Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A., et al. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 Suppl), I135–I143.PubMed Robinson, K. A., Li, J., Mathison, M., Redkar, A., Cui, J., Chronos, N. A., et al. (2005). Extracellular matrix scaffold for cardiac repair. Circulation, 112(9 Suppl), I135–I143.PubMed
196.
Zurück zum Zitat Conconi, M. T., De Coppi, P., Bellini, S., Zara, G., Sabatti, M., Marzaro, M., et al. (2005). Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair. Biomaterials, 26(15), 2567–2574.PubMed Conconi, M. T., De Coppi, P., Bellini, S., Zara, G., Sabatti, M., Marzaro, M., et al. (2005). Homologous muscle acellular matrix seeded with autologous myoblasts as a tissue-engineering approach to abdominal wall-defect repair. Biomaterials, 26(15), 2567–2574.PubMed
197.
Zurück zum Zitat Hill, E., Boontheekul, T., & Mooney, D. J. (2006). Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Engineering, 12(5), 1295–1303.PubMed Hill, E., Boontheekul, T., & Mooney, D. J. (2006). Designing scaffolds to enhance transplanted myoblast survival and migration. Tissue Engineering, 12(5), 1295–1303.PubMed
Metadaten
Titel
Stem Cells and Cardiac Repair: A Critical Analysis
verfasst von
Jonathan H. Dinsmore
Nabil Dib
Publikationsdatum
01.03.2008
Verlag
Springer US
Erschienen in
Journal of Cardiovascular Translational Research / Ausgabe 1/2008
Print ISSN: 1937-5387
Elektronische ISSN: 1937-5395
DOI
https://doi.org/10.1007/s12265-007-9008-7

Weitere Artikel der Ausgabe 1/2008

Journal of Cardiovascular Translational Research 1/2008 Zur Ausgabe

„Übersichtlicher Wegweiser“: Lauterbachs umstrittener Klinik-Atlas ist online

17.05.2024 Klinik aktuell Nachrichten

Sie sei „ethisch geboten“, meint Gesundheitsminister Karl Lauterbach: mehr Transparenz über die Qualität von Klinikbehandlungen. Um sie abzubilden, lässt er gegen den Widerstand vieler Länder einen virtuellen Klinik-Atlas freischalten.

„Jeder Fall von plötzlichem Tod muss obduziert werden!“

17.05.2024 Plötzlicher Herztod Nachrichten

Ein signifikanter Anteil der Fälle von plötzlichem Herztod ist genetisch bedingt. Um ihre Verwandten vor diesem Schicksal zu bewahren, sollten jüngere Personen, die plötzlich unerwartet versterben, ausnahmslos einer Autopsie unterzogen werden.

Hirnblutung unter DOAK und VKA ähnlich bedrohlich

17.05.2024 Direkte orale Antikoagulanzien Nachrichten

Kommt es zu einer nichttraumatischen Hirnblutung, spielt es keine große Rolle, ob die Betroffenen zuvor direkt wirksame orale Antikoagulanzien oder Marcumar bekommen haben: Die Prognose ist ähnlich schlecht.

Schlechtere Vorhofflimmern-Prognose bei kleinem linken Ventrikel

17.05.2024 Vorhofflimmern Nachrichten

Nicht nur ein vergrößerter, sondern auch ein kleiner linker Ventrikel ist bei Vorhofflimmern mit einer erhöhten Komplikationsrate assoziiert. Der Zusammenhang besteht nach Daten aus China unabhängig von anderen Risikofaktoren.

Update Kardiologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.