Skip to main content
Erschienen in: Reproductive Biology and Endocrinology 1/2012

Open Access 01.12.2012 | Research

Steroidogenic and maturation-inducing potency of native gonadotropic hormones in female chub mackerel, Scomber japonicus

verfasst von: Hirofumi Ohga, Kensuke Kaneko, Akio Shimizu, Hajime Kitano, Sethu Selvaraj, Mitsuo Nyuji, Hayato Adachi, Akihiko Yamaguchi, Michiya Matsuyama

Erschienen in: Reproductive Biology and Endocrinology | Ausgabe 1/2012

Abstract

Background

The gonadotropins (GtHs), follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are produced in the pituitary gland and regulates gametogenesis through production of gonadal steroids. However, respective roles of two GtHs in the teleosts are still incompletely characterized due to technical difficulties in the purification of native GtHs.

Methods

Native FSH and LH were purified from the pituitaries of adult chub mackerel, Scomber japonicus by anion-exchange chromatography and immunoblotting using specific antisera. The steroidogenic potency of the intact chub mackerel FSH (cmFSH) and LH (cmLH) were evaluated in mid- and late-vitellogenic stage follicles by measuring the level of gonadal steroids, estradiol-17beta (Ε2) and 17,20beta-dihydroxy-4-pregnen-3-one (17,20beta-P). In addition, we evaluated the maturation-inducing potency of the GtHs on same stage follicles.

Results

Both cmFSH and cmLH significantly stimulated E2 production in mid-vitellogenic stage follicles. In contrast, only LH significantly stimulated the production of 17,20beta-P in late-vitellogenic stage follicles. Similarly, cmLH induced final oocyte maturation (FOM) in late-vitellogenic stage follicles.

Conclusions

Present results indicate that both FSH and LH may regulate vitellogenic processes, whereas only LH initiates FOM in chub mackerel.
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1186/​1477-7827-10-71) contains supplementary material, which is available to authorized users.

Competing interests

The authors declare that they have no competing interests.

Background

In teleosts and other vertebrates, reproductive processes are regulated by a network of endocrine hormones on the brain–pituitary–gonad (BPG) axis. Pituitary gonadotropins (GtHs), follicle-stimulating hormone (FSH), and luteinizing hormone (LH), are key central signaling molecules on the BPG axis. GtHs regulate different stages of ovarian development by stimulating gonadal steroid production in the somatic cells surrounding the germ cells [1, 2]. In mammalian vertebrates, the physiological roles of GtHs are well established; FSH regulates ovarian follicular development and LH promotes follicular maturation [3]. However, the role of GtHs in teleosts reproduction is still incompletely characterized, mainly due to diverse reproductive strategies and technical difficulties in the purification of native GtHs.
Specific roles for teleost GtHs have been revealed mainly in salmonids, which exhibit synchronous or group-synchronous ovarian development and spawn single batch of eggs. These features enable an easy correlation between changes in endocrine hormones and ovarian development. Moreover, homologous immunoassays for measuring pituitary/plasma FSH and LH and purified native GtHs are already available for salmonids. Plasma FSH levels are high during the early phase of vitellogenesis, whereas LH increases during the maturational phase such as final oocyte maturation (FOM) and ovulation in salmonids [47]. In addition, in vitro and in vivo experiments using purified GtHs have shown that FSH is involved in the vitellogenic growth of oocytes by stimulating estradiol-17β (Ε2) production, whereas LH mediates FOM through the production of the maturation-inducing steroid (MIS), 17,20β-dihydroxy-4-pregnen-3-one (17,20β-P) [8, 9]. In contrast, species with asynchronous ovarian development show multiple batch spawning and exhibit complex dynamics in their follicular development. Since vitellogenesis and oocyte maturation occur simultaneously in one ovary [10], ovarian follicles are likely to be exposed to both FSH and LH regardless of their developmental status [11]. Hence, regulating the synthesis and secretion of pituitary GtH is likely more complicated during the spawning cycle.
Pituitary GtHs have been isolated in several fish species to clarify their roles in ovarian growth and maturation. Some in vitro experiments using purified GtHs have been performed in perciform fish (red seabream Pagrus major[1214]; bigeye tuna Thunnus obesus[15]; European sea bass Dicentrarchus labrax[16]). In red seabream, LH stimulated E2 production by vitellogenic follicles in a dose-dependent manner; however, FSH showed no potency to stimulate E2 production [14]. In bigeye tuna, both FSH and LH stimulated E2 production by vitellogenic ovarian tissue [15]. In female European sea bass, FSH stimulated release of E2 from ovarian fragment in dose-dependent manner [16]. These results suggest that GtH functions differ depending on species in even the perciform fishes. Furthermore, no in vitro experiments on MIS production using purified GtHs have been performed in perciform fish.
The Japanese chub mackerel, Scomber japonicus, belongs to the order Perciformes, and is widely distributed throughout temperate and subtropical waters of the Pacific Ocean. This species is one of the most important commercially utilized fish in Japan. Similar to many other perciform fish, chub mackerel exhibits multiple spawning and asynchronous ovarian development [17]. Due to unreliable and unpredictable wild catches, aquaculture of the chub mackerel has commenced in southwestern Japan using young or adult fish captured from the wild. This system allows for fish sampling throughout the year to conduct endocrinological studies. Our group has already characterized the upstream signaling molecules to GtHs, namely kisspeptins and gonadotropin-releasing hormones, and has demonstrated their involvement in the reproductive cycle of chub mackerel [1821]. Moreover, immunoreactive changes in pituitary FSH and LH content and transcriptional changes in pituitary GtH subunits during the seasonal reproductive and spawning cycles of female chub mackerel indicated that FSH is involved in vitellogenesis, whereas LH functions during both vitellogenesis and FOM [22, 23].
In the present study, we purified chub mackerel FSH (cmFSH) and LH (cmLH) from the pituitaries of adult fish and analyzed their in vitro steroidogenic and maturation-inducing potencies to clarify the roles of FSH and LH during ovarian growth and maturation in chub mackerel.

Methods

Pituitary collection

Sexually mature male and female chub mackerel were obtained from Nagasaki Fish Market in March 2009, just prior to the spawning season. Whole pituitary glands (n = 90) were taken from both sexes and frozen immediately in liquid nitrogen and stored at −80°C until use.

