Skip to main content
Erschienen in: BMC Medicine 1/2022

Open Access 01.12.2022 | Research article

The association between the pre-pregnancy vaginal microbiome and time-to-pregnancy: a Chinese pregnancy-planning cohort study

verfasst von: Xiang Hong, Jun Zhao, Jiechen Yin, Fanqi Zhao, Wei Wang, Xiaoling Ding, Hong Yu, Xu Ma, Bei Wang

Erschienen in: BMC Medicine | Ausgabe 1/2022

Abstract

Background

Although sexually transmitted infections are regarded as the main cause of tubal infertility, the association between the common vaginal microbiome and female fecundability has yet to be determined. The objective of this study was to find convincing evidence relating to the impact of the vaginal bacterial structure on the fecundability of women planning pregnancy.

Methods

We recruited women who took part in the Free Pre-pregnancy Health Examination Project from 13 June 2018 to 31 October 2018 (n = 89, phase I) and from 1 November 2018 to 30 May 2020 (n = 389, phase II). We collected pre-pregnancy vaginal swabs from each subject; then, we followed up each subject to acquire the pregnancy-planning outcome in 1 year. In phase I, 16S rRNA gene sequencing was performed to investigate the vaginal bacterial content between the pregnancy and non-pregnancy groups. These findings were verified in phase II by applying a quantitative real-time polymerase chain reaction for the measurement of the absolute abundance of specific species. Cox models were used to estimate fecundability ratios (FR) for each vaginal microbiome type.

Results

In phase I, 59.6% (53/89) of women became pregnant within 1 year. The principal coordinate analysis showed that the pre-pregnancy vaginal microbial community structures of the pregnant and non-pregnant groups were significantly different (PERMANOVA test, R2 = 0.025, P = 0.049). The abundance of the genus Lactobacillus in the pregnancy group was higher than that of the non-pregnant group (linear discriminant analysis effect size (LDA) > 4.0). The abundance of the genus Gardnerella in the non-pregnant group was higher than those in the pregnant group (LDA > 4.0). In phase II, female fecundability increased with higher absolute loads of Lactobacillus gasseri (quartile Q4 vs Q1, FR = 1.71, 95%CI 1.02–2.87) but decreased with higher absolute loads of Fannyhessea vaginae (Q4 vs Q1, FR = 0.62, 95%CI 0.38–1.00). Clustering analysis showed that the vaginal microbiome of type D (characterized by a higher abundance of Lactobacillus iners, a lower abundance of Lactobacillus crispatus and Lactobacillus gassri) was associated with a 55% reduction of fecundability (FR = 0.45, 95%CI 0.26–0.76) compared with type A (featuring three Lactobacillus species, low Gardnerella vaginalis and Fannyhessea vaginae abundance).

Conclusions

This cohort study demonstrated an association between the pre-pregnancy vaginal microbiome and female fecundability. A vaginal microbiome characterized by a higher abundance of L. iners and lower abundances of L. crispatus and L. gasseri appeared to be associated with a lower fecundability. Further research now needs to confirm whether manipulation of the vaginal microenvironment might improve human fecundability.
Hinweise

Supplementary Information

The online version contains supplementary material available at https://​doi.​org/​10.​1186/​s12916-022-02437-7.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
BH
Benjamini-Hochberg
BV
Bacterial vaginosis
CI
Confidence intervals
F. vaginae
Fannyhessea vaginae
FRs
Fecundability ratios
G. vaginalis
Gardnerella vaginalis
IVF
In vitro fertilization
KM
Kaplan-Meier
L. crispatus
Lactobacillus crispatus
L. gasseri
Lactobacillus gasseri
L. iners
Lactobacillus iners
LDA
Linear discriminant analysis effect size
LMP
Last menstrual period
MICE
Multivariate imputation chained equations
NCBI
National Center for Biotechnology Information
OTU
Operational taxonomic unit
PCoA
Principal coordinate analysis
PERMANOVA
Permutational multivariate analysis of variance
qPCR
Quantitative real-time polymerase chain reaction
SD
Standard deviation
TTP
Time-to-pregnancy

Background

Infertility has become a severe public health problem; more than 186 million people suffer from infertility worldwide [1]. A reduction of human fecundability not only affects the physical and mental health of pregnancy-planning couples, but also results in a general trend towards an aging population [1, 2]. Despite many efforts to explore the factors that influence human fecundability, there are still many unanswered questions. Previous case-control studies showed that there were some potential differences between infertile and fertile women with regard to the vaginal microbiota and that a low-Lactobacillus vaginal microbiome appeared to be a risk factor for infertility [3, 4]. However, it has proven difficult to determine the causal relationship between these factors, largely because vaginal sampling is not performed before infertility diagnosis. On this basis, our previous study used a prospective design and the Chinese National Free Pre-conception Check-up Project database to illustrate that a poor vaginal microenvironment was associated with a longer time-to-pregnancy (TTP) in normal healthy women [5]. In another study, Lokken et al. found that women with bacterial vaginosis (BV) may be at an increased risk of sub-fecundity in a Kenyan pregnancy-planning cohort [6].
However, traditional microscopic examination cannot reveal the structural characteristics of the vaginal microbiome [7], thus limiting the study of fertility-related vaginal species. Common vaginal Lactobacillus species include Lactobacillus crispatus (L. crispatus), Lactobacillus iners (L. iners), and Lactobacillus gasseri (L. gasseri). Different vaginal Lactobacillus species have been found to exert different health effects over recent years; for example, when the microbiota is dominated by L. iners, there is a higher likelihood of a shift towards dysbiosis [8, 9]. However, routine tests cannot distinguish different Lactobacillus species, and there is no evidence to show which Lactobacillus is most beneficial for female fecundability from prospective studies. Furthermore, recent studies have identified substantial divergences in the vaginal microbiome structure between healthy individuals from different races and ethnicity [10]. The incidences of vaginal communities with several non-Lactobacillus species gradually increase from European to Asian to African populations [11]. Therefore, it is vital that we investigate the association between female fecundability and the vaginal microbiome in Chinese cohorts. In the present study, we recruited a pregnancy-planning cohort of subjects to investigate the association between female fecundability and the vaginal microbiome, thus providing a new concept for female fertility intervention strategies.

