Skip to main content
Erschienen in: Neurocritical Care 2/2017

Open Access 20.12.2016 | Practical Pearl

Takotsubo Cardiomyopathy in Traumatic Brain Injury

verfasst von: Chun Fai Cheah, Mario Kofler, Alois Josef Schiefecker, Ronny Beer, Gert Klug, Bettina Pfausler, Raimund Helbok

Erschienen in: Neurocritical Care | Ausgabe 2/2017

Abstract

Background

Takotsubo cardiomyopathy (TC) is a well-known complication after aneurysmal subarachnoid hemorrhage and has been rarely described in patients with traumatic brain injury (TBI).

Methods

Case report and review of literature.

Results

Here, we report a 73-year-old woman with mild traumatic brain injury (TBI) presenting in cardiogenic shock. Takotsubo cardiomyopathy (TC) was diagnosed by repeated echocardiography. Cardiovascular support by inotropic agents led to hemodynamic stabilization after initiation of levosimendan. Cardiac function fully recovered within 21 days. We performed an in-depth literature review and identified 16 reported patients with TBI and TC. Clinical course and characteristics are discussed in the context of our patient.

Conclusion

Takotsubo cardiomyopathy is under-recognized after TBI and may negatively impact outcome if left untreated.
Begleitmaterial
Supplementary material 1 (AVI 3633 kb)
Supplementary material 2 (AVI 3492 kb)
Hinweise

Electronic supplementary material

The online version of this article (doi:10.​1007/​s12028-016-0334-y) contains supplementary material, which is available to authorized users.

Introduction

Takotsubo cardiomyopathy (TC) is known to occur in patients with severe brain insult. It has been widely described after subarachnoid hemorrhage (SAH, 1.2–28 %) [13]; however, it rarely occurs in patients with intracerebral hemorrhage, ischemic stroke, and traumatic brain injury (TBI) [4]. In medical ICU patients, the incidence ranges between 5.7 and 28 % [5, 6]. Here, we report a case of mild TBI with secondary hematoma progression presenting with severe TC and provide a comprehensive review of all reported TBI cases [719].

Case Report

A previously healthy 73-year-old woman was admitted to the trauma ward of our tertiary hospital with mild TBI. On presentation, she was disoriented, had a Glasgow Coma Scale (GCS) score of 14, and suffered from retrograde amnesia. Neurological examination revealed bilateral gaze-evoked nystagmus, but no other focal neurological deficit and her vital signs were stable. Laboratory workup revealed 0.21 % blood alcohol concentration. Computed tomography (CT) scanning of the brain showed right parieto-occipital and left temporo-parietal skull fractures with an acute subdural hematoma (ASDH) and traumatic SAH over the left hemisphere and a small left frontal hemorrhagic contusion (Fig. 1, Panel A). Six hours later, the patient deteriorated and repeat head-CT showed a significant progression of the left frontal hemorrhage with intraventricular extension and a midline shift of 11 mm (Fig. 1, Panel A). Hematoma evacuation and placement of an external ventricular drain were immediately performed, and the patient was transferred to the neurological intensive care unit. Postoperatively the patient was on norepinephrine (0.073 mcg/kg/min), sufentanil (0.073 mcg/kg/min), and midazolam (6 mcg/kg/min). Within the next 24 h, norepinephrine had to be continuously increased to 0.29 mcg/kg/min to achieve a cerebral perfusion pressure (CPP) of >65 mmHg. In addition, dobutamine (6.038 mcg/kg/min), phenylephrine (0.725 mcg/kg/min), and hydrocortisone (1.933 mcg/kg/min, given to treat secondary adrenal insufficiency) were necessary to keep the patient hemodynamically stable.
At this time, the electrocardiography showed sinus tachycardia at a rate of 130 beats per minute (bpm) with non-specific repolarization abnormalities with no correspondence to a distinct coronary artery territory. Laboratory myocardial biomarkers exceeded pathologic thresholds: Troponin T levels peaked at 0.54 ng/mL (normal range, <0.014 ng/mL) and NT-proBNP was 4690 ng/L (normal range 0–303 ng/L). Creatinine kinase (CK) was within normal range. Bedside transthoracic echocardiography demonstrated severe left ventricular (LV) myocardial dysfunction (ejection fraction 35 %), marked hypokinesia of the apical and midventricular portions of the left ventricle suggestive of takotsubo cardiomyopathy (TC). Only mild mitral regurgitation was detected. Invasive coronary angiography was not performed because of typical findings on echocardiogram and the limited therapeutic possibility due to intracranial bleeding.
As dobutamine was not improving the severe myocardial dysfunction, levosimendan was added (initial dose 0.03 mcg/kg/min, gradually increased to 0.12 mcg/kg/min) and maintained for 28 h. After initiation, no increased dosage of norepinephrine was needed. The heart rate decreased to less than 100 bpm, dobutamine and phenylephrine could be withdrawn, and norepinephrine was slowly decreased over the following days without significant drops in blood pressure. Repeated transthoracic echocardiography demonstrated improvement in LV myocardial function on day 8 (ejection fraction 40 %) (Fig. 1, Panel B) and further recovery on day 21 (Fig. 1, Panel C, ejection fraction 49.9 %, normal 54–74 %). Coronary angiography was not performed as coronary artery disease deemed unlikely due to recovery in cardiac function in repeated echocardiography suggestive for TC as underlying pathology. The patient was successfully weaned on day 11 and discharged for neurorehabilitation 21 days after trauma. At this time, she was fully awake with a GCS score of 15, mildly disabled with a grade 4 brachio-facial left-sided hemiparesis and dysphagia.

