Skip to main content
Erschienen in: Journal of Clinical Immunology 6/2008

01.11.2008

T Regulatory Cells in Autoimmune Diabetes: Past Challenges, Future Prospects

verfasst von: Jeffrey A. Bluestone, Qizhi Tang, Caitlin E. Sedwick

Erschienen in: Journal of Clinical Immunology | Ausgabe 6/2008

Einloggen, um Zugang zu erhalten

Abstract

Introduction

Accumulating evidence suggests that defective regulation is an essential underlying cause of autoimmunity. The development of type 1 diabetes in the NOD mouse strain it is a complex process that depends on a fine balance between pathogenic and regulatory pathways.

Discussion

We have utilized a series of transgenic and knockout mice to determine the relative importance of regulatory T cells and negative regulatory receptors on the development and progression of type 1 diabetes.

Conclusion

This review will focus on the origins and function of Treg in peripheral self-tolerance. We will summarize the role of Treg in preventing autoimmune diseases, with a particular focus on Type 1 Diabetes (T1D), and discuss the prospects for Treg-based therapies for autoimmune diseases.
Literatur
1.
Zurück zum Zitat Moudgil KD, Sercarz EE. The self-directed T cell repertoire: its creation and activation. Rev Immunogenet. 2000;2:26–37.PubMed Moudgil KD, Sercarz EE. The self-directed T cell repertoire: its creation and activation. Rev Immunogenet. 2000;2:26–37.PubMed
2.
Zurück zum Zitat Makino S, Kunimoto K, Muraoka Y, et al. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980;29:1–13.PubMed Makino S, Kunimoto K, Muraoka Y, et al. Breeding of a non-obese, diabetic strain of mice. Jikken Dobutsu. 1980;29:1–13.PubMed
3.
Zurück zum Zitat Turley S, Poirot L, Hattori M, et al. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med. 2003;198:1527–37.PubMedCrossRef Turley S, Poirot L, Hattori M, et al. Physiological beta cell death triggers priming of self-reactive T cells by dendritic cells in a type-1 diabetes model. J Exp Med. 2003;198:1527–37.PubMedCrossRef
4.
Zurück zum Zitat Yu L, Robles DT, Abiru N, et al. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci U S A. 2000;97:1701–706.PubMedCrossRef Yu L, Robles DT, Abiru N, et al. Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci U S A. 2000;97:1701–706.PubMedCrossRef
5.
Zurück zum Zitat Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.PubMed Sakaguchi S, Sakaguchi N, Asano M, et al. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155:1151–64.PubMed
6.
Zurück zum Zitat Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996;184:387–96.PubMedCrossRef Asano M, Toda M, Sakaguchi N, et al. Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation. J Exp Med. 1996;184:387–96.PubMedCrossRef
7.
Zurück zum Zitat Itoh M, Takahashi T, Sakaguchi N, et al. Thymus and autoimmunity: production of CD25 + CD4 + naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol. 1999;162:5317–26.PubMed Itoh M, Takahashi T, Sakaguchi N, et al. Thymus and autoimmunity: production of CD25 + CD4 + naturally anergic and suppressive T cells as a key function of the thymus in maintaining immunologic self-tolerance. J Immunol. 1999;162:5317–26.PubMed
8.
Zurück zum Zitat Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol. 2003;4:330–36.PubMedCrossRef Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4 + CD25 + regulatory T cells. Nat Immunol. 2003;4:330–36.PubMedCrossRef
9.
Zurück zum Zitat Godfrey VL, Wilkinson JE, Rinchik EM, et al. Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc Natl Acad Sci U S A. 1991;88:5528–32.PubMedCrossRef Godfrey VL, Wilkinson JE, Rinchik EM, et al. Fatal lymphoreticular disease in the scurfy (sf) mouse requires T cells that mature in a sf thymic environment: potential model for thymic education. Proc Natl Acad Sci U S A. 1991;88:5528–32.PubMedCrossRef
10.
