Skip to main content
Erschienen in: Brain Structure and Function 3/2004

01.06.2004 | Original Article

The anatomy of the porcine subthalamic nucleus evaluated with immunohistochemistry and design-based stereology

verfasst von: Mette Larsen, Carsten R. Bjarkam, Karen Østergaard, Mark J. West, Jens C. Sørensen

Erschienen in: Brain Structure and Function | Ausgabe 3/2004

Einloggen, um Zugang zu erhalten

Abstract

This study provides a light-microscopic description of the organization, morphology and number of neurons in the subthalamic nucleus (STN) of the Göttingen minipig. It is based on histological material stained with Nissl, Golgi and autometallographic techniques, and employs design-based stereological estimation of the total neuron number. The organization of several neurotransmitters in the STN has been evaluated in histological preparations stained for acetylcholinesterase (AChE) and immunostained for choline acetyltransferase (ChAT), tyrosine hydroxylase (TH), glutamic acid decarboxylase (GAD) and glutamate. In all of the stained preparations the STN appeared as a distinct lens-shaped structure located in the caudal diencephalon, medial to the internal capsule and ventrolateral to the zona incerta. Rostrally, the STN approached the globus pallidus pars interna, whereas caudally the ventromedial part of the STN was adjacent to the rostral part of the substantia nigra pars compacta (SNc), where some of the neurons of the two nuclei merged. The neurons in the STN had medium-sized (25–40 μm) ovoid or fusiform cell bodies, from which three to six large dendrites emanated in a direction predominantly parallel to the long axis of the STN. Immunohistochemistry revealed that most of the subthalamic neurons were glutamatergic and differed significantly in appearance from the large stellate TH-positive cells of the adjacent SNc. Numerous TH-positive bouton-rich fibers traversed the STN. The GAD-staining revealed a large number of terminals within the boundaries of the STN. The STN was highly AChE-positive, reflecting a prominent innervation by ChAT-positive terminals. The total number of subthalamic neurons in one hemisphere was estimated to be approximately 56,000. We conclude that the neuroarchitecture of the porcine STN is similar to primates, including humans, and appears well-suited for further studies examining the role of the STN in movement disorders.
Literatur
Zurück zum Zitat Afsharpour S (1985) Light microscopic analysis of Golgi-impregnated rat subthalamic neurons. J Comp Neurol 236:1–13PubMed Afsharpour S (1985) Light microscopic analysis of Golgi-impregnated rat subthalamic neurons. J Comp Neurol 236:1–13PubMed
Zurück zum Zitat Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMed Albin RL, Young AB, Penney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375PubMed
Zurück zum Zitat Alexander GE (1994) Basal ganglia-thalamocortical circuits: their role in control of movements. J Clin Neurophysiol 11:420–431PubMed Alexander GE (1994) Basal ganglia-thalamocortical circuits: their role in control of movements. J Clin Neurophysiol 11:420–431PubMed
Zurück zum Zitat Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271PubMed Alexander GE, Crutcher MD (1990) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13:266–271PubMed
Zurück zum Zitat Benabid AL, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17 Suppl 3:S73–S74 Benabid AL, Benazzous A, Pollak P (2002) Mechanisms of deep brain stimulation. Mov Disord 17 Suppl 3:S73–S74
Zurück zum Zitat Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55:S13–S16 Benazzouz A, Hallett M (2000) Mechanism of action of deep brain stimulation. Neurology 55:S13–S16
Zurück zum Zitat Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389PubMed Benazzouz A, Gross C, Feger J, Boraud T, Bioulac B (1993) Reversal of rigidity and improvement in motor performance by subthalamic high-frequency stimulation in MPTP-treated monkeys. Eur J Neurosci 5:382–389PubMed