Review of Literature

Methods

We performed a comprehensive literature search using the search terms ‘Takotsubo cardiomyopathy,’ ‘Tako-tsubo cardiomyopathy,’ ‘stress cardiomyopathy,’ ‘stunned myocardium,’ ‘transient-left-ventricular ballooning syndrome,’ ‘apical ballooning syndrome,’ ‘myocardial dysfunction’ or ‘heart failure’ together with ‘traumatic brain injury,’ ‘head injury,’ and ‘polytrauma.’ Only articles in English language were included.

Results

Overall we identified 13 published articles involving 16 TBI patients with TC [719] (Table 1). Among these, 13 were adults and 3 of pediatric age. All patients (except 1 uncharacterized) presented with impaired consciousness necessitating mechanical ventilation. The brain injury pattern was heterogeneous including various degrees of contusional hematoma, epidural hemorrhage (EDH), subdural hemorrhage (SDH), and traumatic SAH with 5 patients undergoing neurosurgical intervention. Six patients presented with polytrauma on admission. TC was diagnosed within 24 h in most patients (N = 10/16, 63 %); however, one patient developed TC 12 days after admission. In 4 patients, coronary angiography was performed and confirmed TC. Electrocardiography abnormalities were found in 9/16 patients (56 %) including ST segment and T wave changes, and 69 % (11/16) had elevated serum troponin levels. Treatment differed; however, most received inotropic support using dobutamine. In one patient, levosimendan at a dose of 0.1 mcg/kg/min was used for 24 h. In addition, various drugs were used to sustain adequate blood pressure including epinephrine, norepinephrine, and vasopressin. Five patients needed extracorporeal life support to treat severe refractory cardiovascular shock. Echocardiography revealed abnormal results in all patients (100 %) and was reversible in the majority of patients within 7 days except in 2 patients after 12 and 17 days, respectively.
Table 1
Reported cases of takotsubo cardiomyopathy with traumatic brain injury in the literature
References
Number of patients
Admission level of consciousness, GCS
Imaging
TC onset day
Echocardiography
ECG
Laboratory
Other investigation (s)
Treatment (s)
Functional outcome/cardiac outcome
Palac et al. [7]
1
Unresponsive
tSAH
1
EF 45 %
LV hypokinesia sparing apex
NA
CK max = 1244 U/La
Troponin max = 1.4 ng/mL (NR < 0.5 ng/mL)
NA
Dopamine, Norepinephrine, Vasopressin
Mortality: Yes
Echo the same day: EF = 60 %
Krishnamoorthy et al. [8]
1
Worsening somnolence
SDH
Midline shift
2
EF 35 %
Basal hypokinesia
NA
NA
NA
Phenylephrine: 300 mcg
Ephedrine: 20 mg
Craniectomy
Mortality: No
Echo the same day: EF = 55 %
Divekar et al. [9]
1
Unresponsive
SDH
1
EF 45 %.
Apical akinesia
T wave inversion in I, aVL, and V4–V6 with QT prolongation
CK max = 853 U/La
Troponin T max = 0.6 ng/mLa
CAG: normal
NA
Mortality: NA
Echo after 3 days: normal
Deleu et al. [10]
1
GCS 6
Contusion
EDH
6
EF 18 %, Diffuse LV akinesia
Sinus tachycardia, diffuse, symmetric T wave inversion
CK max = 311 U/L (NR 39–238 U/L)
Troponin max = 0.08 ng/mL (NR < 0.03 ng/mL)
NA
Epinephrineb: up to 3 mcg/min
Norepinephrinec
Craniotomy
Mortality: No
Echo after 12 days: EF = 50 %
Wippermann et al. [11]
1
NA