Methods

Study population

Between 13 June 2018 and 30 May 2020, all couples who took part in the Free Pre-pregnancy Health Examination Project in the Maternal and Child Center of Gulou district in Nanjing, China, were invited to join this study cohort. The inclusion criteria were as follows: (1) according to the Chinese legal marriageable age, the female needed to be older than 20 years, and the male needed to be older than 22 years, and all of them should be less than 49 years old, and (2) couples who reported that they were ready to become pregnant. The exclusion criteria were as follows: (1) females who had been pregnant when taking part in the project; (2) either partner had been diagnosed with a medical condition unsuitable for pregnancy, including uterine malformation, testicular loss, and Treponema pallidum infection; (3) the women who had some diseases related to fertility, such as endometritis, polycystic ovarian syndrome, uterine fibroids, and pelvic inflammatory disease; (4) women who refused to provide vaginal swabs; (5) women who had used antibiotics in the previous 2 weeks; and (6) women who were lost to follow-up (data available for only baseline, without one visit).
This study was divided into two phases. Phase I was conducted from 13 June 2018 to 31 October 2018; 106 women participated in this phase. This phase featured a nested case-control design. All participants were divided into pregnant or non-pregnant groups according to pregnancy outcomes after 1 year of participation. The potential biomarkers for bacteria that were identified in phase I were then detected in phase II, and their associations with TTP were verified by a cohort design. Phase II was conducted from 1 November 2018 to 30 May 2020. In total, 500 women were invited, and 495 women signed the informed consent; 23 women refused to provide vaginal swabs because of a menstrual period, and 51 women withdrew without the first visit. The final study included 89 women in phase I and 332 women in phase II. Further details are shown in Fig. 1.
Sample size estimations were performed when the research protocol was first designed (further details are provided in Additional file 1 [12]). All participants signed an informed consent form, and the study was approved by the Ethics Committee of Zhongda Hospital (Reference: 2018ZDSYLL116-P01).

Acquisition of data for covariate analysis

At baseline, we performed a unified epidemiological survey for every female so that we could collate their age, the age difference within couples, educational level (high school and below/higher education and above), occupation (workers/office clerk/others), pregnancy history (yes/no), and menstrual status (regular or not). A regular menstrual cycle was defined as a cycle length of 21–35 days [13]. All data were acquired by one professional nurse to ensure that the information was credible.

Outcome assessment

All females would be contacted by the medical staff (by telephone) every 3 months. The main outcome was clinical pregnancy, as self-reported by the subjects; this needed to be confirmed by a pelvic ultrasound scan in the hospital. TTP was the interval between the dates of the last menstrual period (LMP) obtained at follow-up and before conception (pregnant within 1 year) or the last follow-up call (if not pregnant). TTP in months was calculated by TTP in days/30. The TTP in cycles was calculated by TTP in days/average length of the menstrual cycle. These indices were all round up to an integer.

Vaginal swab collection and nucleic acid sequencing

Women were placed in a lithotomy position under standard operating procedures; then, gynecologists obtained two vaginal swabs with the aid of a sterile speculum. Swabs were rotated three times on the vaginal fornix to uniformly scrape any discharge and were transported to the laboratory within 4 h. Vaginal cleanliness was graded via microscopic examination of cervical smears. Grades I and II were regarded as normal while grades III and IV were regarded as disordered; these gradings were in accordance with the Chinese standards [14]. The second swab was stored in a dry tube at − 80 °C to await nucleic acid extraction. The detailed procedures for DNA extraction and 16S rRNA gene sequencing are described in Additional file 1. In brief, the swabs were eluted with PBS buffer and the TIANamp Bacterial DNA Kit (Tiangen Biochemical Technology, Beijing, China) as used to extract and purify nucleic acids. The V3–V4 region of the 16S rRNA gene was amplified and sequenced on an Illumina HiSeq 2500 platform (Beijing Biomarker Technologies Co. Ltd., Beijing, China). The raw sequencing data is stored in the figshare platform [15]. Then, sequencing data were processed using a standard procedure (Additional file 1). Denoised sequences were clustered using USEARCH (version 10.0), and tags with ≥ 97% similarity were regarded as an operational taxonomic unit (OTU). Representative sequences were annotated through the National Center for Biotechnology Information (NCBI) dataset using the QIIME software (https://​qiime2.​org). The numbers of reads for each sample were normalized according to the sample with the least sequence. All bioinformatics analyses were completed on the Biomarker BioCloud platform (www.​biocloud.​org).
We used the QIIME2 software (http://​qiime2.​org/​) to calculate α diversity for the vaginal microbiome, including Shannon, Simpson, Chao1, and ACE indices. These indices reflect the richness and diversity of the microbial community structure [16]. Based on the matrix of relative abundance of bacteria, we estimated the Jaccard Distance Index and then performed principal coordinate analysis (PCoA) to intuitively display different groups of the microbiome. Next, we performed a permutational multivariate analysis of variance (PERMANOVA) to test for statistical significance. Linear discriminant analysis (LDA) effect size (LEfSe) was used to identify potential biomarkers among different groups, which should meet P < 0.05, adjusted P < 0.01, and LDA > 4.0 [17]. The Benjamini-Hochberg (BH) method was used to adjust P values to minimize the false discovery rate when performing multiple comparisons.

Assessment of absolute bacterial loads and the clustering of microbial communities

Quantitative real-time polymerase chain reaction (qPCR) was used to measure the absolute loads of specific vaginal bacteria, including L. crispatus, L. gasseri, L. iners, Gardnerella vaginalis (G. vaginalis), and Fannyhessea vaginae (F. vaginae, also called Atopobium vaginae). We used specific primers that had been verified by previous studies (further details are given in Additional file 2: Table S1 [1821]). We used the NCBI Blast database to predict the amplified products, and specific plasmids were synthesized by Sangon Biotech Company (Shanghai, China). The copy number concentration of the plasmid was calculated using the following formula: copies/mL = 6.02 × 1023 × 10−6 × concentration (ng/μL)/(fragment length × 660). Then, 10-fold serial dilutions of the plasmid were prepared and subjected to qPCR to obtain a standard curve. In order to reduce variations in the total bacterial load from different swab samples, the copy number concentrations of the 16S V3–V4 region were also measured; these were then standardized to 1 × 1010 copies/mL for each sample. Under this condition, we measured the absolute abundance of another 5 species.
For each species, we calculated the absolute abundance z-score after the logarithmic transformation of the absolute loads. The clustering of microbial communities was explored with the k-means algorithm which minimizes the error inside the groups and maximizes the distance between clusters. We considered the Euclidean distance metric in our analysis and then tried to use the elbow method to determine the optimum number of clusters [22]. In this method, the slow-down point denotes the optimum number of clusters. Then, we compared the average z-score for specific species among different clusters using variance analysis.