GtHs extraction

Pooled pituitaries were homogenized in 35% ethanol-10% ammonium acetate (pH 6.1) containing protease inhibitor cocktail (Complete; Boehringer Mannheim Gmbh Biochemica, Basel) on ice. The homogenate was placed for 18 h at 4°C and centrifuged to obtain supernatant. The cold ethanol corresponding to 4 times volume of supernatant was added slowly and kept at 4°C for 24 h. Ethanol-added supernatant was re-centrifuged for gaining precipitate.

Chromatography procedure

The precipitate was dissolved in 20 mM ammonium bicarbonate (pH 8.7) and applied to a DEAE cellulose anion exchange chromatography (DEAE MemSEq 1010 cartridge, Millipore, MA) on anion-exchange high-performance liquid chromatography system. On this step, column was also equilibrated with 20 mM ammonium bicarbonate (pH 8.7). Adsorbed proteins were eluted with a linear gradient of 20–500 mM ammonium bicarbonate (pH 8.7) and fraction size was set to be 1 ml/tube. The part of fractions were lyophilized and subjected to an immunoblotting step.

Electrophoresis

For biochemical analysis of purified proteins, 14% slab type of sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and 7.5% slab type of native polyacrylamide gel electrophoresis (native-PAGE) in Tris-buffer system was operated. SDS-PAGE and native-PAGE procedures were carried out according to Laemmli [24]. After electrophoresis, both PAGE gels were stained with Coomassie brilliant blue (CBB).

Western blotting

Western blotting procedure was carried out according to Shimizu and Yamashita [25]. Antisera used were Fh FSHβ 50–60 (003 antisera) and Fh LHβ 91–106 (299 antisera), raised against synthetic fragment peptides of mummichog Fundulus heteroclitus FSHβ and LHβ [25]. We already ascertained that both 003 and 299 antisera show strong immunoreaction for chub mackerel FSH and LH cells, respectively [22, 26]. Subsequent to identification of the cmFSH and cmLH rich fractions using the above two antibodies, pooled fractions were concentrated using ultrafilter and tested directly for in vitro bioassay.

N-terminal amino acid sequencing

To identify the GPα subunits, N-terminal amino acid sequencing was conducted. Protein samples were spotted onto the PVDF membrane and were subjected to N-terminal amino acid sequence analysis by a gas-phase protein sequencer (Applied Biosystems).

Animals

Adult chub mackerel reared in sea pens at a fish farm were transported to the Fishery Research Laboratory, Kyushu University, Fukuoka Prefecture, and stocked in a concrete outdoor tank with running sea water. Captive female fish in this season has fully grown ovaries just prior to FOM [17]. Fish were killed by decapitation just before the assay and vitellogenic ovaries were removed and placed in ice-cold saline solution (0.8% NaCl containing 0.042% KCL, 0.025% CaCl2 and 0.02% MgCl2·6H2O). At the time of sampling, the fish were carefully treated and sacrificed following the guidelines for animal experiments in the Faculty of Agriculture and Graduate Course of Kyushu University, and in agreement with the laws (No. 105) and declaration (No. 6) of the Japanese Government.

Steroidogenic potency and steroid analysis

Ovarian follicles were separated via gentle pipetting from the ovary in saline solution. To isolate individual follicles according to the follicular diameters, follicles were sorted using stainless mesh filters (Nippon Rikagaku Kikai, Tokyo) with apertures of 600 μm (for late-vitellogenic stage follicles; LV) and 355 μm (for mid-vitellogenic stage follicles; MV). Each stage follicles (100–130 follicles/well) were pre-incubated for 90 min in 24-well plates containing 1.0 ml hormone free Leibovitz’s L-15 culture medium (Sigma, St. Louis, Mo) (pH7.5) containing 10 mM HEPES and 0.02% Gentamycin sulfate (Sigma, St. Louis, Mo) in a temperature-controlled incubator at 18°C with shaking at 50 rpm. Subsequently, follicles were incubated in L-15 medium in the absence or presence of different concentrations of cmFSH or cmLH (6 to 200 ng/ml). The above concentrations were selected based on previous reports demonstrating production of sex steroids by native GtHs [8, 14, 15, 2731]. To examine the activity of cmFSH and cmLH relative to another gonadotropin, human chorionic gonadotropin (hCG; Aska Pharmaceutical, Tokyo, Japan) was tested at concentrations of 0.1 and 10 IU/ml. In addition, to examine the viability of isolated follicles, testosterone (Sigma, St. Louis, Mo) which is a precursor of E2 was incubated with the follicles and E2 content produced was measured. All treatments were analyzed in two replicates. After incubation at 18°C for 18 h with shaking at 50 rpm, media were collected and stored at −20°C until use. Each treatment was repeated representing three different ovaries. E2 and 17,20β-P levels in incubation medium were measured using an Estradiol EIA Kit (Cayman, MI) and ELISA according to Matsuyama et al. [32], respectively.

Maturation-inducing potency

Ovaries, same of steroidogenic experiment, were minced into small tissue fragments (about 20 mg) in saline solution. Each fragment was pre-incubated for 90 min in 6-well plates containing 3.0 ml hormone-free L-15 culture medium at 18°C with 50 rpm shaking. Subsequently, ovarian fragments were incubated in L-15 medium in the absence or presence of different concentrations of cmFSH and cmLH (6 to 200 ng/ml) for 24 h at 18°C with 50 rpm shaking. After incubation, fragments were fixed in clearing solution (ethanol: formalin: acetic acid = 6:3:1), and individual follicles were isolated by pipetting, and subjected to stereomicroscopy. FOM was confirmed by the germinal vesicle migration and % maturation was calculated as maturation follicles/LV stage follicles. The experiment was repeated three individual ovaries.

Statistical analysis

Data were expressed as means ± SEM (standard errors of the mean), and analyzed by one-way ANOVA followed by a Bonferroni's Multiple Comparison Test using Prism 4 (GraphPad Software, San Diego, CA).

Results

Purification and biochemical properties of cmFSH and cmLH

Ethanol-extracted glycoproteins from chub mackerel pituitaries were separated by DEAE anion-exchange chromatography (Figure 1Upper). The results of Western blotting revealed that fractions only immunoreacted to the 003 antisera (fractions 13–19, Figure 1Lower A) and were pooled and preserved as native FSH. In fraction 29–35, no immunoreaction was observed to the 003 antisera (Data not shown). Moreover, fractions that only immunoreacted to the 299 antisera (fraction 27–35, Figure 1Lower B) were pooled and preserved as native LH. Fractions 20–26 contained both FSH and LH (Figure 1Lower). CBB staining under reducing conditions (2ME+) revealed that the expected molecular weight of the cmFSH α and β subunits was approximately 22 and 18 kD, and that the cmLH α and β subunits were approximately 23 and 15 kD, respectively (Figure 2A). In the Western blot analysis, the purified cmFSHβ and cmLHβ subunits reacted specifically to the 003 and 299 antisera, respectively (Figure 2B and 2C). The α subunits of cmGtHs showed N-terminal amino acid sequences (PNVD) which corresponded to those deduced from chub mackerel GPα cDNA data [23]. In the native-PAGE, cohesive 3 bands were observed for both cmFSH and cmLH and the other bands were not ascertained (Figure 2D). The cohesive 3 bands suggest differences with the degree of glycosylation. The mobility between cmFSH and cmLH was different and this might be caused by differences with molecular size between cmFSH and cmLH.

Gonadal steroid production

The steroidogenic potencies of cmFSH and cmLH were evaluated using actively vitellogenic (mid-vitellogenic, MV) and fully grown (late-vitellogenic, LV) follicles. E2 production was significantly induced by cmFSH in a dose-dependent manner in MV stage follicles but not in LV follicles (Figure 3). At all dose tested, cmLH significantly stimulated E2 levels in MV stage follicles without any differences between doses (Figure 3). Only cmLH stimulated 17,20β-P production in a dose-dependent manner in LV follicles (Figure 4). However, 17,20β-P was not produced in response to cmLH in MV follicles.

Bioactivity of cmFSH and cmLH in relative to another gonadotropin

E2 concentrations in media from MV follicle incubations were elevated in the presence of cmFSH, cmLH and testosterone, while no significant difference was found with hCG (Figure 5). In the LV stage follicles, cmLH and 10 IU/ml of hCG stimulated 17,20β-P production; no significant difference was detected between their productions (Figure 5).

Maturation-inducing potency

Only cmLH increased the percentage of maturing oocytes in a dose-dependent manner (Figure 6).

Discussion

We purified native GtHs from chub mackerel pituitaries and conducted a functional evaluation using intact ovarian follicles. First, we purified and isolated native FSH and LH from chub mackerel pituitaries using anion-exchange chromatography and an immunochemical method. The purified cmFSH and cmLH strongly reacted with the 003 and 299 antisera, respectively. Most previous studies on the purification of native FSH and LH in fish used stepwise chromatography to screen protein fraction and evaluated each fraction by physicochemical assays such as SDS-PAGE [15, 28, 29, 31, 3335]. However, the immunochemical method adopted in the present study has advantages over a preceding method, as it can save stepwise chromatography process time and sample quantity [25]. Separation of intact FSH and LH from native mixture is generally difficult in fishes. Their physiochemical properties resemble each other, and diversities in the carbohydrate chains inhibit precise separation using various chromatography procedures. Reverse-phased high-performance liquid chromatography under neutral conditions has been used for several fish species, such as skipjack tuna Katsuwonus pelamis[34] and the Mediterranean yellowtail Seriola dumerilii[35]. However, this method has a disadvantage in that LH molecules may dissociate into subunits in some fish preparations. Such cases are observed in bigeye tuna [15], mummichog (unpublished results), and chub mackerel (unpublished results). Hydrophobic chromatography has been used to separate FSH and LH in the mummichog [25], but this method has another disadvantage in that yields are considerably low probably because of adsorption. The method used in the present study (DEAE anion exchange chromatography with ionic strength gradient increase in the mobile phase) has no such disadvantages, although complete separation of FSH and LH is impossible. This method yielded a considerable amount of an FSH and LH mixture (Figure 1Upper), which is difficult to purify further. However, combined with Western blot analysis using highly specific antibodies, contaminants could be completely excluded from both the FSH and the LH fractions (Figure 1Lower). Therefore, the procedures described here may be convenient methods for obtaining native GtHs from various fish species, when a pair of highly specific anti-FSH and anti-LH antibodies is available.
The results of a functional evaluation indicated that both cmFSH and cmLH are capable of stimulating E2 production in MV stage follicles (Figure 3). Further, incubation of MV stage follicles in the presence of gonadotropin, hCG (0.1-10 IU/ml) or an aromatizable androgen, testosterone (T, 10 ng/ml) resulted in the E2 production, with the latter showing a significantly higher levels on par with cmFSH and cmLH (Figure 5). In the vitellogenic follicles of salmonids, GtH has been shown to stimulate T production in the theca cells, which diffuses into granulosa cells and aromatized to E2 [36, 37]. In the vitellogenic follicles of chub mackerel, Ε2 is synthesized from pregnenolone via T [38]. Results obtained indicates that not only isolated MV stage follicles are viable with aromatase (cytochrome P450 aromatase [39]) activity to convert T into E2 but also purified cmFSH and cmLH have enough biological potency.
The in vitro effects of purified GtHs on E2 production have been demonstrated in several perciform fish. FSH significantly stimulates the release of E2 in early and mid vitellogenic European sea bass ovarian fragments [16]. Similarly, both FSH and LH stimulate E2 production in bigeye tuna; however, LH is more potent than FSH [15]. In contrast, the biological activity of FSH is lower than that of LH for inducing in vitro E2 production by vitellogenic ovarian fragments in red seabream [14]. As E2 is synthesized by ovarian follicles surrounding oocytes, the differences in FSH or LH activity on follicular steroidogenesis may differ depending on whether ovarian fragments or different stages of vitellogenic follicles are used in culture. The present study clearly found that cmFSH or cmLH stimulated E2 production in MV stage follicles, but not LV follicles. Moreover, these different results on the effect of GtHs on E2 production could be attributed to species-specific factors in multiple-spawning species. In MV stage follicles, E2 production by cmLH reached a plateau between 6 and 200 ng/ml. Likewise in bigeye tuna, E2 production in vitellogenic ovarian fragments by FSH increased in a dose-dependent manner, while LH reached plateau faster than FSH [15]. This result shows similarity with our present data. However, at present stage, physiological difference between FSH and LH in the steroidogenic potency remains unclear.
Several in vitro studies have reported that both FSH and LH stimulate E2 production in vitellogenic follicles (salmonids [8, 27], common carp Cyprinus carpio[29], and bigeye tuna [15]) like in chub mackerel. Further, in salmonids [40, 41] and catfish Clarias gariepinus[42, 43], it has been indicated that both FSH and LH bind to the FSHR with similar affinities. Pituitary FSHβ and LHβ immunoreactive levels in chub mackerel suggest that both FSH and LH involve in vitellogenesis [22]. Taking above into consideration, it is possible that the E2 produced by cmLH might be due to cross-activation between cmLH and FSHR. Future studies on the expression dynamics of their cognate receptors by vitellogenic follicles, reporter-gene assays of cognate ligand-receptor interactions, and circulating levels of FSH and LH during vitellogenesis will help to clarify this possibility.
cmLH but not cmFSH was capable of stimulating 17,20β-P production in LV stage follicles (Figure 4) including the potential to induce germinal vesicle migration in vitro (Figure 6). Further, production levels of 17,20β-P by hCG in LV stage follicles resembled those of cmLH, showing that cmLH had comparable potency to 10 IU/ml of hCG in stimulating 17,20β-P production (Figure 5). After vitellogenesis, the steroidogenic pathway shifts from E2 to 17,20β-P [37], and 17,20β-P is highly effective at inducing FOM in vitro and acting as a MIS in chub mackerel [38]. Our recent study indicated that LHβ-immunoreactive and LHβ mRNA levels were much higher in the pituitary of spawning chub mackerel [22, 23] than in fish of other maturational stages. The results of the present study indicate that LH is responsible for FOM in chub mackerel. The maturation-inducing potency of purified FSH and LH demonstrated in this study are in agreement with other reports on salmonids and red seabream [8, 13, 30].