Diffuse edema
1
EF < 10 %
LV akinesia
Anterior myocardial ischemia
Troponin I max = 2.3 ng/mLa
NA
Inotropes, Craniotomy
ECLS
Mortality: Yes
Echo after 2 days: EF = 50 %
Maréchaux et al. [12]
1
Impaired consciousness
tSAH
1
EF 20 %
LV akinesia sparing apex
Diffuse T wave inversion with QT prolongation
Troponin max = 1.6 ng/mL (NR < 0.1 ng/mL)
NA
NA
Mortality: Yes
Echo: NA
Vergez et al. [13]
1
NA
SDH, herniation
2
Severe
LV hypokinesia
Marked ST elevation (≥2 mm) negative T waves left precordium
Troponin I max = 3.2 ng/mL (NR < 0.02 ng/mL)
NA
Norepinephrinec: 0.–0.83 mcg/kg/min
Dobutamine: 15 mcg/kg/min
Craniotomy
Mortality: No
Echo after 17 days: Improvement in apical LV contractility
Riera et al. [14]
1
GCS 5
Contusion, tSAH
5
Moderate to severe
LV hypokinesia sparing apex
Sinus tachycardia, subendocardial injury anteroseptal and inferior
CK max = 242U/L (NR 24–170 U/L)
Troponin I max = 1.13 ng/mL (NR < 0.06 ng/mL)
CAG: normal
LVG: LV myocardial dysfunction
Norepinephrine: 0.8–1 mcg/kg/min
Dobutamine
Mortality: No
Echo after 7 days: EF 45–50 %
Samol et al. [15]
1
Comatose
Contusion tSAH
1
LV hypokinesia
T negativity in V3–V6 with QT prolongation
CK max = 480U/La
Troponin I max = 6.8 ng/mL (NR < 0.04 ng/mL)
CAG: normal
LVG: LV hypokinesia midventricular
Cardiac MRI: severe LV hypokinesia (EF 25 %)
Catecholamines
Mortality: No
Echo after 2 days: EF 45 %
Santoro et al. [16]
1
NA
NA
1
EF 30 %
NA
Troponin max = 4.72 ng/mLa
CAG: normal
Levosimendan: 0.1 mcg/kg/min
Mortality: No
Echo after 3 days: EF 50 %
Krpata et al. [17]
1
GCS 7
Cerebral edema
3
EF 10–15 %
LV akinesia
T wave inversion V3–V6
CK max = 541U/La
Troponin max = 3.23 ng/mLa
NA
Norepinephrine
Milrinone: No dosage given
Mortality: No
Echo after 7 days: EF 65 %
Bonacchi et al. [18]
4
NA
Contusion
EDH
tSAH
1
EF 14 %
NA
NA
NA
Dopamine/dobutamine/epinephrine/norepinephrine/isoproterenol/milnirone: ECLS
Mortality: 2 patients
Echo after 3 days: EF 55–59 % in 2 survived patients
Hong et al. [19]
1
GCS 7
tSAH
SDH
IVH
Contusion
12
Moderate LV hypokinesia
Diffuse ST segment elevation in all leads
CK max = 134U/La
Troponin max = 0.11 ng/mL (NR < 0.06 ng/mL)
NA
NA
Mortality: NA
Echo after 1 day: Recovered cardiac event
TBI traumatic brain injury, GCS Glasgow Coma Scale, tSAH traumatic subarachnoid hemorrhage, EDH extradural hemorrhage, SDH subdural hematoma, IVH intraventricular hemorrhage, ECG electrocardiography, CAG coronary artery angiogram, LV left ventricle, LVG left ventriculogram, MRI magnetic resonance imaging, CK creatinine kinase, Max maximum, NR normal range, EF ejection fraction, ECLS extracorporeal life support, NA not available, echocardiogram echo
aLocal laboratory ranges not available
bAdrenaline in local institution
cNoradrenaline in local institution
In summary, (1) brain injury pattern in TBI patients presenting with TC is heterogeneous and therefore unspecific, (2) in the majority of patients inotropic support using dobutamine leads to improved cardiac function, (3) patients presenting in severe refractory cardiovascular shock may necessitate extracorporeal life support, and (4) with adequate management of TC long-term prognosis is more dependent on the severity of brain injury.