Zurück zum Zitat Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2002;39:537–45.PubMedCrossRef Wildin RS, Smyk-Pearson S, Filipovich AH. Clinical and molecular features of the immunodysregulation, polyendocrinopathy, enteropathy, X linked (IPEX) syndrome. J Med Genet. 2002;39:537–45.PubMedCrossRef
11.
Zurück zum Zitat Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.PubMedCrossRef Hori S, Nomura T, Sakaguchi S. Control of regulatory T cell development by the transcription factor Foxp3. Science. 2003;299:1057–61.PubMedCrossRef
12.
Zurück zum Zitat Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005;22:329–41.PubMedCrossRef Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity. 2005;22:329–41.PubMedCrossRef
13.
Zurück zum Zitat Wicker LS, Miller BJ, Mullen Y. Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes. 1986;35:855–60.PubMedCrossRef Wicker LS, Miller BJ, Mullen Y. Transfer of autoimmune diabetes mellitus with splenocytes from nonobese diabetic (NOD) mice. Diabetes. 1986;35:855–60.PubMedCrossRef
14.
Zurück zum Zitat Bendelac A, Carnaud C, Boitard C, et al. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4 + and Lyt-2 + T cells. J Exp Med. 1987;166:823–32.PubMedCrossRef Bendelac A, Carnaud C, Boitard C, et al. Syngeneic transfer of autoimmune diabetes from diabetic NOD mice to healthy neonates. Requirement for both L3T4 + and Lyt-2 + T cells. J Exp Med. 1987;166:823–32.PubMedCrossRef
15.
Zurück zum Zitat Boitard C, Yasunami R, Dardenne M, et al. T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice. J Exp Med. 1989;169:1669–80.PubMedCrossRef Boitard C, Yasunami R, Dardenne M, et al. T cell-mediated inhibition of the transfer of autoimmune diabetes in NOD mice. J Exp Med. 1989;169:1669–80.PubMedCrossRef
16.
Zurück zum Zitat Herbelin A, Gombert JM, Lepault F, et al. Mature mainstream TCR alpha beta + CD4 + thymocytes expressing L-selectin mediate “active tolerance” in the nonobese diabetic mouse. J Immunol. 1998;161:2620–28.PubMed Herbelin A, Gombert JM, Lepault F, et al. Mature mainstream TCR alpha beta + CD4 + thymocytes expressing L-selectin mediate “active tolerance” in the nonobese diabetic mouse. J Immunol. 1998;161:2620–28.PubMed
17.
Zurück zum Zitat Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4 + CD25 + immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12:431–40.PubMedCrossRef Salomon B, Lenschow DJ, Rhee L, et al. B7/CD28 costimulation is essential for the homeostasis of the CD4 + CD25 + immunoregulatory T cells that control autoimmune diabetes. Immunity. 2000;12:431–40.PubMedCrossRef
18.
Zurück zum Zitat Lenschow DJ, Herold KC, Rhee L, et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity. 1996;5:285–93.PubMedCrossRef Lenschow DJ, Herold KC, Rhee L, et al. CD28/B7 regulation of Th1 and Th2 subsets in the development of autoimmune diabetes. Immunity. 1996;5:285–93.PubMedCrossRef
19.
Zurück zum Zitat Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell. 2000;101:455–58.PubMedCrossRef Sakaguchi S. Regulatory T cells: key controllers of immunologic self-tolerance. Cell. 2000;101:455–58.PubMedCrossRef
20.
Zurück zum Zitat Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4 + CD25 + regulatory T cells. J Immunol. 2003;171:3348–52.PubMed Tang Q, Henriksen KJ, Boden EK, et al. Cutting edge: CD28 controls peripheral homeostasis of CD4 + CD25 + regulatory T cells. J Immunol. 2003;171:3348–52.PubMed
21.
Zurück zum Zitat Fontenot JD, Rudensky AY. Molecular aspects of regulatory T cell development. Semin Immunol. 2004;16:73–80.PubMedCrossRef Fontenot JD, Rudensky AY. Molecular aspects of regulatory T cell development. Semin Immunol. 2004;16:73–80.PubMedCrossRef
22.
Zurück zum Zitat Rabinovitch A, Suarez-Pinzon WL, Shapiro AM, et al. Combination therapy with sirolimus and interleukin-2 prevents spontaneous and recurrent autoimmune diabetes in NOD mice. Diabetes. 2002;51:638–45.PubMedCrossRef Rabinovitch A, Suarez-Pinzon WL, Shapiro AM, et al. Combination therapy with sirolimus and interleukin-2 prevents spontaneous and recurrent autoimmune diabetes in NOD mice. Diabetes. 2002;51:638–45.PubMedCrossRef
23.