Statistical analysis

All data were uploaded into the EpiData (Version 3.1) software by two independent researchers. The analyses followed a defined approach that was determined before running the models. Continuous variables are described by the mean and standard deviation (SD) (normal distribution) or median and quartile if not distributed normally. The t test or the Kruskal-Wallis test was used to test for the differences between the groups. Categorical variables are described by frequency and percentage; the chi-squared test or Fisher’s exact test was used to compare the distribution between the groups. Missing data were imputed by the multivariate imputation chained equations (MICE) package in the R software [23]. We set up five imputed datasets; the main analysis results were aggregated with Rubin’s rule after appropriate transformation [24]. We performed analyses using the completed case dataset as sensitivity analysis.
Spearman coefficients were calculated to determine the correlation between two relative abundances of bacteria. The Kaplan-Meier (KM) method was used to calculate the cumulative pregnancy rates in different types of microbiomes, and the log-rank test was used to test the differences. Cox models were used to estimate the fecundability ratios (FRs) and their 95% confidence intervals (CIs) for different types of microbiome after adjusting for potential confounding factors. FR reflects the ratio of pregnancies among females with certain characteristics compared with the reference groups; thus, an FR < 1.0 implies a lower fecundability or a longer TTP. All of these analyses were carried out using the R software (version 4.1.0), and two-sided probability values of < 0.05 were deemed to be statistically significant.

Results

The vaginal microbiome and fecundability in phase I

In phase I, the mean age of the participants was 28.66 ± 3.14 years old; most women did not have a history of pregnancy (79/89, 88.76%). In total, 59.6% (53/89) of women achieved pregnancy within 1 year. A comparison of the baseline characteristics between the two groups (pregnant or non-pregnant) revealed that there were no significant differences in terms of the age difference within couples, educational level, occupation, history of pregnancy, and the regularity of menstruation (P > 0.05, Table 1), although the mean age of the pregnancy group was significantly lower than that of the non-pregnancy group (27.98 vs 29.52, P = 0.036).
Table 1
Baseline characteristics of cohort phases I and II
 
Phase I
P
Phase II
P
Non-pregnancy
Pregnancy
Non-pregnancy
Pregnancy
Na
36
53
 
185
147
 
Age, years, mean (SD)
29.52 (3.73)
27.98 (2.67)
0.036
29.95 (4.39)
28.94 (3.25)
0.021
Age difference with their couples, years, mean (SD)
2.21 (2.90)
1.10 (3.00)
0.091
1.29 (3.44)
1.32 (2.63)
0.943
Educational level
 High school and below
6 (16.7)
3 (5.7)
0.183
27 (14.6)
17 (11.6)
0.242
 Higher education and above
30 (83.3)
50 (94.3)
 
158 (85.4)
130 (88.4)
 
Occupation
 Workers
1 (3.0)
1 (2.0)
0.647
3 (1.6)
1 (0.7)
0.164
 Office clerk
22 (66.7)
38 (76.0)
 
128 (69.2)
115 (78.2)
 
 Others
10 (30.3)
11 (22.0)
 
54 (29.2)
31 (21.1)
 
Pregnancy history
 No
32 (88.9)
47 (90.4)
0.999b
130 (71.0)
113 (76.9)
0.285
 Yes
4 (11.1)
5 (9.6)
 
53 (29.0)
34 (23.1)
 
Regular menstruation
 Yes
28 (80.0)
40 (76.9)
0.939
166 (89.7)
119 (81.0)
0.034
 No
7 (20.0)
12 (23.1)
 
19 (10.3)
1 (0.7)
 
aIn phase I, there are 6, 1, and 2 women who missed educational level, occupation, and menstruation information, respectively. In phase II, there were 2 and 27 women who miss pregnancy history and menstruation information, respectively
bFisher’s exact test. SD, standard deviation
All nucleic acid samples from vaginal swabs were sequenced successfully, and the sequencing depths were sufficient (Additional file 2: Fig. S1). The sequencing quality of all samples was confirmed to be good (all Q20 indices were > 95%, Additional file 2: Table S2). At the genus level, the most common bacteria with the highest abundances were Lactobacilli (mean relative abundance 79.95%), Gardnerella (8.57%), Streptococcus (1.79%), and Atopobium (1.54%) (Additional file 2: Fig. S2). Comparisons of the Shannon, Simpson, Chao1, and ACE indices showed that pre-pregnancy vaginal bacterial diversities were not statistically different when compared between the pregnant and non-pregnant groups (P > 0.05, Additional file 2: Fig. S3). However, PCoA showed that the vaginal microbial community structures of these two groups were slightly different; 2.5% of variations were associated with pregnancy outcomes (PERMANOVA test, R2 = 0.025, P = 0.049, Fig. 2A, B). To further identify the key species, we performed a Lefse analysis; the results showed that the abundance of the Lactobacillales order in the pregnant group was higher than that in the non-pregnant group (LDA > 4.0, average relative abundance 86.33% vs 75.63%). The abundance of the Actinobacteria phylum (8.64% vs 14.01%, LDA > 4.0) and the Gardnerella genus (6.34% vs 11.84%, LDA > 4.0) in the non-pregnant group was higher than those in the pregnant group (Fig. 2C). At the genus level, random forest model analysis identified potential biomarkers for distinguishing pregnancy or non-pregnancy, including Gardnerella, Lactobacillus, and Fannyhessea, with a relatively high Gini index (Fig. 2D). Based on these results, we further compared the relative abundance of this genus among the two groups (Fig. 3). The relative abundance of Gardnerella in the pregnant group was significantly lower than that in the non-pregnant group (P = 0.0029).