Discussion

Myocardial dysfunction in various degrees has been reported in patients with brain trauma [2022] (Table 2), being more prevalent in severe TBI. TC represents a serious manifestation of myocardial dysfunction and is defined as an acute, transient, and reversible heart failure syndrome due to regional wall abnormalities of the ventricular myocardium with associated new electrocardiography changes and elevation of myocardial biomarkers in the absence of culprit atherosclerotic coronary artery disease or cardiac condition causing the temporary ventricular dysfunction [23, 24]. Since its’ initial description in 1990, TC was almost exclusively reported in patients with severe SAH. Only a few reports were published in patients with severe TBI although pathophysiologic mechanisms of both entities may have similar effects on the neuro-cardiac axis. Perhaps, many of the earlier suggested criteria to define TC that excluded the presence of TBI had compounded the conundrum [25].
Table 2
Description of 3 studies on myocardial dysfunction in patients with traumatic brain injury
References
Number of patients
Patients severe TBI (%)
Pathology
Abnormal ECG (%)
Increased CK or troponin level (%)a
Abnormal echocardiography (%)b
Patients with myocardial dysfunction (%)c
Bahloul et al. [20]
7
5/7 (85)
EDH, SDH, cerebral edema, contusion
7/7 (100)
2/7 (28.5)
3/7 (42.8)
7/7 (100)
Prathep et al. [21]
139
78/139 (56)
SDH, tSAH
contusion
NA
98/139 (30.6)
31/139 (22.3)
31/139 (22.3)
Hasanin et al. [22]
50
50/50 (100)
SDH, tSAH, IVH, DAI, contusion
31/50 (62)
27/50 (54)
21/50 (42)
25/50 (50)
TBI traumatic brain injury, tSAH traumatic subarachnoid hemorrhage, ECG electrocardiography, EDH extradural hemorrhage, SDH subdural hematoma, IVH intraventricular hemorrhage, DAI diffuse axonal injury, CK creatinine kinase, NA not available
aAccording to local laboratory ranges
bEvidence for decreased EF or cardiac wall motion abnormality
cClinical presentation and/or echocardiogram evidence of cardiac dysfunction
Underlying pathophysiologic mechanisms are still incompletely understood. Most investigations suggest an interconnected cascade of neuronal injury causing sympathetic overstimulation and direct catecholamine toxicity to the heart [26]. Supra-physiologic levels of epinephrine bind to myocardial B2-receptors causing myocardial protein Gs-to-Gi coupling switch, mediated cyclic adenosine monophosphate (cAMP) calcium overload in myocytes, and contraction-band necrosis reducing cardiac contractility [27, 28].
Our patient had full recovery of cardiac function 21 days after trauma. Even though transient and reversible in nature, some reports suggest recovery even up to 12-week postinjury [23]. Hemodynamic support is critical in patients with severe TBI based on current treatment concepts that emphasize maintenance of an adequate CPP [29]. Improving cardiac function in patients with TC may be achieved by using dobutamine and other pharmacological, or non-pharmacologic treatment including extracorporeal life support. Our patient failed to improve by using dobutamine at a dose of 6.0 mcg/kg/min. After adding levosimendan, cardiac function and heart rate markedly improved.
Recently, the use of levosimendan has been reported in patients with aneurysmal SAH where dobutamine was deemed ineffective [30]. Levosimendan is a non-catecholamine inodilator used in the treatment of acute heart failure with higher improvement rate in cardiac function compared to dobutamine [31]. It increases the sensitivity of myofilaments to calcium, leading to increased myocardial contraction without increasing intracellular cAMP or calcium concentrations [31]. Through the opening of an ATP-dependent potassium channel, vasodilatory effects in systemic, coronary, pulmonary, and venous blood vessels may be observed [31]. Unlike other vasopressors, it improves myocardial contractility without increasing myocardial oxygen consumption, and more importantly its action is independent of interactions with adrenergic receptors [31]. Nonetheless, its utilization in patients with TC remains scarce, bearing the rarity of the entity itself. In one of the largest case series, levosimendan was successfully used in 13 patients with TC [16].