Zurück zum Zitat Roncarolo MG, Battaglia M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol. 2007;7:585–98.PubMedCrossRef Roncarolo MG, Battaglia M. Regulatory T-cell immunotherapy for tolerance to self antigens and alloantigens in humans. Nat Rev Immunol. 2007;7:585–98.PubMedCrossRef
24.
Zurück zum Zitat Tang Q, Henriksen KJ, Bi M, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199:1455–65.PubMedCrossRef Tang Q, Henriksen KJ, Bi M, et al. In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J Exp Med. 2004;199:1455–65.PubMedCrossRef
25.
Zurück zum Zitat Masteller EL, Warner MR, Tang Q, et al. Expansion of functional endogenous antigen-specific CD4 + CD25 + regulatory T cells from nonobese diabetic mice. J Immunol. 2005;175:3053–59.PubMed Masteller EL, Warner MR, Tang Q, et al. Expansion of functional endogenous antigen-specific CD4 + CD25 + regulatory T cells from nonobese diabetic mice. J Immunol. 2005;175:3053–59.PubMed
26.
Zurück zum Zitat Meagher C. J Immunol In Press: (2008). Meagher C. J Immunol In Press: (2008).
27.
Zurück zum Zitat Tang Q, Bluestone JA. The FoxP3 + regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9:129–34.CrossRef Tang Q, Bluestone JA. The FoxP3 + regulatory T cell: a jack of all trades, master of regulation. Nat Immunol. 2008;9:129–34.CrossRef
28.
Zurück zum Zitat Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+ CD25-naive T cells to CD4 + CD25 + regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.PubMedCrossRef Chen W, Jin W, Hardegen N, et al. Conversion of peripheral CD4+ CD25-naive T cells to CD4 + CD25 + regulatory T cells by TGF-beta induction of transcription factor Foxp3. J Exp Med. 2003;198:1875–86.PubMedCrossRef
29.
Zurück zum Zitat You S, Leforban B, Garcia C, et al. Adaptive TGF-beta-dependent regulatory T cells control autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment. Proc Natl Acad Sci U S A. 2007;104:6335–40.PubMedCrossRef You S, Leforban B, Garcia C, et al. Adaptive TGF-beta-dependent regulatory T cells control autoimmune diabetes and are a privileged target of anti-CD3 antibody treatment. Proc Natl Acad Sci U S A. 2007;104:6335–40.PubMedCrossRef
30.
Zurück zum Zitat Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol. 2003;3:253–57.PubMedCrossRef Bluestone JA, Abbas AK. Natural versus adaptive regulatory T cells. Nat Rev Immunol. 2003;3:253–57.PubMedCrossRef
31.
Zurück zum Zitat Hsieh CS, Liang Y, Tyznik AJ, et al. Recognition of the peripheral self by naturally arising CD25 + CD4 + T cell receptors. Immunity. 2004;21:267–77.PubMedCrossRef Hsieh CS, Liang Y, Tyznik AJ, et al. Recognition of the peripheral self by naturally arising CD25 + CD4 + T cell receptors. Immunity. 2004;21:267–77.PubMedCrossRef
32.
Zurück zum Zitat Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity. 2008;28:100–11.PubMedCrossRef Lio CW, Hsieh CS. A two-step process for thymic regulatory T cell development. Immunity. 2008;28:100–11.PubMedCrossRef
33.
Zurück zum Zitat Izcue A, Powrie F. Special regulatory T-cell review: regulatory T cells and the intestinal tract—patrolling the frontier. Immunology. 2008;123:6–10.PubMedCrossRef Izcue A, Powrie F. Special regulatory T-cell review: regulatory T cells and the intestinal tract—patrolling the frontier. Immunology. 2008;123:6–10.PubMedCrossRef
34.
Zurück zum Zitat Tang Q, Adams JY, Tooley AJ, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol. 2006;7:83–92.PubMedCrossRef Tang Q, Adams JY, Tooley AJ, et al. Visualizing regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat Immunol. 2006;7:83–92.PubMedCrossRef
35.
Zurück zum Zitat Cederbom L, Hall H, Ivars F. CD4 + CD25 + regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol. 2000;30:1538–43.PubMedCrossRef Cederbom L, Hall H, Ivars F. CD4 + CD25 + regulatory T cells down-regulate co-stimulatory molecules on antigen-presenting cells. Eur J Immunol. 2000;30:1538–43.PubMedCrossRef
36.