Association validation in phase II

Based on the findings from phase I, we further focused on the Gardnerella, Fannyhessea, and Lactobacillus genera. In consideration of the leading role of Lactobacillus in the vaginal microbiome, and the potentially differential effects of different Lactobacillus species, except for the G. vaginalis and F. vaginae, we also detected the three most common Lactobacillus species, including L. cripatus, L. iners, and L. gassri. In total, 332 women were included in the phase II analysis. The mean age was 29.50 ± 3.95 years,, and the mean age difference within couples was 1.35 years. The baseline characteristics of women who were excluded for various reasons were comparable with those included (Additional file 2: Table S3). The absolute loads of L. crispatus, L. gasseri, L. iners, G. vaginalis, and F. vaginae in the vaginal swabs taken at baseline were detected using standard curves (Additional file 2: Fig. S4). The correlation analysis shows that L. crispatus was positively associated with L. gasseri (ρ = 0.56, P < 0.001) and negatively associated with L. iners (ρ = 0.18, P = 0.004). L. iners was negatively associated with L. gasseri (ρ = − 0.14, P = 0.009). G. vaginalis was positively associated with F. vaginae (ρ = 0.31, P < 0.001). The associations between the remaining species were not statistically significant (P > 0.05), the details were shown in Additional file 2: Table S4.
The absolute loads of these species at baseline were then divided into four groups (Q1–Q4) based on the interquartile range. Cox models were then used to estimate the association between these four groups and female fecundability (Additional file 2: Table S5). Data showed that female fecundability increased with higher absolute loads of L. gasseri (Q4 vs Q1, FR = 1.71, 95%CI 1.02–2.87) but decreased with higher absolute loads of F. vaginae (Q4 vs Q1, FR = 0.62, 95%CI 0.38–1.00). Other species were not statistically associated with female fecundability (P > 0.05).

Vaginal microbiome type and fecundability

Based on the absolute loads of five bacterial species, we found that the vaginal microbiome clustered into five types (A–E). Figure 4A shows that type A (24.7%, 82/332) featured three high abundant Lactobacillus species, with a low abundance of G. vaginalis and F. vaginae. Type B (13.0%, 43/332) was characterized by a high abundance of G. vaginalis and a low abundance of the three Lactobacillus species. Type C (20.2%, 67/332) was characterized by a high abundance of F. vaginae and a modest abundance of the three Lactobacillus species. Type D (22.3%, 74/332) was characterized by a high abundance of L. iners abundance and low abundances of the other four species. Type E (19.9%, 66/332) was characterized by high abundances of L. crispatus and L. gasseri and low abundances of the other three species. The z-scores of the absolute abundance of specific species grouped by different types are shown in Additional file 2: Table S6. Figure 4B showed that women with different types of vaginal microbiome had different levels of fecundability (log-rank test, P = 0.014). Women with the type A vaginal microbiome had the highest cumulative pregnancy rate (12th month, 54.7%, 95%CI 41.2–65.1%) while women with the type D vaginal microbiome had the lowest cumulative pregnancy rate (12th month, 28.2%, 95%CI 16.8–38.1%). Types B, C, and E had similar cumulative pregnancy rates (12th month, 44.5% vs 45.0% vs 45.2%).
After adjusting for potential confounding factors, including female age, educational level, occupation, pregnancy history, vaginal cleanliness grading, and the age difference between couples, we found that compared to women with a type A vaginal microbiome, women with a type D microbiome showed a 55% reduction in fecundability (model A, FR = 0.45, 95%CI 0.26–0.76). This association was robust irrespective of whether the TTP was determined by month or menstrual cycle (model B, FR = 0.45, 95%CI 0.27–0.77). Women with vaginal microbiome types B, C, and E had lower tendencies of fecundability compared with type A, although these differences were not statistically significant (Table 2). Sensitivity analysis based on the dataset of completed cases was consistent with these primary results (Additional file 2: Table S7).
Table 2
Fecundability ratios for different vaginal microbiome types
Type
N (%)
Crude FR (95%CI)
Model A, FR (95%CI)
Model B, FR (95%CI)
A
82 (24.7)
Ref
Ref
Ref
B
43 (13.0)
0.75 [0.45, 1.26]
0.84 [0.48, 1.46]
0.86 [0.49, 1.50]
C
67 (20.2)
0.70 [0.44, 1.12]
0.81 [0.51, 1.30]
0.82 [0.51, 1.31]
D
74 (22.3)
0.41 [0.24, 0.68]*
0.45 [0.26, 0.76]*
0.45 [0.27, 0.77]*
E
66 (19.9)
0.70 [0.44, 1.11]
0.71 [0.44, 1.15]
0.71 [0.44, 1.14]
Model A: TTP was determined by month. FRs were adjusted for female age, the age difference between couples, educational level, occupation, pregnancy history, and vaginal cleanliness grading
Model B: TTP was determined by the menstrual cycle. FRs were adjusted for female age, the age difference between couples, educational level, occupation, pregnancy history, and vaginal cleanliness grading
*The FR is statistically significant