Conclusions

In the present study, a highly active purified preparation of FSH and LH was obtained from chub mackerel pituitaries, and analyses suggested that cmFSH and cmLH are capable of stimulating E2 production by MV stage follicles. Furthermore, cmLH showed higher potency than cmFSH for stimulating 17,20β-P production and inducing FOM in LV follicles.

Authors contributions

HO carried out the in vitro bioassay, data analysis and interpretation, and drafted the manuscript. KK participated in the preliminary in vitro bioassay. AS carried out the hormonal purification and helped to draft the manuscript. KH, SS, MN and HA assisted the experiments. AY assisted with data interpretation. MM participated in study design, assisted with data interpretation and supervised this work. All authors read and approved the final manuscript.

Acknowledgments

We thank the members of the Laboratory of Marine Biology, Kyushu University, for their kind help with present study. This work was supported by a grant for scientific research (23658163) from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), and through a subproject on studies on the prediction and application of fish species alternation (SUPRFISH) financed by the Agriculture, Forestry, and Fisheries Research Council (AFFRC) of Japan, as part of the Population Outbreak of Marine Life (POMAL) Project.
Open Access This article is published under license to BioMed Central Ltd. This is an Open Access article is distributed under the terms of the Creative Commons Attribution License ( https://​creativecommons.​org/​licenses/​by/​2.​0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Competing interests