Zurück zum Zitat Misra N, Bayry J, Lacroix-Desmazes S, et al. Cutting edge: human CD4 + CD25 + T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol. 2004;172:4676–80.PubMed Misra N, Bayry J, Lacroix-Desmazes S, et al. Cutting edge: human CD4 + CD25 + T cells restrain the maturation and antigen-presenting function of dendritic cells. J Immunol. 2004;172:4676–80.PubMed
37.
Zurück zum Zitat Herman AE, Freeman GJ, Mathis D, et al. CD4+ CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J Exp Med. 2004;199:1479–89.PubMedCrossRef Herman AE, Freeman GJ, Mathis D, et al. CD4+ CD25+ T regulatory cells dependent on ICOS promote regulation of effector cells in the prediabetic lesion. J Exp Med. 2004;199:1479–89.PubMedCrossRef
38.
Zurück zum Zitat You S, Belghith M, Cobbold S, et al. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes. 2005;54:1415–22.PubMedCrossRef You S, Belghith M, Cobbold S, et al. Autoimmune diabetes onset results from qualitative rather than quantitative age-dependent changes in pathogenic T-cells. Diabetes. 2005;54:1415–22.PubMedCrossRef
39.
Zurück zum Zitat Tang Q, Bluestone JA. Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev. 2006;212:217–37.PubMedCrossRef Tang Q, Bluestone JA. Regulatory T-cell physiology and application to treat autoimmunity. Immunol Rev. 2006;212:217–37.PubMedCrossRef
40.
Zurück zum Zitat Earle KE, Tang Q, Zhou X, et al. In vitro expanded human CD4 + CD25 + regulatory T cells suppress effector T cell proliferation. Clin Immunol. 2005;115:3–9.PubMedCrossRef Earle KE, Tang Q, Zhou X, et al. In vitro expanded human CD4 + CD25 + regulatory T cells suppress effector T cell proliferation. Clin Immunol. 2005;115:3–9.PubMedCrossRef
41.
Zurück zum Zitat Kim JM, Rudensky A. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol Rev. 2006;212:86–98.PubMedCrossRef Kim JM, Rudensky A. The role of the transcription factor Foxp3 in the development of regulatory T cells. Immunol Rev. 2006;212:86–98.PubMedCrossRef
42.
Zurück zum Zitat Hill JA, Feuerer M, Tash K, et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity. 2007;27:786–800.PubMedCrossRef Hill JA, Feuerer M, Tash K, et al. Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity. 2007;27:786–800.PubMedCrossRef
43.
Zurück zum Zitat Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 + T reg cells. J Exp Med. 2006;203:1701–711.PubMedCrossRef Liu W, Putnam AL, Xu-Yu Z, et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4 + T reg cells. J Exp Med. 2006;203:1701–711.PubMedCrossRef
44.
Zurück zum Zitat Lopez M, Clarkson MR, Albin M, et al. A novel mechanism of action for anti-thymocyte globulin: induction of CD4+ CD25+ Foxp3+ regulatory T cells. J Am Soc Nephrol. 2006;17:2844–53.PubMedCrossRef Lopez M, Clarkson MR, Albin M, et al. A novel mechanism of action for anti-thymocyte globulin: induction of CD4+ CD25+ Foxp3+ regulatory T cells. J Am Soc Nephrol. 2006;17:2844–53.PubMedCrossRef
45.
Zurück zum Zitat Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346:1692–98.PubMedCrossRef Herold KC, Hagopian W, Auger JA, et al. Anti-CD3 monoclonal antibody in new-onset type 1 diabetes mellitus. N Engl J Med. 2002;346:1692–98.PubMedCrossRef
46.
Zurück zum Zitat Herold KC, Gitelman SE, Masharani U, et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1 (Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes. 2005;54:1763–69.PubMedCrossRef Herold KC, Gitelman SE, Masharani U, et al. A single course of anti-CD3 monoclonal antibody hOKT3gamma1 (Ala-Ala) results in improvement in C-peptide responses and clinical parameters for at least 2 years after onset of type 1 diabetes. Diabetes. 2005;54:1763–69.PubMedCrossRef
Metadaten
Titel
T Regulatory Cells in Autoimmune Diabetes: Past Challenges, Future Prospects
verfasst von
Jeffrey A. Bluestone
Qizhi Tang
Caitlin E. Sedwick
Publikationsdatum
01.11.2008
Verlag
Springer US
Erschienen in
Journal of Clinical Immunology / Ausgabe 6/2008
Print ISSN: 0271-9142
Elektronische ISSN: 1573-2592
DOI
https://doi.org/10.1007/s10875-008-9242-z