Discussion

Our two-stage cohort study aimed to demonstrate the association between the pre-pregnancy vaginal microbiome and female fecundability among healthy pregnancy-planning women. The results supported this association and suggested that the higher relative abundances of L. crispatus and L. gasseri were positively associated with female fecundability, while a higher relative abundance of F. vaginae appeared to be detrimental to female fecundability. From a community perspective, a vaginal microbiome characterized by a higher abundance of L. iners and a lower abundance of L. crispatus and L. gasseri appears to be associated with a lower fecundability. This study provides more credible evidence than previous studies in that we demonstrated that it is possible to predict female fecundability by assessing the pre-pregnancy vaginal microbiome.
Many studies have focused on the damaging effects of BV on infertility and, in particular, tubal infertility. However, the case-controlled design of these studies limited causal inference [4]. It is difficult to collect vaginal swabs before a patient is diagnosed as being infertile. Furthermore, the precise role played by the vaginal microbiome in cases of non-tubal infertility, and in particular, unexplained infertility, remains unknown [25]. While some studies found that women with a better vaginal environment appeared to have a higher chance of successful embryo implantation when undergoing in vitro fertilization (IVF) [26], a recent meta-analysis did not identify a significant impact of BV on the live birth rate or clinical pregnancy rate in women undergoing IVF [27]. Thus far, the screening and treatment of BV before attempting conception remain a possibility but are not a widely accepted consensus [28]. A Kenyan cohort study provided a clue that BV appeared to be negatively associated with female fecundability [6]; however, the microscopy-based vaginal microenvironment assessment could not fully reflect the status of the vaginal microbiota, especially considering the diverse effects of different Lactobacillus spp. [8]. Next-generation sequencing technology provides an opportunity to explain many unknown problems [29]. A retrospective case-control study, with a small sample size, revealed that major vaginal microbiota clusters could not be grouped by infertility status [30]. The present, prospective study is the first to demonstrate the different effects of L. crispatus, L. gasseri, and L. iners, on female fecundability.
Lactobacillus has always been regarded as a biomarker for a healthy vaginal microenvironment. One of the most important reasons for this is that this species can produce lactic acid to maintain a locally acidic environment to prevent pathogen colonization [31]. Local inflammation, caused by disordered vaginal microbiota, may lead to reduced levels of fertility; higher levels of cervical interleukin (IL)-1b, IL-6, and IL-8 cytokines have been reported to be associated with infertility [32]. L. iners was also shown to produce a type of protein toxin (inerolysin) that might play a potential role in the pathogenesis of bacterial vaginosis [33]. This mechanism might explain our current findings in that the vaginal microbiome characterized by a higher abundance of L. iners and a lower abundance of L. crispatus and L. gasseri is the only type that could reduce fecundability when compared with other microbiome types. However, studying the effects of individual L. iners seems less important than studying the effects of the microbiome as a whole. Our study found a type A microbiome (characterized by three Lactobacillus species, including L. iners) was the best type for fecundability. Thus, a comprehensive assessment of vaginal microbial structure seems necessary, especially with regard to different Lactobacillus species. Furthermore, Li et al. demonstrated that the vaginal probiotic L. crispatus greatly affected sperm activity and could also reduce pregnancies via its adhesive properties; this might account for some cases of unexplained infertility [34]. In the present study, we identified the positive effect of L. crispatus on fecundability; this suggests that it is important to investigate the dual role of Lactobacillus in future research.
G. vaginalis and F. vaginae have always been regarded as BV-related bacteria [35]; however, the direct association between these species and female fecundability remains unknown. Recent molecular analyses of protein-coding genes demonstrated that G. vaginalis consists of at least four distinct sub-species, although not all of these sub-species cause clinical symptoms [36]. Thus, an asymptomatic carrier of G. vaginalis might be a potential reason for unexplained infertility. Meanwhile, the presence of F. vaginae would lead to the creation of biofilms in the vagina and would resist some antimicrobial substances [37]; however, the effects of these biofilms on sperm motility have yet to be investigated.
Our study was strengthened by the two-stage cohort design. Although many statistical efforts had been carried out, it is possible that the omics study may have led to false positives [38]. Thus, the mutual verification of the results from our two phases increased the robustness of our findings. Compared with a register-based cohort [5], our refined cohort guaranteed the accuracy of TTP estimation. In addition, our novel strategy for defining the vaginal microbiome type provides a new concept for studying the vaginal microflora in the future. However, our study was also associated with some limitations that need to be considered. First, it was very difficult to collect data relating to sperm quality from the couples who were planning pregnancy; this is a vital confounding factor for pregnancy outcome. This potential confounding effect is a critical problem that needs to be solved in future research. Secondly, the sample size was insufficient in phase II, especially when investigating new types of vaginal microbiome; several types showed a decreasing trend for cumulative pregnancy rate, but without statistical significance. Thirdly, the vaginal microbiota appears to change dynamically with menstruation [39]; one sampling event is not able to fully reflect the characteristics of the vaginal microbiota. Fourthly, all of the samples were obtained from a single center; this could influence the extrapolation of our conclusions, especially when considering the variation of vaginal microbiota across different races [40]. Finally, we just only focused on three genera in phase II; further studies should focus on other potential bacteria species, in order to gain a more comprehensive understanding of vaginal microbiome.

Conclusions

This cohort study demonstrated an association between the pre-pregnancy vaginal microbiome and female fecundability. A vaginal microbiome characterized by a higher abundance of L. iners and a lower abundance of L. crispatus and L. gasseri appears to be associated with a lower fecundability. Further research now needs to confirm whether manipulation of the vaginal microenvironment might improve human fecundability.

Acknowledgements

We would like to express our sincere gratitude to the health workers and participants in the project for their considerable efforts and collaboration. We thank the International Science Editing for editing this manuscript.