Zurück zum Zitat Benazzouz A, Boraud T, Feger J, Burbaud P, Bioulac B, Gross C (1996) Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with L-Dopa treatment. Mov Disord 11:627–632PubMed Benazzouz A, Boraud T, Feger J, Burbaud P, Bioulac B, Gross C (1996) Alleviation of experimental hemiparkinsonism by high-frequency stimulation of the subthalamic nucleus in primates: a comparison with L-Dopa treatment. Mov Disord 11:627–632PubMed
Zurück zum Zitat Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438PubMed Bergman H, Wichmann T, DeLong MR (1990) Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438PubMed
Zurück zum Zitat Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520PubMed Bergman H, Wichmann T, Karmon B, DeLong MR (1994) The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. J Neurophysiol 72:507–520PubMed
Zurück zum Zitat Bevan MD, Bolam JP (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15:7105–7120PubMed Bevan MD, Bolam JP (1995) Cholinergic, GABAergic, and glutamate-enriched inputs from the mesopontine tegmentum to the subthalamic nucleus in the rat. J Neurosci 15:7105–7120PubMed
Zurück zum Zitat Bevan MD, Francis CM, Bolam JP (1995) The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: convergence with GABA-positive terminals. J Comp Neurol 361:491–511PubMed Bevan MD, Francis CM, Bolam JP (1995) The glutamate-enriched cortical and thalamic input to neurons in the subthalamic nucleus of the rat: convergence with GABA-positive terminals. J Comp Neurol 361:491–511PubMed
Zurück zum Zitat Bjarkam CR, Sørensen JC, Geneser FA (1997) Distribution and morphology of serotonin-immunoreactive neurons in the brainstem of the New Zealand white rabbit. J Comp Neurol 380:507–519CrossRefPubMed Bjarkam CR, Sørensen JC, Geneser FA (1997) Distribution and morphology of serotonin-immunoreactive neurons in the brainstem of the New Zealand white rabbit. J Comp Neurol 380:507–519CrossRefPubMed
Zurück zum Zitat Bjarkam CR, Sørensen JC, Sunde NA, Geneser FA, Østergaard K (2001A) New strategies for the treatment of Parkinson’s disease hold considerable promise for the future management of neurodegenerative disorders. Biogerontology 2:193–207CrossRefPubMed Bjarkam CR, Sørensen JC, Sunde NA, Geneser FA, Østergaard K (2001A) New strategies for the treatment of Parkinson’s disease hold considerable promise for the future management of neurodegenerative disorders. Biogerontology 2:193–207CrossRefPubMed
Zurück zum Zitat Bjarkam CR, Pedersen M, Sørensen JC (2001B) New strategies for embedding, orientation and sectioning of small brain specimens enable direct correlation to MR-images, brain atlases, or use of unbiased stereology. J Neurosci Methods 108:153–159CrossRefPubMed Bjarkam CR, Pedersen M, Sørensen JC (2001B) New strategies for embedding, orientation and sectioning of small brain specimens enable direct correlation to MR-images, brain atlases, or use of unbiased stereology. J Neurosci Methods 108:153–159CrossRefPubMed
Zurück zum Zitat Bjarkam CR, Andersen F, Larsen M, Watanabe H, Röhl L, Vafaee M, Cumming P, Gjedde A, Sørensen JC (2002) Subthalamic high frequency deep brain stimulation increases oxygen consumption in the cerebral cortex pointing towards increased thalamocortical motor activation. FENS Abstr vol 1, A091.2 Bjarkam CR, Andersen F, Larsen M, Watanabe H, Röhl L, Vafaee M, Cumming P, Gjedde A, Sørensen JC (2002) Subthalamic high frequency deep brain stimulation increases oxygen consumption in the cerebral cortex pointing towards increased thalamocortical motor activation. FENS Abstr vol 1, A091.2
Zurück zum Zitat Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy: Classical transmitters in the CNS. Elsevier, Amsterdam, pp 55–122 Björklund A, Lindvall O (1984) Dopamine-containing systems in the CNS. In: Björklund A, Hökfelt T (eds) Handbook of chemical neuroanatomy: Classical transmitters in the CNS. Elsevier, Amsterdam, pp 55–122