Weitere Artikel der Ausgabe 6/2008

Journal of Clinical Immunology 6/2008 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Echinokokkose medikamentös behandeln oder operieren?

06.05.2024 DCK 2024 Kongressbericht

Die Therapie von Echinokokkosen sollte immer in spezialisierten Zentren erfolgen. Eine symptomlose Echinokokkose kann – egal ob von Hunde- oder Fuchsbandwurm ausgelöst – konservativ erfolgen. Wenn eine Op. nötig ist, kann es sinnvoll sein, vorher Zysten zu leeren und zu desinfizieren. 

Umsetzung der POMGAT-Leitlinie läuft

03.05.2024 DCK 2024 Kongressbericht

Seit November 2023 gibt es evidenzbasierte Empfehlungen zum perioperativen Management bei gastrointestinalen Tumoren (POMGAT) auf S3-Niveau. Vieles wird schon entsprechend der Empfehlungen durchgeführt. Wo es im Alltag noch hapert, zeigt eine Umfrage in einem Klinikverbund.

Proximale Humerusfraktur: Auch 100-Jährige operieren?

01.05.2024 DCK 2024 Kongressbericht

Mit dem demographischen Wandel versorgt auch die Chirurgie immer mehr betagte Menschen. Von Entwicklungen wie Fast-Track können auch ältere Menschen profitieren und bei proximaler Humerusfraktur können selbst manche 100-Jährige noch sicher operiert werden.

Die „Zehn Gebote“ des Endokarditis-Managements

30.04.2024 Endokarditis Leitlinie kompakt

Worauf kommt es beim Management von Personen mit infektiöser Endokarditis an? Eine Kardiologin und ein Kardiologe fassen die zehn wichtigsten Punkte der neuen ESC-Leitlinie zusammen.

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.