The authors declare that they have no competing interests.
Literatur
1.
Zurück zum Zitat Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B: Regulation of fish gonadotropins. Int Rev Cytol. 2003, 225: 131-185.CrossRefPubMed Yaron Z, Gur G, Melamed P, Rosenfeld H, Elizur A, Levavi-Sivan B: Regulation of fish gonadotropins. Int Rev Cytol. 2003, 225: 131-185.CrossRefPubMed
2.
Zurück zum Zitat Levavi-Sivan B, Bogerd J, Mañanós EL, Gómez A, Lareyre JJ: Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol. 2010, 165: 412-437. 10.1016/j.ygcen.2009.07.019.CrossRefPubMed Levavi-Sivan B, Bogerd J, Mañanós EL, Gómez A, Lareyre JJ: Perspectives on fish gonadotropins and their receptors. Gen Comp Endocrinol. 2010, 165: 412-437. 10.1016/j.ygcen.2009.07.019.CrossRefPubMed
3.
Zurück zum Zitat Gharib S, Wierman M, Shupnik M, Chin W: Molecular biology of the pituitary gonadotropins. Endocr Rev. 1990, 11: 177-199. 10.1210/edrv-11-1-177.CrossRefPubMed Gharib S, Wierman M, Shupnik M, Chin W: Molecular biology of the pituitary gonadotropins. Endocr Rev. 1990, 11: 177-199. 10.1210/edrv-11-1-177.CrossRefPubMed
4.
Zurück zum Zitat Suzuki K, Kanamori A, Nagahama Y, Kawauchi H: Development of salmon GTH I and GTH II radioimmunoassays. Gen Comp Endocrinol. 1988, 71: 459-467. 10.1016/0016-6480(88)90275-4.CrossRefPubMed Suzuki K, Kanamori A, Nagahama Y, Kawauchi H: Development of salmon GTH I and GTH II radioimmunoassays. Gen Comp Endocrinol. 1988, 71: 459-467. 10.1016/0016-6480(88)90275-4.CrossRefPubMed
5.
Zurück zum Zitat Prat F, Sumpter J, Tyler C: Validation of radioimmunoassays for two salmon gonadotropins (GTH I and GTH II) and their plasma concentrations throughout the reproductive cycle in male and female rainbow trout (Oncorhynchus mykiss). Biol Reprod. 1996, 54: 1375-1382. 10.1095/biolreprod54.6.1375.CrossRefPubMed Prat F, Sumpter J, Tyler C: Validation of radioimmunoassays for two salmon gonadotropins (GTH I and GTH II) and their plasma concentrations throughout the reproductive cycle in male and female rainbow trout (Oncorhynchus mykiss). Biol Reprod. 1996, 54: 1375-1382. 10.1095/biolreprod54.6.1375.CrossRefPubMed
6.
Zurück zum Zitat Breton B, Govoroun M, Mikolajczyk T: GTH I and GTH II secretion profiles during the reproductive cycle in female rainbow trout: relationship with pituitary responsiveness to GnRH-A stimulation. Gen Comp Endocrinol. 1998, 111: 38-50. 10.1006/gcen.1998.7088.CrossRefPubMed Breton B, Govoroun M, Mikolajczyk T: GTH I and GTH II secretion profiles during the reproductive cycle in female rainbow trout: relationship with pituitary responsiveness to GnRH-A stimulation. Gen Comp Endocrinol. 1998, 111: 38-50. 10.1006/gcen.1998.7088.CrossRefPubMed
7.
Zurück zum Zitat Bon E, Breton B, Govoroun M, Le Menn F: Effects of accelerated photoperiod regimes on the reproductive cycle of the female rainbow trout: II Seasonal variations of plasma gonadotropins (GTH I and GTH II) levels correlated with ovarian follicle growth and egg size. Fish Physiol Biochem. 1999, 20: 143-154. 10.1023/A:1007783708432.CrossRef Bon E, Breton B, Govoroun M, Le Menn F: Effects of accelerated photoperiod regimes on the reproductive cycle of the female rainbow trout: II Seasonal variations of plasma gonadotropins (GTH I and GTH II) levels correlated with ovarian follicle growth and egg size. Fish Physiol Biochem. 1999, 20: 143-154. 10.1023/A:1007783708432.CrossRef
8.
Zurück zum Zitat Suzuki K, Nagahama Y, Kawauchi H: Steroidgenic activities of two distinct salmon gonadotropins. Gen Comp Endocrinol. 1988, 71: 452-458. 10.1016/0016-6480(88)90274-2.CrossRefPubMed Suzuki K, Nagahama Y, Kawauchi H: Steroidgenic activities of two distinct salmon gonadotropins. Gen Comp Endocrinol. 1988, 71: 452-458. 10.1016/0016-6480(88)90274-2.CrossRefPubMed
9.
Zurück zum Zitat Tyler C, Sumpter J, Kawauchi H, Swanson P: Involvement of gonadotropins I and II in the uptake of vitellogenin into vitellogenic oocytes of rainbow trout, Oncorhynchus mykiss. Gen Comp Endcrinol. 1991, 84: 291-299. 10.1016/0016-6480(91)90052-8.CrossRef Tyler C, Sumpter J, Kawauchi H, Swanson P: Involvement of gonadotropins I and II in the uptake of vitellogenin into vitellogenic oocytes of rainbow trout, Oncorhynchus mykiss. Gen Comp Endcrinol. 1991, 84: 291-299. 10.1016/0016-6480(91)90052-8.CrossRef
10.
Zurück zum Zitat Murua H, Saborido-Rey F: Female reproductive strategies of marine fish species of the North Atlantic. J Northw Atl Fish Sci. 2003, 33: 33-54.CrossRef Murua H, Saborido-Rey F: Female reproductive strategies of marine fish species of the North Atlantic. J Northw Atl Fish Sci. 2003, 33: 33-54.CrossRef
11.
Zurück zum Zitat Kitano H, Irie S, Ohta K, Hirai T, Yamaguchi A, Matsuyama M: Molecular cloning of two gonadotropin receptors and their distinct mRNA expression profiles in daily oogenesis of the wrasse Pseudolabrus sieboldi. Gen Comp Endocrinol. 2011, 172: 268-276. 10.1016/j.ygcen.2011.03.012.CrossRefPubMed Kitano H, Irie S, Ohta K, Hirai T, Yamaguchi A, Matsuyama M: Molecular cloning of two gonadotropin receptors and their distinct mRNA expression profiles in daily oogenesis of the wrasse Pseudolabrus sieboldi. Gen Comp Endocrinol. 2011, 172: 268-276. 10.1016/j.ygcen.2011.03.012.CrossRefPubMed
12.
Zurück zum Zitat Tanaka H, Kagawa H, Okuzawa K, Hirose K: Purification of gonaotropins (PmGTH І and II) from red seabream (Pagrus major) and development of a homologous radioimmunoassay for PmGTH II. Fish Physiol Biochem. 1993, 10: 409-418. 10.1007/BF00004507.CrossRefPubMed Tanaka H, Kagawa H, Okuzawa K, Hirose K: Purification of gonaotropins (PmGTH І and II) from red seabream (Pagrus major) and development of a homologous radioimmunoassay for PmGTH II. Fish Physiol Biochem. 1993, 10: 409-418. 10.1007/BF00004507.CrossRefPubMed
13.
Zurück zum Zitat Kagawa H, Tanaka H, Okuzawa K, Kobayashi M: GTH II but not GTH I induces final maturation and the deveropment of maturational competence of oocytes of red seabream in vitro. Gen Comp Endocrinol. 1998, 112: 80-88. 10.1006/gcen.1998.7133.CrossRefPubMed Kagawa H, Tanaka H, Okuzawa K, Kobayashi M: GTH II but not GTH I induces final maturation and the deveropment of maturational competence of oocytes of red seabream in vitro. Gen Comp Endocrinol. 1998, 112: 80-88. 10.1006/gcen.1998.7133.CrossRefPubMed
14.
Zurück zum Zitat Kagawa H, Gen K, Okuzawa K, Tanaka H: Effects of luteinizing hormone and follicles stimulating hormone and insulin-like growth factor-I on aromatase activity and P450 aromatase gene expression in the ovarian follicle of red seabream, Pagrus major. Biol Reprod. 2003, 68: 1562-1568.CrossRefPubMed Kagawa H, Gen K, Okuzawa K, Tanaka H: Effects of luteinizing hormone and follicles stimulating hormone and insulin-like growth factor-I on aromatase activity and P450 aromatase gene expression in the ovarian follicle of red seabream, Pagrus major. Biol Reprod. 2003, 68: 1562-1568.CrossRefPubMed
15.
Zurück zum Zitat Okada T, Kawazoe I, Kimura S, Sasamoto Y, Aida K, Kawauchi H: Purification and characterization of gonadotropin І and II from pituitary glands of tuna (Thunnus obesus). Int J Peptide Protein Res. 1994, 43: 69-80.CrossRef Okada T, Kawazoe I, Kimura S, Sasamoto Y, Aida K, Kawauchi H: Purification and characterization of gonadotropin І and II from pituitary glands of tuna (Thunnus obesus). Int J Peptide Protein Res. 1994, 43: 69-80.CrossRef
16.