Zurück zum Zitat Boraud T, Bezard E, Bioulac B, Gross C (1996) High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neurosci Lett 215:17–20CrossRefPubMed Boraud T, Bezard E, Bioulac B, Gross C (1996) High frequency stimulation of the internal Globus Pallidus (GPi) simultaneously improves parkinsonian symptoms and reduces the firing frequency of GPi neurons in the MPTP-treated monkey. Neurosci Lett 215:17–20CrossRefPubMed
Zurück zum Zitat Campbell GA, Eckardt MJ, Weight FF (1985) Dopaminergic mechanisms in subthalamic nucleus of the rat: analysis using horseradish peroxidase and microiontophoresis. Brain Res 333:261–270CrossRefPubMed Campbell GA, Eckardt MJ, Weight FF (1985) Dopaminergic mechanisms in subthalamic nucleus of the rat: analysis using horseradish peroxidase and microiontophoresis. Brain Res 333:261–270CrossRefPubMed
Zurück zum Zitat Cumming P, Danielsen EH, Vafaee M, Falborg L, Steffensen E, Sørensen JC, Gillings N, Bender D, Marthi K, Andersen F, Munk O, Smith D, Møller A, Gjedde A (2001) Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts. Acta Neurol Scand 103:309–315CrossRefPubMed Cumming P, Danielsen EH, Vafaee M, Falborg L, Steffensen E, Sørensen JC, Gillings N, Bender D, Marthi K, Andersen F, Munk O, Smith D, Møller A, Gjedde A (2001) Normalization of markers for dopamine innervation in striatum of MPTP-lesioned miniature pigs with intrastriatal grafts. Acta Neurol Scand 103:309–315CrossRefPubMed
Zurück zum Zitat Dall AM, Danielsen EH, Sørensen JC, Andersen F, Møller A, Zimmer J, Gjedde AH, Cumming P (2002) Quantitative [18F] fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs. Cell Transplant 11:733–746PubMed Dall AM, Danielsen EH, Sørensen JC, Andersen F, Møller A, Zimmer J, Gjedde AH, Cumming P (2002) Quantitative [18F] fluorodopa/PET and histology of fetal mesencephalic dopaminergic grafts to the striatum of MPTP-poisoned minipigs. Cell Transplant 11:733–746PubMed
Zurück zum Zitat Danielsen EH, Cumming P, Andersen F, Bender D, Brevig T, Falborg L, Gee A, Gillings NM, et al. (2000) The DaNeX study of embryonic mesencephalic, dopaminergic tissue grafted to a minipig model of Parkinson’s disease: preliminary findings of effect of MPTP poisoning on striatal dopaminergic markers. Cell Transplant 9:247–259PubMed Danielsen EH, Cumming P, Andersen F, Bender D, Brevig T, Falborg L, Gee A, Gillings NM, et al. (2000) The DaNeX study of embryonic mesencephalic, dopaminergic tissue grafted to a minipig model of Parkinson’s disease: preliminary findings of effect of MPTP poisoning on striatal dopaminergic markers. Cell Transplant 9:247–259PubMed
Zurück zum Zitat Danscher G (1996) The autometallographic zinc-sulphide method. A new approach involving in vivo creation of nanometer-sized zinc sulphide crystal lattices in zinc-enriched synaptic and secretory vesicles. Histochem J 28:361–373PubMed Danscher G (1996) The autometallographic zinc-sulphide method. A new approach involving in vivo creation of nanometer-sized zinc sulphide crystal lattices in zinc-enriched synaptic and secretory vesicles. Histochem J 28:361–373PubMed
Zurück zum Zitat DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285PubMed DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285PubMed
Zurück zum Zitat Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17 Suppl 3:S63–S68 Dostrovsky JO, Lozano AM (2002) Mechanisms of deep brain stimulation. Mov Disord 17 Suppl 3:S63–S68
Zurück zum Zitat Felix B, Leger ME, Albe-Fessard D, Marcilloux JC, Rampin O, Laplace JP (1999) Stereotaxic atlas of the pig brain. Brain Res Bull 49:1–137CrossRefPubMed Felix B, Leger ME, Albe-Fessard D, Marcilloux JC, Rampin O, Laplace JP (1999) Stereotaxic atlas of the pig brain. Brain Res Bull 49:1–137CrossRefPubMed
Zurück zum Zitat Gao DM, Benazzouz A, Piallat B, Bressand K, Ilinsky IA, Kultas-Ilinsky K, Benabid AL (1999) High-frequency stimulation of the subthalamic nucleus suppresses experimental resting tremor in the monkey. Neuroscience 88:201–212CrossRefPubMed Gao DM, Benazzouz A, Piallat B, Bressand K, Ilinsky IA, Kultas-Ilinsky K, Benabid AL (1999) High-frequency stimulation of the subthalamic nucleus suppresses experimental resting tremor in the monkey. Neuroscience 88:201–212CrossRefPubMed