Conclusions

We highlight the presentation of a patient suffering from TBI with takotsubo cardiomyopathy. Although transient in nature and commonly associated with a good overall prognosis, increasing evidence suggests it is a more serious acute cardiac disorder with a variety of complications [23, 24]. Its hemodynamic effect may be deleterious in certain TBI patients if unrecognized. Levosimendan may be an effective therapeutic agent in severe cases.

Acknowledgments

Paul Rhomberg, MD, Department of Neuroradiology, Medical University of Innsbruck Anichstrasse 35, 6020 Innsbruck, Austria provided neuroimaging data. Open access funding provided by University of Innsbruck and Medical University of Innsbruck.

Authors Contribution

Chun Fai Cheah contributed to concept, design, writing, and editing; Mario Kofler helped with design, editing, and critical revision of manuscript for intellectual content; Alois Schiefecker helped in editing and critical revision of manuscript for intellectual content; Ronny Beer and Bettina Pfausler contributed to concept, design, and critical revision of manuscript for intellectual content; Gert Klug helped with echocardiography, data interpretation, and critical revision; Raimund Helbok contributed to idea, writing, reviewing, editing, and critical revision.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Anästhesiologie

Kombi-Abonnement

Mit e.Med Anästhesiologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes AINS, den Premium-Inhalten der AINS-Fachzeitschriften, inklusive einer gedruckten AINS-Zeitschrift Ihrer Wahl.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

Weitere Produktempfehlungen anzeigen
Anhänge

Electronic supplementary material

Below is the link to the electronic supplementary material.
Supplementary material 1 (AVI 3633 kb)
Supplementary material 2 (AVI 3492 kb)
Literatur
1.
Zurück zum Zitat Lee VH, Connolly HM, Fulgham JR, Manno EM, Brown RD Jr, Wijdicks EFM. Tako-tsubo cardiomyopathy in aneurysmal subarachnoid hemorrhage: an under appreciated ventricular dysfunction. J Neurosurg. 2006;105:264–70.CrossRefPubMed Lee VH, Connolly HM, Fulgham JR, Manno EM, Brown RD Jr, Wijdicks EFM. Tako-tsubo cardiomyopathy in aneurysmal subarachnoid hemorrhage: an under appreciated ventricular dysfunction. J Neurosurg. 2006;105:264–70.CrossRefPubMed
2.
Zurück zum Zitat Kilbourn KJ, Levy S, Staff I, Kureshi I, McCullough L. Clinical characteristics and outcomes of neurogenic stress cardiomyopathy in aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg. 2013;115:909–14.CrossRefPubMed Kilbourn KJ, Levy S, Staff I, Kureshi I, McCullough L. Clinical characteristics and outcomes of neurogenic stress cardiomyopathy in aneurysmal subarachnoid hemorrhage. Clin Neurol Neurosurg. 2013;115:909–14.CrossRefPubMed
3.
Zurück zum Zitat Banki N, Kopelnik A, Tung P, et al. Prospective analysis of prevalence, distribution, and rate of recovery of left ventricular systolic dysfunction in patients with subarachnoid hemorrhage. J Neurosurg. 2006;105:15–20.CrossRefPubMed Banki N, Kopelnik A, Tung P, et al. Prospective analysis of prevalence, distribution, and rate of recovery of left ventricular systolic dysfunction in patients with subarachnoid hemorrhage. J Neurosurg. 2006;105:15–20.CrossRefPubMed
4.
Zurück zum Zitat Finsterer J, Wahbi K. CNS disease triggering Takotsubo stress cardiomyopathy: review. Int J Cardiol. 2014;177:322–9.CrossRefPubMed Finsterer J, Wahbi K. CNS disease triggering Takotsubo stress cardiomyopathy: review. Int J Cardiol. 2014;177:322–9.CrossRefPubMed
5.
Zurück zum Zitat Ruiz-Bailén M, Aguayo-de Hoyos E, López Martinez A, et al. Reversible myocardial dysfunction, a possible complication in critically ill patients without heart disease. J Crit Care. 2003;18:245–52.CrossRefPubMed Ruiz-Bailén M, Aguayo-de Hoyos E, López Martinez A, et al. Reversible myocardial dysfunction, a possible complication in critically ill patients without heart disease. J Crit Care. 2003;18:245–52.CrossRefPubMed
6.
Zurück zum Zitat Park JH, Kang SJ, Song JK, Kim HK, Lim CM, Kang DH, Koh Y. Left ventricular apical ballooning due to severe physical stress in patients admitted to the medical ICU. Chest. 2005;128:296–302.CrossRefPubMed Park JH, Kang SJ, Song JK, Kim HK, Lim CM, Kang DH, Koh Y. Left ventricular apical ballooning due to severe physical stress in patients admitted to the medical ICU. Chest. 2005;128:296–302.CrossRefPubMed
7.
Zurück zum Zitat Palac RT, Sumner G, Laird R, O’Rourke DJ. Reversible myocardial dysfunction after traumatic brain injury: mechanisms and implications for heart transplantation. Prog Transplant. 2003;13:42–6.CrossRefPubMed Palac RT, Sumner G, Laird R, O’Rourke DJ. Reversible myocardial dysfunction after traumatic brain injury: mechanisms and implications for heart transplantation. Prog Transplant. 2003;13:42–6.CrossRefPubMed
8.
Zurück zum Zitat Krishnamoorthy V, Sharma D, Prathep S, Vavilala MS. Myocardial dysfunction in acute traumatic brain injury relieved by surgical decompression. Case Rep Anaesthesiol. 2013;2013:1–4.CrossRef Krishnamoorthy V, Sharma D, Prathep S, Vavilala MS. Myocardial dysfunction in acute traumatic brain injury relieved by surgical decompression. Case Rep Anaesthesiol. 2013;2013:1–4.CrossRef
9.
Zurück zum Zitat Divekar A, Shah S, Joshi C. Neurogenic stunned myocardium and transient severe tricuspid regurgitation in a child following non-accidental head trauma. Pediatr Cardiol. 2006;27(3):376–7.CrossRefPubMed Divekar A, Shah S, Joshi C. Neurogenic stunned myocardium and transient severe tricuspid regurgitation in a child following non-accidental head trauma. Pediatr Cardiol. 2006;27(3):376–7.CrossRefPubMed
10.
Zurück zum Zitat Deleu D, Kettern MA, Hanssens Y, Kumar S, Salim K, Miyares F. Neurogenic stunned myocardium following hemorrhagic cerebral contusion. Saudi Med J. 2007;28(2):283–5.PubMed Deleu D, Kettern MA, Hanssens Y, Kumar S, Salim K, Miyares F. Neurogenic stunned myocardium following hemorrhagic cerebral contusion. Saudi Med J. 2007;28(2):283–5.PubMed
11.