Declarations

All participants signed an informed consent form, and the study was approved by the Ethics Committee of Zhongda Hospital (Reference: 2018ZDSYLL116-P01).
Not applicable.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
Zurück zum Zitat Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Human Reprod Update. 2015;21(4):411–26.CrossRef Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Human Reprod Update. 2015;21(4):411–26.CrossRef
2.
Zurück zum Zitat Sun H, Gong TT, Jiang YT, Zhang S, Zhao YH, Wu QJ. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990-2017: results from a global burden of disease study, 2017. Aging. 2019;11(23):10952–91.CrossRef Sun H, Gong TT, Jiang YT, Zhang S, Zhao YH, Wu QJ. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990-2017: results from a global burden of disease study, 2017. Aging. 2019;11(23):10952–91.CrossRef
3.
Zurück zum Zitat Campisciano G, Florian F, D’Eustacchio A, Stanković D, Ricci G, De Seta F, et al. Subclinical alteration of the cervical-vaginal microbiome in women with idiopathic infertility. J Cell Physiol. 2017;232(7):1681–8.CrossRef Campisciano G, Florian F, D’Eustacchio A, Stanković D, Ricci G, De Seta F, et al. Subclinical alteration of the cervical-vaginal microbiome in women with idiopathic infertility. J Cell Physiol. 2017;232(7):1681–8.CrossRef
4.
Zurück zum Zitat Hong X, Ma J, Yin J, Fang S, Geng J, Zhao H, et al. The association between vaginal microbiota and female infertility: a systematic review and meta-analysis. Arch Gynecol Obstet. 2020;302(3):569–78.CrossRef Hong X, Ma J, Yin J, Fang S, Geng J, Zhao H, et al. The association between vaginal microbiota and female infertility: a systematic review and meta-analysis. Arch Gynecol Obstet. 2020;302(3):569–78.CrossRef
5.
Zurück zum Zitat Hong X, Zhao J, Zhu X, Dai Q, Zhang H, Xuan Y, et al. The association between the vaginal microenvironment and fecundability: a register-based cohort study among Chinese women. BJOG. 2022;129(1):43–51.CrossRef Hong X, Zhao J, Zhu X, Dai Q, Zhang H, Xuan Y, et al. The association between the vaginal microenvironment and fecundability: a register-based cohort study among Chinese women. BJOG. 2022;129(1):43–51.CrossRef
6.
Zurück zum Zitat Lokken EM, Manhart LE, Kinuthia J, Hughes JP, Jisuvei C, Mwinyikai K, et al. Association between bacterial vaginosis and fecundability in Kenyan women planning pregnancies: a prospective preconception cohort study. Human Reprod (Oxford, England). 2021;36(5):1279–87.CrossRef Lokken EM, Manhart LE, Kinuthia J, Hughes JP, Jisuvei C, Mwinyikai K, et al. Association between bacterial vaginosis and fecundability in Kenyan women planning pregnancies: a prospective preconception cohort study. Human Reprod (Oxford, England). 2021;36(5):1279–87.CrossRef
7.
Zurück zum Zitat Berman HL, McLaren MR, Callahan BJ. Understanding and interpreting community sequencing measurements of the vaginal microbiome. BJOG. 2020;127(2):139–46.CrossRef Berman HL, McLaren MR, Callahan BJ. Understanding and interpreting community sequencing measurements of the vaginal microbiome. BJOG. 2020;127(2):139–46.CrossRef
8.
Zurück zum Zitat Petrova MI, Reid G, Vaneechoutte M, Lebeer S. Lactobacillus iners: friend or foe? Trends Microbiol. 2017;25(3):182–91.CrossRef Petrova MI, Reid G, Vaneechoutte M, Lebeer S. Lactobacillus iners: friend or foe? Trends Microbiol. 2017;25(3):182–91.CrossRef
9.
Zurück zum Zitat Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M, Vaneechoutte M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 2009;9:116.CrossRef Verstraelen H, Verhelst R, Claeys G, De Backer E, Temmerman M, Vaneechoutte M. Longitudinal analysis of the vaginal microflora in pregnancy suggests that L. crispatus promotes the stability of the normal vaginal microflora and that L. gasseri and/or L. iners are more conducive to the occurrence of abnormal vaginal microflora. BMC Microbiol. 2009;9:116.CrossRef
10.
Zurück zum Zitat Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol. 2017;8:1162.CrossRef Gupta VK, Paul S, Dutta C. Geography, ethnicity or subsistence-specific variations in human microbiome composition and diversity. Front Microbiol. 2017;8:1162.CrossRef
11.
Zurück zum Zitat Zhou X, Brown CJ, Abdo Z, Davis CC, Hansmann MA, Joyce P, et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J. 2007;1(2):121–33.CrossRef Zhou X, Brown CJ, Abdo Z, Davis CC, Hansmann MA, Joyce P, et al. Differences in the composition of vaginal microbial communities found in healthy Caucasian and black women. ISME J. 2007;1(2):121–33.CrossRef
12.
Zurück zum Zitat Kelly BJ, Gross R, Bittinger K, Sherrill-Mix S, Lewis JD, Collman RG, et al. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics (Oxford, England). 2015;31(15):2461–8.CrossRef Kelly BJ, Gross R, Bittinger K, Sherrill-Mix S, Lewis JD, Collman RG, et al. Power and sample-size estimation for microbiome studies using pairwise distances and PERMANOVA. Bioinformatics (Oxford, England). 2015;31(15):2461–8.CrossRef
13.
Zurück zum Zitat Doi SA, Al-Zaid M, Towers PA, Scott CJ, Al-Shoumer KA. Irregular cycles and steroid hormones in polycystic ovary syndrome. Human Reprod (Oxford, England). 2005;20(9):2402–8.CrossRef Doi SA, Al-Zaid M, Towers PA, Scott CJ, Al-Shoumer KA. Irregular cycles and steroid hormones in polycystic ovary syndrome. Human Reprod (Oxford, England). 2005;20(9):2402–8.CrossRef
14.
Zurück zum Zitat Yu F, Tang YT, Hu ZQ, Lin XN. Analysis of the vaginal microecological status and genital tract infection characteristics of 751 pregnant women. Med Sci Monit. 2018;24:5338–45.CrossRef Yu F, Tang YT, Hu ZQ, Lin XN. Analysis of the vaginal microecological status and genital tract infection characteristics of 751 pregnant women. Med Sci Monit. 2018;24:5338–45.CrossRef
16.
Zurück zum Zitat Hall M, Beiko RG. 16S rRNA gene analysis with QIIME2. Methods Mol Biol (Clifton, NJ). 2018;1849:113–29.CrossRef Hall M, Beiko RG. 16S rRNA gene analysis with QIIME2. Methods Mol Biol (Clifton, NJ). 2018;1849:113–29.CrossRef
17.
Zurück zum Zitat Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.CrossRef Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.CrossRef
18.
Zurück zum Zitat Byun R, Nadkarni MA, Chhour KL, Martin FE, Jacques NA, Hunter N. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol. 2004;42(7):3128–36.CrossRef Byun R, Nadkarni MA, Chhour KL, Martin FE, Jacques NA, Hunter N. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J Clin Microbiol. 2004;42(7):3128–36.CrossRef
19.
Zurück zum Zitat De Backer E, Verhelst R, Verstraelen H, Alqumber MA, Burton JP, Tagg JR, et al. Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners. BMC Microbiol. 2007;7:115.CrossRef De Backer E, Verhelst R, Verstraelen H, Alqumber MA, Burton JP, Tagg JR, et al. Quantitative determination by real-time PCR of four vaginal Lactobacillus species, Gardnerella vaginalis and Atopobium vaginae indicates an inverse relationship between L. gasseri and L. iners. BMC Microbiol. 2007;7:115.CrossRef
20.
Zurück zum Zitat Zariffard MR, Saifuddin M, Sha BE, Spear GT. Detection of bacterial vaginosis-related organisms by real-time PCR for Lactobacilli, Gardnerella vaginalis and Mycoplasma hominis. FEMS Immunol Med Microbiol. 2002;34(4):277–81.CrossRef Zariffard MR, Saifuddin M, Sha BE, Spear GT. Detection of bacterial vaginosis-related organisms by real-time PCR for Lactobacilli, Gardnerella vaginalis and Mycoplasma hominis. FEMS Immunol Med Microbiol. 2002;34(4):277–81.CrossRef
21.
Zurück zum Zitat Hong X, Qin P, Yin J, Shi Y, Xuan Y, Chen Z, et al. Clinical manifestations of polycystic ovary syndrome and associations with the vaginal microbiome: a cross-sectional based exploratory study. Front Endocrinol. 2021;12:662725.CrossRef Hong X, Qin P, Yin J, Shi Y, Xuan Y, Chen Z, et al. Clinical manifestations of polycystic ovary syndrome and associations with the vaginal microbiome: a cross-sectional based exploratory study. Front Endocrinol. 2021;12:662725.CrossRef
22.