Zurück zum Zitat Geneser-Jensen FA, Blackstad TW (1971) Distribution of acetyl cholinesterase in the hippocampal region of the guinea pig. I. Entorhinal area, parasubiculum, and presubiculum. Z Zellforsch Mikrosk Anat 114:460–481PubMed Geneser-Jensen FA, Blackstad TW (1971) Distribution of acetyl cholinesterase in the hippocampal region of the guinea pig. I. Entorhinal area, parasubiculum, and presubiculum. Z Zellforsch Mikrosk Anat 114:460–481PubMed
Zurück zum Zitat Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445:238–255CrossRefPubMed Hardman CD, Henderson JM, Finkelstein DI, Horne MK, Paxinos G, Halliday GM (2002) Comparison of the basal ganglia in rats, marmosets, macaques, baboons, and humans: volume and neuronal number for the output, internal relay, and striatal modulating nuclei. J Comp Neurol 445:238–255CrossRefPubMed
Zurück zum Zitat Hassani OK, Francois C, Yelnik J, Feger J (1997) Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat. Brain Res 749:88–94CrossRefPubMed Hassani OK, Francois C, Yelnik J, Feger J (1997) Evidence for a dopaminergic innervation of the subthalamic nucleus in the rat. Brain Res 749:88–94CrossRefPubMed
Zurück zum Zitat Hedreen JC (1999) Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 409:400–410 Hedreen JC (1999) Tyrosine hydroxylase-immunoreactive elements in the human globus pallidus and subthalamic nucleus. J Comp Neurol 409:400–410
Zurück zum Zitat Iwahori N (1978) A Golgi study on the subthalamic nucleus of the cat. J Comp Neurol 182:383–397PubMed Iwahori N (1978) A Golgi study on the subthalamic nucleus of the cat. J Comp Neurol 182:383–397PubMed
Zurück zum Zitat Just H, Østergaard K (2002) Health-related quality of life in patients with advanced Parkinson’s disease treated with deep brain stimulation of the subthalamic nuclei. Mov Disord 17:539–545CrossRefPubMed Just H, Østergaard K (2002) Health-related quality of life in patients with advanced Parkinson’s disease treated with deep brain stimulation of the subthalamic nuclei. Mov Disord 17:539–545CrossRefPubMed
Zurück zum Zitat Kaufmann DL, Houser CR, Tobin AJ (1991) Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56:720–723PubMed Kaufmann DL, Houser CR, Tobin AJ (1991) Two forms of the γ-aminobutyric acid synthetic enzyme glutamate decarboxylase have distinct intraneuronal distributions and cofactor interactions. J Neurochem 56:720–723PubMed
Zurück zum Zitat Kita H, Chang HT, Kitai ST (1983) The morphology of intracellularly labeled rat subthalamic neurons: a light microscopic analysis. J Comp Neurol 215:245–257PubMed Kita H, Chang HT, Kitai ST (1983) The morphology of intracellularly labeled rat subthalamic neurons: a light microscopic analysis. J Comp Neurol 215:245–257PubMed
Zurück zum Zitat Kitai ST, Kita H (1987) Anatomy and physiology of the subthalamic nucleus: A driving force of the basal ganglia. In: Carpenter MB, Jayaraman A (eds) The Basal Ganglia II—Structure and Function: Current Concepts, Advances in Behavioral Biology. Plenum, New York, pp 357–373 Kitai ST, Kita H (1987) Anatomy and physiology of the subthalamic nucleus: A driving force of the basal ganglia. In: Carpenter MB, Jayaraman A (eds) The Basal Ganglia II—Structure and Function: Current Concepts, Advances in Behavioral Biology. Plenum, New York, pp 357–373
Zurück zum Zitat Kodama S (1928) Beiträge zur normalen Anatomie des Corpus Luysi beim Menschen. Arbeiten an den Anatomischen Institute, Sendei 13:221–254 Kodama S (1928) Beiträge zur normalen Anatomie des Corpus Luysi beim Menschen. Arbeiten an den Anatomischen Institute, Sendei 13:221–254