Zurück zum Zitat Molés G, Gómez A, Rocha A, Carrillo M, Zanuy S: Purification and characterization of follicle-stimulating hormone from pituitary glands of sea bass (Dicentrarchus labrax). Gen Comp Endocrinol. 2008, 158: 68-76. 10.1016/j.ygcen.2008.05.005.CrossRefPubMed Molés G, Gómez A, Rocha A, Carrillo M, Zanuy S: Purification and characterization of follicle-stimulating hormone from pituitary glands of sea bass (Dicentrarchus labrax). Gen Comp Endocrinol. 2008, 158: 68-76. 10.1016/j.ygcen.2008.05.005.CrossRefPubMed
17.
Zurück zum Zitat Shiraishi T, Ohta K, Yamaguchi A, Yoda M, Chuda H, Matsuyama M: Reproductive parameters of the chub mackerel Scomber japonicus estimated from human chorionic gonadotropin induced final oocyte maturation and ovulation in captivity. Fish Sci. 2005, 71: 531-542.CrossRef Shiraishi T, Ohta K, Yamaguchi A, Yoda M, Chuda H, Matsuyama M: Reproductive parameters of the chub mackerel Scomber japonicus estimated from human chorionic gonadotropin induced final oocyte maturation and ovulation in captivity. Fish Sci. 2005, 71: 531-542.CrossRef
18.
Zurück zum Zitat Selvaraj S, Kitano H, Fujinaga Y, Amano M, Takahashi A, Shimizu A, Yoneda M, Yamaguchi A, Matsuyama M: Immunological characterization and distribution of three GnRH forms in the brain and pituitary gland of chub mackerel (Scomber japonicus). Zool Sci. 2009, 26: 827-839.CrossRef Selvaraj S, Kitano H, Fujinaga Y, Amano M, Takahashi A, Shimizu A, Yoneda M, Yamaguchi A, Matsuyama M: Immunological characterization and distribution of three GnRH forms in the brain and pituitary gland of chub mackerel (Scomber japonicus). Zool Sci. 2009, 26: 827-839.CrossRef
19.
Zurück zum Zitat Selvaraj S, Kitano H, Fujinaga Y, Ohga H, Yoneda M, Yamaguchi A, Shimizu A, Matsuyama M: Molecular characterization, tissue distribution, and mRNA expression profiles of two Kiss genes in the adult male and female chub mackerel (Scomber japonicus) during different ginadal stages. Gen Comp Endocrinol. 2010, 169: 28-38. 10.1016/j.ygcen.2010.07.011.CrossRefPubMed Selvaraj S, Kitano H, Fujinaga Y, Ohga H, Yoneda M, Yamaguchi A, Shimizu A, Matsuyama M: Molecular characterization, tissue distribution, and mRNA expression profiles of two Kiss genes in the adult male and female chub mackerel (Scomber japonicus) during different ginadal stages. Gen Comp Endocrinol. 2010, 169: 28-38. 10.1016/j.ygcen.2010.07.011.CrossRefPubMed
20.
Zurück zum Zitat Selvaraj S, Kitano H, Amano M, Nyuji M, Kaneko K, Yamaguchi A, Matsuyama M: Molecular characterization and expression profiles of three GnRH forms in the brain and pituitary of adult chub mackerel (Scomber japonicus) maintained in captivity. Aquaculture. 2012, 356–357: 200-210.CrossRef Selvaraj S, Kitano H, Amano M, Nyuji M, Kaneko K, Yamaguchi A, Matsuyama M: Molecular characterization and expression profiles of three GnRH forms in the brain and pituitary of adult chub mackerel (Scomber japonicus) maintained in captivity. Aquaculture. 2012, 356–357: 200-210.CrossRef
21.
Zurück zum Zitat Selvaraj S, Kitano H, Amano M, Ohga H, Yoneda M, Yamaguchi A, Shimizu A, Matsuyama M: Increased expression of kisspeptin and GnRH forms in the brain of scombroid fish during final ovarian maturation and ovulation. Reprod Biol Endocrinol. 2012, 10: 64-10.1186/1477-7827-10-64.PubMedCentralCrossRefPubMed Selvaraj S, Kitano H, Amano M, Ohga H, Yoneda M, Yamaguchi A, Shimizu A, Matsuyama M: Increased expression of kisspeptin and GnRH forms in the brain of scombroid fish during final ovarian maturation and ovulation. Reprod Biol Endocrinol. 2012, 10: 64-10.1186/1477-7827-10-64.PubMedCentralCrossRefPubMed
22.
Zurück zum Zitat Nyuji M, Shiraishi T, Selvaraj S, In V, Kitano H, Yamaguchi A, Okamoto K, Onoue S, Shimizu A, Matsuyama M: Immunoreactive changes in FSH and LH cells during seasonal and spawning cycles in the pituitary of female chub mackerel, Scomber japonicus. Fish Sci. 2011, 77: 731-739. 10.1007/s12562-011-0380-5.CrossRef Nyuji M, Shiraishi T, Selvaraj S, In V, Kitano H, Yamaguchi A, Okamoto K, Onoue S, Shimizu A, Matsuyama M: Immunoreactive changes in FSH and LH cells during seasonal and spawning cycles in the pituitary of female chub mackerel, Scomber japonicus. Fish Sci. 2011, 77: 731-739. 10.1007/s12562-011-0380-5.CrossRef
23.
Zurück zum Zitat Nyuji M, Selvaraj S, Kitano H, Ohga H, Yoneda M, Shimizu A, Kaneko K, Yamaguchi A, Matsuyama M: Changes in the expression of pituitary gonadotropin subunits during reproductive cycle of multiple spawning female chub mackerel Scomber japonicus. Fish Physiol Biochem. 2012, 38: 883-897. 10.1007/s10695-011-9576-y.CrossRefPubMed Nyuji M, Selvaraj S, Kitano H, Ohga H, Yoneda M, Shimizu A, Kaneko K, Yamaguchi A, Matsuyama M: Changes in the expression of pituitary gonadotropin subunits during reproductive cycle of multiple spawning female chub mackerel Scomber japonicus. Fish Physiol Biochem. 2012, 38: 883-897. 10.1007/s10695-011-9576-y.CrossRefPubMed
24.
Zurück zum Zitat Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.CrossRefPubMed Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.CrossRefPubMed
25.
Zurück zum Zitat Shimizu A, Yamashita M: Purification of Mummichog (Fundulus heteroclitus) gonadotropins and their subunits, using an immunochemical assay with antisera raised against synthetic peptides. Gen Comp Endocrinol. 2002, 125: 79-91. 10.1006/gcen.2001.7741.CrossRefPubMed Shimizu A, Yamashita M: Purification of Mummichog (Fundulus heteroclitus) gonadotropins and their subunits, using an immunochemical assay with antisera raised against synthetic peptides. Gen Comp Endocrinol. 2002, 125: 79-91. 10.1006/gcen.2001.7741.CrossRefPubMed
26.
Zurück zum Zitat Shimizu A, Sakai T, Nashida K, Honda H: Universal antisera for immunocytochemical identification of two distinct gonadotropins in acanthopterygian fishes. Fish Physiol Biochem. 2003, 29: 275-287. 10.1007/s10695-004-5287-y.CrossRef Shimizu A, Sakai T, Nashida K, Honda H: Universal antisera for immunocytochemical identification of two distinct gonadotropins in acanthopterygian fishes. Fish Physiol Biochem. 2003, 29: 275-287. 10.1007/s10695-004-5287-y.CrossRef
27.
Zurück zum Zitat Suzuki K, Kawauchi H, Nagahama Y: Isolation and characterization of two distinct gonadotropins from chum salmon pituitary glands. Gen Comp Endocrinol. 1988, 71: 292-301. 10.1016/0016-6480(88)90257-2.CrossRefPubMed Suzuki K, Kawauchi H, Nagahama Y: Isolation and characterization of two distinct gonadotropins from chum salmon pituitary glands. Gen Comp Endocrinol. 1988, 71: 292-301. 10.1016/0016-6480(88)90257-2.CrossRefPubMed
28.
Zurück zum Zitat Swanson P, Suzuki K, Kawauchi H, Dickhoff WW: Isolation and characterization of two coho salmon gonadotropins, GTH І and GTH II. Biol Reprod. 1991, 44: 29-38. 10.1095/biolreprod44.1.29.CrossRefPubMed Swanson P, Suzuki K, Kawauchi H, Dickhoff WW: Isolation and characterization of two coho salmon gonadotropins, GTH І and GTH II. Biol Reprod. 1991, 44: 29-38. 10.1095/biolreprod44.1.29.CrossRefPubMed
29.
Zurück zum Zitat Van Der Kraak G, Suzuki K, Peter RE, Itoh H, Kawauchi H: Properties of common carp gonadotropin І and gonadotropin II. Gen Comp Endcrinol. 1992, 85: 217-229. 10.1016/0016-6480(92)90005-5.CrossRef Van Der Kraak G, Suzuki K, Peter RE, Itoh H, Kawauchi H: Properties of common carp gonadotropin І and gonadotropin II. Gen Comp Endcrinol. 1992, 85: 217-229. 10.1016/0016-6480(92)90005-5.CrossRef
30.
