Skip to main content
main-content

01.12.2019 | Research article | Ausgabe 1/2019 Open Access

BMC Musculoskeletal Disorders 1/2019

Subgrouping patients with sciatica in primary care for matched care pathways: development of a subgrouping algorithm

Zeitschrift:
BMC Musculoskeletal Disorders > Ausgabe 1/2019
Autoren:
Kika Konstantinou, Kate M. Dunn, Danielle van der Windt, Reuben Ogollah, Vinay Jasani, Nadine E. Foster, the SCOPiC study team
Wichtige Hinweise

Electronic supplementary material

The online version of this article (https://​doi.​org/​10.​1186/​s12891-019-2686-x) contains supplementary material, which is available to authorized users.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Background

Sciatica is a painful condition managed by a stepped care approach for most patients. Currently, there are no decision-making tools to guide matching care pathways for patients with sciatica without evidence of serious pathology, early in their presentation. This study sought to develop an algorithm to subgroup primary care patients with sciatica, for initial decision-making for matched care pathways, including fast-track referral to investigations and specialist spinal opinion.

Methods

This was an analysis of existing data from a UK NHS cohort study of patients consulting in primary care with sciatica (n = 429). Factors potentially associated with referral to specialist services, were identified from the literature and clinical opinion. Percentage of patients fast-tracked to specialists, sensitivity, specificity, positive and negative predictive values for identifying this subgroup, were calculated.

Results

The algorithm allocates patients to 1 of 3 groups, combining information about four clinical characteristics, and risk of poor prognosis (low, medium or high risk) in terms of pain-related persistent disability. Patients at low risk of poor prognosis, irrespective of clinical characteristics, are allocated to group 1. Patients at medium risk of poor prognosis who have all four clinical characteristics, and patients at high risk of poor prognosis with any three of the clinical characteristics, are allocated to group 3. The remainder are allocated to group 2. Sensitivity, specificity and positive predictive value of the algorithm for patient allocation to fast-track group 3, were 51, 73 and 22% respectively.

Conclusion

We developed an algorithm to support clinical decisions regarding early referral for primary care patients with sciatica. Limitations of this study include the low positive predictive value and use of data from one cohort only. On-going research is investigating whether the use of this algorithm and the linked care pathways, leads to faster resolution of sciatica symptoms.
Zusatzmaterial
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 1/2019

BMC Musculoskeletal Disorders 1/2019 Zur Ausgabe

Arthropedia

Arthropedia

Grundlagenwissen der Arthroskopie und Gelenkchirurgie. Erweitert durch Fallbeispiele, DICOM-Daten, Videos und Abbildungen. » Jetzt entdecken

Neu im Fachgebiet Orthopädie und Unfallchirurgie

09.04.2021 | Leitsymptom Rückenschmerzen | Podcast | Onlineartikel

Nicht-spezifische Rückenschmerzen – Chronifizierung vermeiden!

Im Gespräch mit Prof. Dr. Casser, Orthopäde und Rheumatologe

02.04.2021 | Pädiatrische Notfallmedizin | Podcast | Nachrichten

Kindernotfall? Wann es wirklich kritisch wird

Mit Dr. med. Thomas Hoppen, Kinder- und Jugendmediziner und Notfallexperte

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Orthopädie und Unfallchirurgie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise