Skip to main content
main-content

18.04.2017 | Ausgabe 10/2017

Abdominal Radiology 10/2017

Texture analysis as a radiomic marker for differentiating renal tumors

Zeitschrift:
Abdominal Radiology > Ausgabe 10/2017
Autoren:
HeiShun Yu, Jonathan Scalera, Maria Khalid, Anne-Sophie Touret, Nicolas Bloch, Baojun Li, Muhammad M. Qureshi, Jorge A. Soto, Stephan W. Anderson

Abstract

Purpose

To evaluate the utility of texture analysis for the differentiation of renal tumors, including the various renal cell carcinoma subtypes and oncocytoma.

Materials and methods

Following IRB approval, a retrospective analysis was performed, including all patients with pathology-proven renal tumors and an abdominal computed tomography (CT) examination. CT images of the tumors were manually segmented, and texture analysis of the segmented tumors was performed. A support vector machine (SVM) method was also applied to classify tumor types. Texture analysis results were compared to the various tumors and areas under the curve (AUC) were calculated. Similar calculations were performed with the SVM data.

Results

One hundred nineteen patients were included. Excellent discriminators of tumors were identified among the histogram-based features noting features skewness and kurtosis, which demonstrated AUCs of 0.91 and 0.93 (p < 0.0001), respectively, for differentiating clear cell subtype from oncocytoma. Histogram feature median demonstrated an AUC of 0.99 (p < 0.0001) for differentiating papillary subtype from oncocytoma and an AUC of 0.92 for differentiating oncocytoma from other tumors. Machine learning further improved the results achieving very good to excellent discrimination of tumor subtypes. The ability of machine learning to distinguish clear cell subtype from other tumors and papillary subtype from other tumors was excellent with AUCs of 0.91 and 0.92, respectively.

Conclusion

Texture analysis is a promising non-invasive tool for distinguishing renal tumors on CT images. These results were further improved upon application of machine learning, and support the further development of texture analysis as a quantitative biomarker for distinguishing various renal tumors.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

★ PREMIUM-INHALT
e.Med Interdisziplinär

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de. Zusätzlich können Sie eine Zeitschrift Ihrer Wahl in gedruckter Form beziehen – ohne Aufpreis.

Jetzt bestellen und im ersten Jahr 100€ sparen!Jetzt e.Med zum Sonderpreis bestellen!

Weitere Produktempfehlungen anzeigen
Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 10/2017

Abdominal Radiology 10/2017 Zur Ausgabe
  1. Sie können e.Med Radiologie 14 Tage kostenlos testen (keine Print-Zeitschrift enthalten). Der Test läuft automatisch und formlos aus. Es kann nur einmal getestet werden.


 

Neu im Fachgebiet Radiologie

Meistgelesene Bücher aus der Radiologie

2016 | Buch

Medizinische Fremdkörper in der Bildgebung

Thorax, Abdomen, Gefäße und Kinder

Dieses einzigartige Buch enthält ca. 1.600 hochwertige radiologische Abbildungen und Fotos iatrogen eingebrachter Fremdmaterialien im Röntgenbild und CT.

Herausgeber:
Dr. med. Daniela Kildal

2011 | Buch

Atlas Klinische Neuroradiologie des Gehirns

Radiologie lebt von Bildern! Der vorliegende Atlas trägt dieser Tatsache Rechnung. Sie finden zu jedem Krankheitsbild des Gehirns Referenzbilder zum Abgleichen mit eigenen Befunden.

Autoren:
Priv.-Doz. Dr. med. Jennifer Linn, Prof. Dr. med. Martin Wiesmann, Prof. Dr. med. Hartmut Brückmann

Mail Icon II Newsletter

Bestellen Sie unseren kostenlosen Newsletter Update Radiologie und bleiben Sie gut informiert – ganz bequem per eMail.

Bildnachweise