Zurück zum Zitat Planas VJ, Athos J, Goetz WF, Swanson P: Regulation of ovarian steroidogenesis in vitro by follicle-stimulating hormone and luteinizing hormone during sexual maturation in salmonid fish. Biol Reprod. 2000, 62: 1262-1269. 10.1095/biolreprod62.5.1262.CrossRefPubMed Planas VJ, Athos J, Goetz WF, Swanson P: Regulation of ovarian steroidogenesis in vitro by follicle-stimulating hormone and luteinizing hormone during sexual maturation in salmonid fish. Biol Reprod. 2000, 62: 1262-1269. 10.1095/biolreprod62.5.1262.CrossRefPubMed
31.
Zurück zum Zitat Weltzien F, Norberg B, Swanson P: Isolation and characterization of FSH and LH from pituitary glands of Atlantic halibut (Hippoglossus hippoglossus L.). Gen Comp Endcrinol. 2003, 131: 97-105. 10.1016/S0016-6480(02)00526-9.CrossRef Weltzien F, Norberg B, Swanson P: Isolation and characterization of FSH and LH from pituitary glands of Atlantic halibut (Hippoglossus hippoglossus L.). Gen Comp Endcrinol. 2003, 131: 97-105. 10.1016/S0016-6480(02)00526-9.CrossRef
32.
Zurück zum Zitat Matsuyama M, Ohta K, Morita S, Hoque MM, Kagawa H, Kambegawa A: Circulating levels and in vitro production of two maturation-inducing hormones in teleost: 17α,20β-dihydroxy-4-pregnen-3-one and 17,20β-dihydroxy-4-pregnen-3-one, in a daily spawning wrasse, Pseudolabrus japonicus. Fish Physiol Biochem. 1998, 19: 1-11. 10.1023/A:1007761729290.CrossRef Matsuyama M, Ohta K, Morita S, Hoque MM, Kagawa H, Kambegawa A: Circulating levels and in vitro production of two maturation-inducing hormones in teleost: 17α,20β-dihydroxy-4-pregnen-3-one and 17,20β-dihydroxy-4-pregnen-3-one, in a daily spawning wrasse, Pseudolabrus japonicus. Fish Physiol Biochem. 1998, 19: 1-11. 10.1023/A:1007761729290.CrossRef
33.
Zurück zum Zitat Suzuki K, Kawauchi H, Nagahama Y: Isolation and characterization of subunits from two distinct salmon gonadotropins. Gen Comp Endocrinol. 1988, 71: 302-306. 10.1016/0016-6480(88)90258-4.CrossRefPubMed Suzuki K, Kawauchi H, Nagahama Y: Isolation and characterization of subunits from two distinct salmon gonadotropins. Gen Comp Endocrinol. 1988, 71: 302-306. 10.1016/0016-6480(88)90258-4.CrossRefPubMed
34.
Zurück zum Zitat Koide Y, Itoh H, Kawauchi H: Isolation and characterization of two distinct gonadotropins, GTH І and GTH II, from bonito (Katsuwonus pelamis) pituitary glands. Int J Peptide Protein Res. 1993, 41: 52-65.CrossRef Koide Y, Itoh H, Kawauchi H: Isolation and characterization of two distinct gonadotropins, GTH І and GTH II, from bonito (Katsuwonus pelamis) pituitary glands. Int J Peptide Protein Res. 1993, 41: 52-65.CrossRef
35.
Zurück zum Zitat Gracía-Hernández MP, Koide Y, Diaz MV, Kawauchi H: Isolation and characterization of two distinct gonadotropins from the pituitary gland of Mediterranean yellowtail, Seriola dumerilii (Risso 1810). Gen Comp Endocrinol. 1997, 106: 389-399. 10.1006/gcen.1997.6887.CrossRef Gracía-Hernández MP, Koide Y, Diaz MV, Kawauchi H: Isolation and characterization of two distinct gonadotropins from the pituitary gland of Mediterranean yellowtail, Seriola dumerilii (Risso 1810). Gen Comp Endocrinol. 1997, 106: 389-399. 10.1006/gcen.1997.6887.CrossRef
36.
Zurück zum Zitat Kagawa H, Young G, Adachi S, Nagahama Y: Estradiol-17β production in Amago salmon (Oncorhynchus rhodurus) ovarian follicles: role of the thecal and granulosa cells. Gen Comp Endocrinol. 1982, 47: 440-448. 10.1016/0016-6480(82)90122-8.CrossRefPubMed Kagawa H, Young G, Adachi S, Nagahama Y: Estradiol-17β production in Amago salmon (Oncorhynchus rhodurus) ovarian follicles: role of the thecal and granulosa cells. Gen Comp Endocrinol. 1982, 47: 440-448. 10.1016/0016-6480(82)90122-8.CrossRefPubMed
37.
Zurück zum Zitat Senthilkumaran B, Yoshikuni M, Nagahama Y: A shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation. Mol Cell Endocrinol. 2004, 215: 11-18. 10.1016/j.mce.2003.11.012.CrossRefPubMed Senthilkumaran B, Yoshikuni M, Nagahama Y: A shift in steroidogenesis occurring in ovarian follicles prior to oocyte maturation. Mol Cell Endocrinol. 2004, 215: 11-18. 10.1016/j.mce.2003.11.012.CrossRefPubMed
38.
Zurück zum Zitat Matsuyama M, Shiraishi T, Sundaray JK, Rahman MA, Ohta K, Yamaguchi A: Steroidogenesis in ovarian follicles of chub mackerel, Scomber japonicus. Zool Sci. 2005, 22: 101-110. 10.2108/zsj.22.101.CrossRefPubMed Matsuyama M, Shiraishi T, Sundaray JK, Rahman MA, Ohta K, Yamaguchi A: Steroidogenesis in ovarian follicles of chub mackerel, Scomber japonicus. Zool Sci. 2005, 22: 101-110. 10.2108/zsj.22.101.CrossRefPubMed
39.
Zurück zum Zitat Lubzens E, Young G, Bobe J, Cerdà J: Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol. 2010, 165: 367-389. 10.1016/j.ygcen.2009.05.022.CrossRefPubMed Lubzens E, Young G, Bobe J, Cerdà J: Oogenesis in teleosts: how eggs are formed. Gen Comp Endocrinol. 2010, 165: 367-389. 10.1016/j.ygcen.2009.05.022.CrossRefPubMed
40.
Zurück zum Zitat Yan L, Swanson P, Dickhoff W: A two-receptor model for salmon gonadotropins (GTH I and GTH II). Biol Reprod. 1992, 47: 418-427. 10.1095/biolreprod47.3.418.CrossRefPubMed Yan L, Swanson P, Dickhoff W: A two-receptor model for salmon gonadotropins (GTH I and GTH II). Biol Reprod. 1992, 47: 418-427. 10.1095/biolreprod47.3.418.CrossRefPubMed
41.
Zurück zum Zitat Miwa S, Yan L, Swanson P: Localization of two gonadotropin receptors in the salmon gonad by in vitro ligand autoradiography. Biol Reprod. 1994, 50: 629-642. 10.1095/biolreprod50.3.629.CrossRefPubMed Miwa S, Yan L, Swanson P: Localization of two gonadotropin receptors in the salmon gonad by in vitro ligand autoradiography. Biol Reprod. 1994, 50: 629-642. 10.1095/biolreprod50.3.629.CrossRefPubMed
42.
Zurück zum Zitat Bogerd J, Blomenrohr M, Andersson E, van der Putten HH, Tensen CP, Vischer HF, Granneman JC, Janssen-Dommerholt C, Goos HJ, Schulz RW: Discrepancy between molecular structure and ligand selectivity of a testicular follicle-stimulating hormone receptor of the African catfish (Clarias gariepinus). Biol Reprod. 2001, 64: 1633-1643. 10.1095/biolreprod64.6.1633.CrossRefPubMed Bogerd J, Blomenrohr M, Andersson E, van der Putten HH, Tensen CP, Vischer HF, Granneman JC, Janssen-Dommerholt C, Goos HJ, Schulz RW: Discrepancy between molecular structure and ligand selectivity of a testicular follicle-stimulating hormone receptor of the African catfish (Clarias gariepinus). Biol Reprod. 2001, 64: 1633-1643. 10.1095/biolreprod64.6.1633.CrossRefPubMed
43.
Zurück zum Zitat Vischer HF, Granneman JC, Linskens MH, Schulz RW, Bogerd J: Both recombinant African catfish LH and FSH are able to activate the African catfish FSH receptor. J Mol Endocrinol. 2003, 31: 133-140. 10.1677/jme.0.0310133.CrossRefPubMed Vischer HF, Granneman JC, Linskens MH, Schulz RW, Bogerd J: Both recombinant African catfish LH and FSH are able to activate the African catfish FSH receptor. J Mol Endocrinol. 2003, 31: 133-140. 10.1677/jme.0.0310133.CrossRefPubMed
Metadaten
Titel
Steroidogenic and maturation-inducing potency of native gonadotropic hormones in female chub mackerel, Scomber japonicus
verfasst von
Hirofumi Ohga
Kensuke Kaneko
Akio Shimizu
Hajime Kitano
Sethu Selvaraj
Mitsuo Nyuji
Hayato Adachi
Akihiko Yamaguchi
Michiya Matsuyama
Publikationsdatum
01.12.2012
Verlag
BioMed Central
Erschienen in
Reproductive Biology and Endocrinology / Ausgabe 1/2012
Elektronische ISSN: 1477-7827
DOI
https://doi.org/10.1186/1477-7827-10-71