Zurück zum Zitat Krack P, Pollak P, Limousin P, Hoffmann D, Benazzouz A, Le Bas JF, Koudsie A, Benabid AL (1998A) Opposite motor effects of pallidal stimulation in Parkinson’s disease. Ann Neurol 43:180–192PubMed Krack P, Pollak P, Limousin P, Hoffmann D, Benazzouz A, Le Bas JF, Koudsie A, Benabid AL (1998A) Opposite motor effects of pallidal stimulation in Parkinson’s disease. Ann Neurol 43:180–192PubMed
Zurück zum Zitat Krack P, Pollak P, Limousin P, Hoffmann D, Xie J, Benazzouz A, Benabid AL (1998B) Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 121:451–457PubMed Krack P, Pollak P, Limousin P, Hoffmann D, Xie J, Benazzouz A, Benabid AL (1998B) Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson’s disease. Brain 121:451–457PubMed
Zurück zum Zitat Krack P, Poepping M, Weinert D, Schrader B, Deuschl G (2000) Thalamic, pallidal, or subthalamic surgery for Parkinson’s disease? J Neurol 247 Suppl 2:122–134 Krack P, Poepping M, Weinert D, Schrader B, Deuschl G (2000) Thalamic, pallidal, or subthalamic surgery for Parkinson’s disease? J Neurol 247 Suppl 2:122–134
Zurück zum Zitat Kumar R, Lozano AM, Kim YJ, Hutchison WD, Sime E, Halket E, Lang AE (1998) Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 51:850–855PubMed Kumar R, Lozano AM, Kim YJ, Hutchison WD, Sime E, Halket E, Lang AE (1998) Double-blind evaluation of subthalamic nucleus deep brain stimulation in advanced Parkinson’s disease. Neurology 51:850–855PubMed
Zurück zum Zitat Larsen M, Bjarkam CR, Stoltenberg M, Sørensen JC, Danscher G (2003) An autometallographic technique for myelin staining in formaldehyde-fixed tissue. Histol Histopathol 18:1125–1130PubMed Larsen M, Bjarkam CR, Stoltenberg M, Sørensen JC, Danscher G (2003) An autometallographic technique for myelin staining in formaldehyde-fixed tissue. Histol Histopathol 18:1125–1130PubMed
Zurück zum Zitat Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111CrossRefPubMed Limousin P, Krack P, Pollak P, Benazzouz A, Ardouin C, Hoffmann D, Benabid AL (1998) Electrical stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 339:1105–1111CrossRefPubMed
Zurück zum Zitat Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323:252–268PubMed Mesulam MM, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323:252–268PubMed
Zurück zum Zitat Mikkelsen M, Møller A, Jensen LH, Pedersen A, Harajehi JB, Pakkenberg H (1999) MPTP-induced Parkinsonism in minipigs: A behavioral, biochemical, and histological study. Neurotoxicol Teratol 21:169–175CrossRefPubMed Mikkelsen M, Møller A, Jensen LH, Pedersen A, Harajehi JB, Pakkenberg H (1999) MPTP-induced Parkinsonism in minipigs: A behavioral, biochemical, and histological study. Neurotoxicol Teratol 21:169–175CrossRefPubMed
Zurück zum Zitat Montgomery EB Jr, Baker KB (2000) Mechanisms of deep brain stimulation and future technical developments. Neurol Res 22:259–266PubMed Montgomery EB Jr, Baker KB (2000) Mechanisms of deep brain stimulation and future technical developments. Neurol Res 22:259–266PubMed
Zurück zum Zitat Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the Cavalieri and optical disector methods. J Comp Neurol 366:580–599CrossRefPubMed Oorschot DE (1996) Total number of neurons in the neostriatal, pallidal, subthalamic, and substantia nigral nuclei of the rat basal ganglia: a stereological study using the Cavalieri and optical disector methods. J Comp Neurol 366:580–599CrossRefPubMed
Zurück zum Zitat Overton PG, O’Callaghan JF, Greenfield SA (1995) Possible intermixing of neurons from the subthalamic nucleus and substantia nigra pars compacta in the guinea-pig. Exp Brain Res 107:151–165PubMed Overton PG, O’Callaghan JF, Greenfield SA (1995) Possible intermixing of neurons from the subthalamic nucleus and substantia nigra pars compacta in the guinea-pig. Exp Brain Res 107:151–165PubMed
Zurück zum Zitat Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154PubMed Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Rev 20:128–154PubMed