Zurück zum Zitat Pandey A, Malviya AK. Enhancing test case reduction by k-means algorithm and elbow method. Int J Comput Sci Eng. 2018;6(6):299–303. Pandey A, Malviya AK. Enhancing test case reduction by k-means algorithm and elbow method. Int J Comput Sci Eng. 2018;6(6):299–303.
23.
Zurück zum Zitat Liu Y, De A. Multiple imputation by fully conditional specification for dealing with missing data in a large epidemiologic study. Int J Stat Med Res. 2015;4(3):287–95.CrossRef Liu Y, De A. Multiple imputation by fully conditional specification for dealing with missing data in a large epidemiologic study. Int J Stat Med Res. 2015;4(3):287–95.CrossRef
24.
Zurück zum Zitat Marshall A, Altman DG, Holder RL, Royston P. Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines. BMC Med Res Methodol. 2009;9:57.CrossRef Marshall A, Altman DG, Holder RL, Royston P. Combining estimates of interest in prognostic modelling studies after multiple imputation: current practice and guidelines. BMC Med Res Methodol. 2009;9:57.CrossRef
25.
Zurück zum Zitat Mol BW, Tjon-Kon-Fat R, Kamphuis E, van Wely M. Unexplained infertility: is it over-diagnosed and over-treated? Best Pract Res Clin Obstet Gynaecol. 2018;53:20–9.CrossRef Mol BW, Tjon-Kon-Fat R, Kamphuis E, van Wely M. Unexplained infertility: is it over-diagnosed and over-treated? Best Pract Res Clin Obstet Gynaecol. 2018;53:20–9.CrossRef
26.
Zurück zum Zitat Koedooder R, Singer M, Schoenmakers S, Savelkoul PHM, Morré SA, de Jonge JD, et al. The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: a prospective study. Human Reprod (Oxford, England). 2019;34(6):1042–54.CrossRef Koedooder R, Singer M, Schoenmakers S, Savelkoul PHM, Morré SA, de Jonge JD, et al. The vaginal microbiome as a predictor for outcome of in vitro fertilization with or without intracytoplasmic sperm injection: a prospective study. Human Reprod (Oxford, England). 2019;34(6):1042–54.CrossRef
27.
Zurück zum Zitat Haahr T, Zacho J, Bräuner M, Shathmigha K, Skov Jensen J, Humaidan P. Reproductive outcome of patients undergoing in vitro fertilisation treatment and diagnosed with bacterial vaginosis or abnormal vaginal microbiota: a systematic PRISMA review and meta-analysis. BJOG. 2019;126(2):200–7.CrossRef Haahr T, Zacho J, Bräuner M, Shathmigha K, Skov Jensen J, Humaidan P. Reproductive outcome of patients undergoing in vitro fertilisation treatment and diagnosed with bacterial vaginosis or abnormal vaginal microbiota: a systematic PRISMA review and meta-analysis. BJOG. 2019;126(2):200–7.CrossRef
28.
Zurück zum Zitat Ravel J, Moreno I, Simón C. Bacterial vaginosis and its association with infertility, endometritis, and pelvic inflammatory disease. Am J Obstet Gynecol. 2021;224(3):251–7.CrossRef Ravel J, Moreno I, Simón C. Bacterial vaginosis and its association with infertility, endometritis, and pelvic inflammatory disease. Am J Obstet Gynecol. 2021;224(3):251–7.CrossRef
29.
Zurück zum Zitat Greenbaum S, Greenbaum G, Moran-Gilad J, Weintraub AY. Ecological dynamics of the vaginal microbiome in relation to health and disease. Am J Obstet Gynecol. 2019;220(4):324–35.CrossRef Greenbaum S, Greenbaum G, Moran-Gilad J, Weintraub AY. Ecological dynamics of the vaginal microbiome in relation to health and disease. Am J Obstet Gynecol. 2019;220(4):324–35.CrossRef
30.
Zurück zum Zitat Wee BA, Thomas M, Sweeney EL, Frentiu FD, Samios M, Ravel J, et al. A retrospective pilot study to determine whether the reproductive tract microbiota differs between women with a history of infertility and fertile women. ANZJOG. 2018;58(3):341–8.PubMed Wee BA, Thomas M, Sweeney EL, Frentiu FD, Samios M, Ravel J, et al. A retrospective pilot study to determine whether the reproductive tract microbiota differs between women with a history of infertility and fertile women. ANZJOG. 2018;58(3):341–8.PubMed
31.
Zurück zum Zitat Tachedjian G, Aldunate M, Bradshaw CS, Cone RA. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol. 2017;168(9-10):782–92.CrossRef Tachedjian G, Aldunate M, Bradshaw CS, Cone RA. The role of lactic acid production by probiotic Lactobacillus species in vaginal health. Res Microbiol. 2017;168(9-10):782–92.CrossRef
32.
Zurück zum Zitat Spandorfer SD, Neuer A, Giraldo PC, Rosenwaks Z, Witkin SS. Relationship of abnormal vaginal flora, proinflammatory cytokines and idiopathic infertility in women undergoing IVF. J Reprod Med. 2001;46(9):806–10.PubMed Spandorfer SD, Neuer A, Giraldo PC, Rosenwaks Z, Witkin SS. Relationship of abnormal vaginal flora, proinflammatory cytokines and idiopathic infertility in women undergoing IVF. J Reprod Med. 2001;46(9):806–10.PubMed
33.
Zurück zum Zitat Rampersaud R, Planet PJ, Randis TM, Kulkarni R, Aguilar JL, Lehrer RI, et al. Inerolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J Bacteriol. 2011;193(5):1034–41.CrossRef Rampersaud R, Planet PJ, Randis TM, Kulkarni R, Aguilar JL, Lehrer RI, et al. Inerolysin, a cholesterol-dependent cytolysin produced by Lactobacillus iners. J Bacteriol. 2011;193(5):1034–41.CrossRef
34.
Zurück zum Zitat Li P, Wei K, He X, Zhang L, Liu Z, Wei J, et al. Vaginal probiotic Lactobacillus crispatus seems to inhibit sperm activity and subsequently reduces pregnancies in rat. Front Cell Dev Niol. 2021;9:705690.CrossRef Li P, Wei K, He X, Zhang L, Liu Z, Wei J, et al. Vaginal probiotic Lactobacillus crispatus seems to inhibit sperm activity and subsequently reduces pregnancies in rat. Front Cell Dev Niol. 2021;9:705690.CrossRef
35.
Zurück zum Zitat Menard JP, Fenollar F, Henry M, Bretelle F, Raoult D. Molecular quantification of Gardnerella vaginalis and Atopobium vaginae loads to predict bacterial vaginosis. Clin Infect Dis. 2008;47(1):33–43.CrossRef Menard JP, Fenollar F, Henry M, Bretelle F, Raoult D. Molecular quantification of Gardnerella vaginalis and Atopobium vaginae loads to predict bacterial vaginosis. Clin Infect Dis. 2008;47(1):33–43.CrossRef
36.
Zurück zum Zitat Schellenberg JJ, Patterson MH, Hill JE. Gardnerella vaginalis diversity and ecology in relation to vaginal symptoms. Res Microbiol. 2017;168(9-10):837–44.CrossRef Schellenberg JJ, Patterson MH, Hill JE. Gardnerella vaginalis diversity and ecology in relation to vaginal symptoms. Res Microbiol. 2017;168(9-10):837–44.CrossRef
37.
Zurück zum Zitat Mendling W, Palmeira-de-Oliveira A, Biber S, Prasauskas V. An update on the role of Atopobium vaginae in bacterial vaginosis: what to consider when choosing a treatment? A mini review. Arch Gynecol Obstet. 2019;300(1):1–6.CrossRef Mendling W, Palmeira-de-Oliveira A, Biber S, Prasauskas V. An update on the role of Atopobium vaginae in bacterial vaginosis: what to consider when choosing a treatment? A mini review. Arch Gynecol Obstet. 2019;300(1):1–6.CrossRef
38.
Zurück zum Zitat Lay JO Jr, Liyanage R, Borgmann S, Wilkins CL. Problems with the “omics”. TrAC. 2006;25(11):1046–56. Lay JO Jr, Liyanage R, Borgmann S, Wilkins CL. Problems with the “omics”. TrAC. 2006;25(11):1046–56.
39.
Zurück zum Zitat dos Santos L, Santiago G, Cools P, Verstraelen H, Trog M, Missine G, et al. Longitudinal study of the dynamics of vaginal microflora during two consecutive menstrual cycles. PloS One. 2011;6(11):e28180.CrossRef dos Santos L, Santiago G, Cools P, Verstraelen H, Trog M, Missine G, et al. Longitudinal study of the dynamics of vaginal microflora during two consecutive menstrual cycles. PloS One. 2011;6(11):e28180.CrossRef
40.
Zurück zum Zitat Hudson PL, Ling W, Wu MC, Hayward MR, Mitchell AJ, Larson J, et al. Comparison of the vaginal microbiota in postmenopausal Black and White women. J Infect Dis. 2020;224(11):1945–9.CrossRef Hudson PL, Ling W, Wu MC, Hayward MR, Mitchell AJ, Larson J, et al. Comparison of the vaginal microbiota in postmenopausal Black and White women. J Infect Dis. 2020;224(11):1945–9.CrossRef
Metadaten
Titel
The association between the pre-pregnancy vaginal microbiome and time-to-pregnancy: a Chinese pregnancy-planning cohort study
verfasst von
Xiang Hong
Jun Zhao
Jiechen Yin
Fanqi Zhao
Wei Wang
Xiaoling Ding
Hong Yu
Xu Ma
Bei Wang
Publikationsdatum
01.12.2022
Verlag
BioMed Central
Erschienen in
BMC Medicine / Ausgabe 1/2022
Elektronische ISSN: 1741-7015
DOI
https://doi.org/10.1186/s12916-022-02437-7