Weitere Artikel der Ausgabe 1/2012

Reproductive Biology and Endocrinology 1/2012 Zur Ausgabe

Hirsutismus bei PCOS: Laser- und Lichttherapien helfen

26.04.2024 Hirsutismus Nachrichten

Laser- und Lichtbehandlungen können bei Frauen mit polyzystischem Ovarialsyndrom (PCOS) den übermäßigen Haarwuchs verringern und das Wohlbefinden verbessern – bei alleiniger Anwendung oder in Kombination mit Medikamenten.

ICI-Therapie in der Schwangerschaft wird gut toleriert

Müssen sich Schwangere einer Krebstherapie unterziehen, rufen Immuncheckpointinhibitoren offenbar nicht mehr unerwünschte Wirkungen hervor als andere Mittel gegen Krebs.

Weniger postpartale Depressionen nach Esketamin-Einmalgabe

Bislang gibt es kein Medikament zur Prävention von Wochenbettdepressionen. Das Injektionsanästhetikum Esketamin könnte womöglich diese Lücke füllen.

Bei RSV-Impfung vor 60. Lebensjahr über Off-Label-Gebrauch aufklären!

22.04.2024 DGIM 2024 Kongressbericht

Durch die Häufung nach der COVID-19-Pandemie sind Infektionen mit dem Respiratorischen Synzytial-Virus (RSV) in den Fokus gerückt. Fachgesellschaften empfehlen eine Impfung inzwischen nicht nur für Säuglinge und Kleinkinder.

Update Gynäkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert – ganz bequem per eMail.