Zurück zum Zitat Piallat B, Benazzouz A, Benabid AL (1996) Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies. Eur J Neurosci 8:1408–1414PubMed Piallat B, Benazzouz A, Benabid AL (1996) Subthalamic nucleus lesion in rats prevents dopaminergic nigral neuron degeneration after striatal 6-OHDA injection: behavioural and immunohistochemical studies. Eur J Neurosci 8:1408–1414PubMed
Zurück zum Zitat Piallat B, Benazzouz A, Benabid AL (1999) Neuroprotective effect of chronic inactivation of the subthalamic nucleus in a rat model of Parkinson’s disease. J Neural Transm Suppl 55:71–77PubMed Piallat B, Benazzouz A, Benabid AL (1999) Neuroprotective effect of chronic inactivation of the subthalamic nucleus in a rat model of Parkinson’s disease. J Neural Transm Suppl 55:71–77PubMed
Zurück zum Zitat Prensa L, Cossette M, Parent A (2000) Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:207–213CrossRefPubMed Prensa L, Cossette M, Parent A (2000) Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:207–213CrossRefPubMed
Zurück zum Zitat Rafols JA, Fox CA (1976) The neurons in the primate subthalamic nucleus: a Golgi and electron microscopic study. J Comp Neurol 168:75–111PubMed Rafols JA, Fox CA (1976) The neurons in the primate subthalamic nucleus: a Golgi and electron microscopic study. J Comp Neurol 168:75–111PubMed
Zurück zum Zitat Rodriguez MC, Obeso JA, Olanow CW (1998) Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol 44:S175–S188PubMed Rodriguez MC, Obeso JA, Olanow CW (1998) Subthalamic nucleus-mediated excitotoxicity in Parkinson’s disease: a target for neuroprotection. Ann Neurol 44:S175–S188PubMed
Zurück zum Zitat Rodriguez-Oroz MC, Gorospe A, Guridi J, Ramos E, Linazasoro G, Rodriguez-Palmero M, Obeso JA (2000) Bilateral deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Neurology 55:S45–S51PubMed Rodriguez-Oroz MC, Gorospe A, Guridi J, Ramos E, Linazasoro G, Rodriguez-Palmero M, Obeso JA (2000) Bilateral deep brain stimulation of the subthalamic nucleus in Parkinson’s disease. Neurology 55:S45–S51PubMed
Zurück zum Zitat Romeis B (1989) Mikroskopische Technik. Urban & Schwarzenberg, München Romeis B (1989) Mikroskopische Technik. Urban & Schwarzenberg, München
Zurück zum Zitat Smith Y, Parent A (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res 453:353–356CrossRefPubMed Smith Y, Parent A (1988) Neurons of the subthalamic nucleus in primates display glutamate but not GABA immunoreactivity. Brain Res 453:353–356CrossRefPubMed
Zurück zum Zitat Sørensen JC, Bjarkam CR, Danielsen EH, Simonsen CZ, Geneser FA (2000) Oriented sectioning of irregular tissue blocks in relation to computerized scanning modalities: results from the domestic pig brain. J Neurosci Methods 104:93–98CrossRefPubMed Sørensen JC, Bjarkam CR, Danielsen EH, Simonsen CZ, Geneser FA (2000) Oriented sectioning of irregular tissue blocks in relation to computerized scanning modalities: results from the domestic pig brain. J Neurosci Methods 104:93–98CrossRefPubMed
Zurück zum Zitat Tronnier VM, Krause M, Heck A, Kronenbürger M, Bonsanto MM, Tronnier J, Fogel W (1999) Deep brain stimulation for the treatment of movement disorders. Neurology, Psychiatry and Brain Research 6:199–212 Tronnier VM, Krause M, Heck A, Kronenbürger M, Bonsanto MM, Tronnier J, Fogel W (1999) Deep brain stimulation for the treatment of movement disorders. Neurology, Psychiatry and Brain Research 6:199–212
Zurück zum Zitat Vitek JL (2002) Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17 Suppl 3:S69–S72 Vitek JL (2002) Mechanisms of deep brain stimulation: excitation or inhibition. Mov Disord 17 Suppl 3:S69–S72
Zurück zum Zitat Volkmann J, Allert N, Voges J, Weiss PH, Freund HJ, Sturm V (2001) Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 56:548–551PubMed Volkmann J, Allert N, Voges J, Weiss PH, Freund HJ, Sturm V (2001) Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 56:548–551PubMed