Weitere Artikel der Ausgabe 1/2022

BMC Medicine 1/2022 Zur Ausgabe

Leitlinien kompakt für die Allgemeinmedizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Facharzt-Training Allgemeinmedizin

Die ideale Vorbereitung zur anstehenden Prüfung mit den ersten 24 von 100 klinischen Fallbeispielen verschiedener Themenfelder

Mehr erfahren

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Therapiestart mit Blutdrucksenkern erhöht Frakturrisiko

25.04.2024 Hypertonie Nachrichten

Beginnen ältere Männer im Pflegeheim eine Antihypertensiva-Therapie, dann ist die Frakturrate in den folgenden 30 Tagen mehr als verdoppelt. Besonders häufig stürzen Demenzkranke und Männer, die erstmals Blutdrucksenker nehmen. Dafür spricht eine Analyse unter US-Veteranen.

Metformin rückt in den Hintergrund

24.04.2024 DGIM 2024 Kongressbericht

Es hat sich über Jahrzehnte klinisch bewährt. Doch wo harte Endpunkte zählen, ist Metformin als alleinige Erstlinientherapie nicht mehr zeitgemäß.

Myokarditis nach Infekt – Richtig schwierig wird es bei Profisportlern

24.04.2024 DGIM 2024 Kongressbericht

Unerkannte Herzmuskelentzündungen infolge einer Virusinfektion führen immer wieder dazu, dass junge, gesunde Menschen plötzlich beim Sport einen Herzstillstand bekommen. Gerade milde Herzbeteiligungen sind oft schwer zu diagnostizieren – speziell bei Leistungssportlern. 

Update Allgemeinmedizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.