Zurück zum Zitat Wippermann J, Bennink G, Wittwer T, Madershahian N, Ortmann C, Wahlers T. Reversal of myocardial dysfunction due to brain injury. Asian Cardiovasc Thorac Ann. 2008;16(3):30–1.CrossRef Wippermann J, Bennink G, Wittwer T, Madershahian N, Ortmann C, Wahlers T. Reversal of myocardial dysfunction due to brain injury. Asian Cardiovasc Thorac Ann. 2008;16(3):30–1.CrossRef
12.
Zurück zum Zitat Maréchaux S, Goldstein P, Girardie P, Ennezat PV. Contractile pattern of inverted takotsubo cardiomyopathy: illustration by two-dimensional strain. Eur J Echocardiogr. 2009;10(2):332–3.CrossRefPubMed Maréchaux S, Goldstein P, Girardie P, Ennezat PV. Contractile pattern of inverted takotsubo cardiomyopathy: illustration by two-dimensional strain. Eur J Echocardiogr. 2009;10(2):332–3.CrossRefPubMed
13.
Zurück zum Zitat Vergez M, Pirracchio R, Mateo J, Payen D, Cholley B. Tako tsubo cardiomyopathy in a patient with multiple trauma. Resuscitation. 2009;80(9):1074–7.CrossRefPubMed Vergez M, Pirracchio R, Mateo J, Payen D, Cholley B. Tako tsubo cardiomyopathy in a patient with multiple trauma. Resuscitation. 2009;80(9):1074–7.CrossRefPubMed
14.
Zurück zum Zitat Riera M, Llompart-Pou JA, Carillo A, Blanco C. Head injury and inverted takotsubo cardiomyopathy. J Trauma. 2010;68:13–5.CrossRef Riera M, Llompart-Pou JA, Carillo A, Blanco C. Head injury and inverted takotsubo cardiomyopathy. J Trauma. 2010;68:13–5.CrossRef
15.
Zurück zum Zitat Samol A, Grude M, Stypmann J, et al. Acute global cardiac decompensation due to inverted takotsubo cardiomyopathy after skull-brain trauma- a case report. Injury Extra. 2011;42(5):54–7.CrossRef Samol A, Grude M, Stypmann J, et al. Acute global cardiac decompensation due to inverted takotsubo cardiomyopathy after skull-brain trauma- a case report. Injury Extra. 2011;42(5):54–7.CrossRef
16.
Zurück zum Zitat Santoro F, Ieva R, Ferraretti A, et al. Safety and feasibility of levosimendan administration in takotsubo cardiomyopathy: a case series. Cardiovasc Ther. 2013;31(6):133–7.CrossRef Santoro F, Ieva R, Ferraretti A, et al. Safety and feasibility of levosimendan administration in takotsubo cardiomyopathy: a case series. Cardiovasc Ther. 2013;31(6):133–7.CrossRef
17.
Zurück zum Zitat Krpata DM, Barksdle EM Jr. Trauma induced left ventricular apical ballooning syndrome in a 15 year-old: a rare case of tako-tsubo cardiomyopathy. J Pediatr Surg. 2013;48:876–9.CrossRefPubMed Krpata DM, Barksdle EM Jr. Trauma induced left ventricular apical ballooning syndrome in a 15 year-old: a rare case of tako-tsubo cardiomyopathy. J Pediatr Surg. 2013;48:876–9.CrossRefPubMed
18.
Zurück zum Zitat Bonacchi M, Vannini A, Harmelin G, et al. Inverted-takotsubo cardiomyopathy: severe refractory heart failure in poly-trauma patients saved by emergency extracorporeal life support. Interact Cardiovasc Thorac Surg. 2015;20(3):365–71.CrossRefPubMed Bonacchi M, Vannini A, Harmelin G, et al. Inverted-takotsubo cardiomyopathy: severe refractory heart failure in poly-trauma patients saved by emergency extracorporeal life support. Interact Cardiovasc Thorac Surg. 2015;20(3):365–71.CrossRefPubMed
19.
Zurück zum Zitat Hong J, Glater-Welt LB, Siegel LB. Takotsubo cardiomyopathy in a 23 months-old following traumatic brain injury. Ann Pediatr Child Health. 2014;2(4):1029. Hong J, Glater-Welt LB, Siegel LB. Takotsubo cardiomyopathy in a 23 months-old following traumatic brain injury. Ann Pediatr Child Health. 2014;2(4):1029.
20.
Zurück zum Zitat Bahloul M, Chaari AN, Kallel H, et al. Neurogenic pulmonary edema due to traumatic brain injury: evidence of cardiac dysfunction. Am J Crit Care. 2006;15(5):462–70.PubMed Bahloul M, Chaari AN, Kallel H, et al. Neurogenic pulmonary edema due to traumatic brain injury: evidence of cardiac dysfunction. Am J Crit Care. 2006;15(5):462–70.PubMed
21.
Zurück zum Zitat Prathep S, Sharma D, Hallman M, et al. Preliminary report on cardiac dysfunction after isolated traumatic brain injury. Crit Care Med. 2014;42:142–7.CrossRefPubMed Prathep S, Sharma D, Hallman M, et al. Preliminary report on cardiac dysfunction after isolated traumatic brain injury. Crit Care Med. 2014;42:142–7.CrossRefPubMed
22.
Zurück zum Zitat Hasanin A, Kamal A, Amin S, et al. Incidence and outcome of cardiac injury in patients with severe head trauma. Scand J Trauma, Resus Emerg Med. 2016;24:58.CrossRef Hasanin A, Kamal A, Amin S, et al. Incidence and outcome of cardiac injury in patients with severe head trauma. Scand J Trauma, Resus Emerg Med. 2016;24:58.CrossRef