Zurück zum Zitat Watanabe H, Andersen F, Simonsen CZ, Evans SM, Gjedde A, Cumming P (2001) MR-based statistical atlas of the Göttingen minipig brain. Neuroimage 14:1089–1096CrossRefPubMed Watanabe H, Andersen F, Simonsen CZ, Evans SM, Gjedde A, Cumming P (2001) MR-based statistical atlas of the Göttingen minipig brain. Neuroimage 14:1089–1096CrossRefPubMed
Zurück zum Zitat West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51–61PubMed West MJ (1999) Stereological methods for estimating the total number of neurons and synapses: issues of precision and bias. Trends Neurosci 22:51–61PubMed
Zurück zum Zitat West MJ, Gundersen HJ (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296:1–22PubMed West MJ, Gundersen HJ (1990) Unbiased stereological estimation of the number of neurons in the human hippocampus. J Comp Neurol 296:1–22PubMed
Zurück zum Zitat West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497PubMed West MJ, Slomianka L, Gundersen HJ (1991) Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec 231:482–497PubMed
Zurück zum Zitat Whittier JR, Mettler FA (1949) Studies on the subthalamus of the rhesus monkey. J Comp Neurol 90:281–317 Whittier JR, Mettler FA (1949) Studies on the subthalamus of the rhesus monkey. J Comp Neurol 90:281–317
Zurück zum Zitat Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530PubMed Wichmann T, Bergman H, DeLong MR (1994) The primate subthalamic nucleus. III. Changes in motor behavior and neuronal activity in the internal pallidum induced by subthalamic inactivation in the MPTP model of parkinsonism. J Neurophysiol 72:521–530PubMed
Zurück zum Zitat Yelnik J, Percheron G (1979) Subthalamic neurons in primates: a quantitative and comparative analysis. Neuroscience 4:1717–1743CrossRefPubMed Yelnik J, Percheron G (1979) Subthalamic neurons in primates: a quantitative and comparative analysis. Neuroscience 4:1717–1743CrossRefPubMed
Zurück zum Zitat Østergaard K (1993) Organotypic slice cultures of the rat striatum – I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA. Neuroscience 53:679–693CrossRefPubMed Østergaard K (1993) Organotypic slice cultures of the rat striatum – I. A histochemical and immunocytochemical study of acetylcholinesterase, choline acetyltransferase, glutamate decarboxylase and GABA. Neuroscience 53:679–693CrossRefPubMed
Zurück zum Zitat Østergaard K, Holm IE, Zimmer J (1992) Tyrosine hydroxylase and acetylcholinesterase in the domestic pig mesencephalon: an immunocytochemical and histochemical study. J Comp Neurol 322:149–166PubMed Østergaard K, Holm IE, Zimmer J (1992) Tyrosine hydroxylase and acetylcholinesterase in the domestic pig mesencephalon: an immunocytochemical and histochemical study. J Comp Neurol 322:149–166PubMed
Zurück zum Zitat Østergaard K, Sunde NA, Dupont E (2002) Effects of bilateral stimulation of the subthalamic nucleus in patients with severe Parkinson’s disease and motor fluctuations. Mov Disord 17:693–700CrossRefPubMed Østergaard K, Sunde NA, Dupont E (2002) Effects of bilateral stimulation of the subthalamic nucleus in patients with severe Parkinson’s disease and motor fluctuations. Mov Disord 17:693–700CrossRefPubMed
Metadaten
Titel
The anatomy of the porcine subthalamic nucleus evaluated with immunohistochemistry and design-based stereology
verfasst von
Mette Larsen
Carsten R. Bjarkam
Karen Østergaard
Mark J. West
Jens C. Sørensen
Publikationsdatum
01.06.2004
Verlag
Springer-Verlag
Erschienen in
Brain Structure and Function / Ausgabe 3/2004
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-004-0395-0

Weitere Artikel der Ausgabe 3/2004

Brain Structure and Function 3/2004 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders gilt das offenbar für weibliche Kranke, wie eine Studie zeigt.

Akuter Schwindel: Wann lohnt sich eine MRT?

28.04.2024 Schwindel Nachrichten

Akuter Schwindel stellt oft eine diagnostische Herausforderung dar. Wie nützlich dabei eine MRT ist, hat eine Studie aus Finnland untersucht. Immerhin einer von sechs Patienten wurde mit akutem ischämischem Schlaganfall diagnostiziert.

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.