23.
Zurück zum Zitat Lyon AR, Bossone E, Schneider B, et al. Current state of knowledge on Takotsubo syndrome: a position statement from the taskforce on Takotsubo syndrome of the heart failure association of the European society of cardiology. Eur J Heart Fail. 2016;18(1):8–27.CrossRefPubMed Lyon AR, Bossone E, Schneider B, et al. Current state of knowledge on Takotsubo syndrome: a position statement from the taskforce on Takotsubo syndrome of the heart failure association of the European society of cardiology. Eur J Heart Fail. 2016;18(1):8–27.CrossRefPubMed
24.
Zurück zum Zitat Templin C, Ghadri JR, Diekmann J, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373(10):929–38.CrossRefPubMed Templin C, Ghadri JR, Diekmann J, et al. Clinical features and outcomes of Takotsubo (stress) cardiomyopathy. N Engl J Med. 2015;373(10):929–38.CrossRefPubMed
25.
Zurück zum Zitat Bybee KA, Kara T, Prasad A, et al. Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med. 2004;141(11):858–65.CrossRefPubMed Bybee KA, Kara T, Prasad A, et al. Systematic review: transient left ventricular apical ballooning: a syndrome that mimics ST-segment elevation myocardial infarction. Ann Intern Med. 2004;141(11):858–65.CrossRefPubMed
26.
Zurück zum Zitat Wittstein IS, Thiemann DR, Lima JA, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352(6):539–48.CrossRefPubMed Wittstein IS, Thiemann DR, Lima JA, et al. Neurohumoral features of myocardial stunning due to sudden emotional stress. N Engl J Med. 2005;352(6):539–48.CrossRefPubMed
27.
Zurück zum Zitat Lyon AR, Rees PS, Prasad S, Poole-Wilson PA, Harding SE. Stress (Takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Prac Cardiovasc Med. 2008;5:22–9.CrossRef Lyon AR, Rees PS, Prasad S, Poole-Wilson PA, Harding SE. Stress (Takotsubo) cardiomyopathy—a novel pathophysiological hypothesis to explain catecholamine-induced acute myocardial stunning. Nat Clin Prac Cardiovasc Med. 2008;5:22–9.CrossRef
28.
Zurück zum Zitat Paur H, Wright PT, Sikkel MB, et al. High levels of circulating epinephrine trigger apical cardiodepression in a ß2-adrenergic receptor/Gi–dependent manner: a new model of Takotsubo cardiomyopathy. Circulation. 2012;126(6):697–706.CrossRefPubMedPubMedCentral Paur H, Wright PT, Sikkel MB, et al. High levels of circulating epinephrine trigger apical cardiodepression in a ß2-adrenergic receptor/Gi–dependent manner: a new model of Takotsubo cardiomyopathy. Circulation. 2012;126(6):697–706.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Brain Trauma Foundation, American Association of Neurological Surgeons (AANS), Congress of Neurological Surgeons (CNS), AANS/CNS Joint Section on Neurotrauma and Critical Care. Guidelines for the management of severe traumatic brain injury, 3rd edition. J Neurotrauma. 2007;24(suppl 1):S1–S106. Brain Trauma Foundation, American Association of Neurological Surgeons (AANS), Congress of Neurological Surgeons (CNS), AANS/CNS Joint Section on Neurotrauma and Critical Care. Guidelines for the management of severe traumatic brain injury, 3rd edition. J Neurotrauma. 2007;24(suppl 1):S1–S106.
30.
Zurück zum Zitat Taccone FS, Brasseur A, Vincent JL, De Backer D. Levosimendan for the treatment of subarachnoid haemorrhage-related cardiogenic shock. Intensive Care Med. 2013;39(8):1497–8.CrossRefPubMed Taccone FS, Brasseur A, Vincent JL, De Backer D. Levosimendan for the treatment of subarachnoid haemorrhage-related cardiogenic shock. Intensive Care Med. 2013;39(8):1497–8.CrossRefPubMed
31.
Zurück zum Zitat Parissis JT, Rafouli-Stergiou P, Paraskevaidis I, Mebazaa A. Levosimendan: from basic science to clinical practice. Heart Fail Rev. 2009;14(4):265–75.CrossRefPubMed Parissis JT, Rafouli-Stergiou P, Paraskevaidis I, Mebazaa A. Levosimendan: from basic science to clinical practice. Heart Fail Rev. 2009;14(4):265–75.CrossRefPubMed
Metadaten
Titel
Takotsubo Cardiomyopathy in Traumatic Brain Injury
verfasst von
Chun Fai Cheah
Mario Kofler
Alois Josef Schiefecker
Ronny Beer
Gert Klug
Bettina Pfausler
Raimund Helbok
Publikationsdatum
20.12.2016
Verlag
Springer US
Erschienen in
Neurocritical Care / Ausgabe 2/2017
Print ISSN: 1541-6933
Elektronische ISSN: 1556-0961
DOI
https://doi.org/10.1007/s12028-016-0334-y

Weitere Artikel der Ausgabe 2/2017

Neurocritical Care 2/2017 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.