Skip to main content
Erschienen in: Seminars in Immunopathology 2/2017

30.01.2017 | Review

The development of dendritic cell vaccine-based immunotherapies for glioblastoma

verfasst von: David A. Reardon, Duane A. Mitchell

Erschienen in: Seminars in Immunopathology | Ausgabe 2/2017

Einloggen, um Zugang zu erhalten

Abstract

In this review, we focus on the biologic advantages of dendritic cell-based vaccinations as a therapeutic strategy for cancer as well as preclinical and emerging clinical data associated with such approaches for glioblastoma patients.
Literatur
1.
Zurück zum Zitat Ostrom QT et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-Oncology 15(Suppl 2):ii1–i56PubMedPubMedCentralCrossRef Ostrom QT et al (2013) CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-Oncology 15(Suppl 2):ii1–i56PubMedPubMedCentralCrossRef
2.
Zurück zum Zitat Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRef Stupp R et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10(5):459–466PubMedCrossRef
3.
Zurück zum Zitat Fine HA (2015) New strategies in glioblastoma: exploiting the new biology. Clin Cancer Res 21(9):1984–1988PubMedCrossRef Fine HA (2015) New strategies in glioblastoma: exploiting the new biology. Clin Cancer Res 21(9):1984–1988PubMedCrossRef
4.
Zurück zum Zitat Reardon DA, Wen PY (2015) Glioma in 2014: unravelling tumour heterogeneity-implications for therapy. Nat Rev Clin Oncol 12(2):69–70PubMedCrossRef Reardon DA, Wen PY (2015) Glioma in 2014: unravelling tumour heterogeneity-implications for therapy. Nat Rev Clin Oncol 12(2):69–70PubMedCrossRef
5.
Zurück zum Zitat Gilbert MR et al (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31(32):4085–4091PubMedPubMedCentralCrossRef Gilbert MR et al (2013) Dose-dense temozolomide for newly diagnosed glioblastoma: a randomized phase III clinical trial. J Clin Oncol 31(32):4085–4091PubMedPubMedCentralCrossRef
7.
Zurück zum Zitat Chinot OL et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722PubMedCrossRef Chinot OL et al (2014) Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med 370(8):709–722PubMedCrossRef
8.
Zurück zum Zitat Stupp R et al (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1100–1108PubMedCrossRef Stupp R et al (2014) Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 15(10):1100–1108PubMedCrossRef
9.
Zurück zum Zitat Kamiya-Matsuoka C, Gilbert MR (2015) Treating recurrent glioblastoma: an update. CNS Oncol 4(2):91–104PubMedCrossRef Kamiya-Matsuoka C, Gilbert MR (2015) Treating recurrent glioblastoma: an update. CNS Oncol 4(2):91–104PubMedCrossRef
10.
Zurück zum Zitat Cohen MH et al (2009) FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14(11):1131–1138PubMedCrossRef Cohen MH et al (2009) FDA drug approval summary: bevacizumab (Avastin) as treatment of recurrent glioblastoma multiforme. Oncologist 14(11):1131–1138PubMedCrossRef
11.
Zurück zum Zitat Shahar T et al (2012) The impact of enrollment in clinical trials on survival of patients with glioblastoma. J Clin Neurosci 19(11):1530–1534PubMedCrossRef Shahar T et al (2012) The impact of enrollment in clinical trials on survival of patients with glioblastoma. J Clin Neurosci 19(11):1530–1534PubMedCrossRef
12.
Zurück zum Zitat Woehrer A, Bauchet L, Barnholtz-Sloan JS (2014) Glioblastoma survival: has it improved? Evidence from population-based studies. Curr Opin Neurol 27(6):666–674PubMed Woehrer A, Bauchet L, Barnholtz-Sloan JS (2014) Glioblastoma survival: has it improved? Evidence from population-based studies. Curr Opin Neurol 27(6):666–674PubMed
13.
Zurück zum Zitat Rouse C et al (2016) Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro-Oncology 18(1):70–77PubMedCrossRef Rouse C et al (2016) Years of potential life lost for brain and CNS tumors relative to other cancers in adults in the United States, 2010. Neuro-Oncology 18(1):70–77PubMedCrossRef
14.
Zurück zum Zitat Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas, with a report of ten original cases. Am J Med Sci 105:487–511CrossRef Coley WB (1893) The treatment of malignant tumors by repeated inoculations of erysipelas, with a report of ten original cases. Am J Med Sci 105:487–511CrossRef
15.
Zurück zum Zitat Kantoff PW et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422PubMedCrossRef Kantoff PW et al (2010) Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med 363(5):411–422PubMedCrossRef
17.
Zurück zum Zitat Robert C et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330PubMedCrossRef Robert C et al (2015) Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med 372(4):320–330PubMedCrossRef
19.
Zurück zum Zitat Garon EB et al. 2015 Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med Garon EB et al. 2015 Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med
20.
Zurück zum Zitat Motzer RJ et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33(13):1430–1437PubMedCrossRef Motzer RJ et al (2015) Nivolumab for metastatic renal cell carcinoma: results of a randomized phase II trial. J Clin Oncol 33(13):1430–1437PubMedCrossRef
21.
Zurück zum Zitat Andtbacka RHI et al. 2013 OPTiM: A randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. in 2013 American society of clinical oncology. Chicago, Ill: ASCO Andtbacka RHI et al. 2013 OPTiM: A randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. in 2013 American society of clinical oncology. Chicago, Ill: ASCO
22.
Zurück zum Zitat Kaufman HL et al (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17(3):718–730PubMedCrossRef Kaufman HL et al (2010) Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann Surg Oncol 17(3):718–730PubMedCrossRef
23.
Zurück zum Zitat Medawar P (1948) Immunity to hemologous grafted skin: III. The fate of skin hemografts transplanted to the brain, to subcutaneous tissue, and toe the anterior chamber of the eye. Br J Exp Pathol 29:58–69PubMedPubMedCentral Medawar P (1948) Immunity to hemologous grafted skin: III. The fate of skin hemografts transplanted to the brain, to subcutaneous tissue, and toe the anterior chamber of the eye. Br J Exp Pathol 29:58–69PubMedPubMedCentral
24.
25.
Zurück zum Zitat Fecci PE, Heimberger AB, Sampson JH (2014) Immunotherapy for primary brain tumors: no longer a matter of privilege. Clin Cancer Res 20(22):5620–5629PubMedPubMedCentralCrossRef Fecci PE, Heimberger AB, Sampson JH (2014) Immunotherapy for primary brain tumors: no longer a matter of privilege. Clin Cancer Res 20(22):5620–5629PubMedPubMedCentralCrossRef
26.
Zurück zum Zitat Schraml BU (2015) And C. Reis e Sousa, Defining dendritic cells. Curr Opin Immunol 32:13–20PubMedCrossRef Schraml BU (2015) And C. Reis e Sousa, Defining dendritic cells. Curr Opin Immunol 32:13–20PubMedCrossRef
27.
Zurück zum Zitat Steinman RM, Nussenzweig MC (1980) Dendritic cells: features and functions. Immunol Rev 53:127–147PubMedCrossRef Steinman RM, Nussenzweig MC (1980) Dendritic cells: features and functions. Immunol Rev 53:127–147PubMedCrossRef
28.
Zurück zum Zitat Norbury CC, Sigal LJ (2003) Cross priming or direct priming: is that really the question? Curr Opin Immunol 15(1):82–88PubMedCrossRef Norbury CC, Sigal LJ (2003) Cross priming or direct priming: is that really the question? Curr Opin Immunol 15(1):82–88PubMedCrossRef
29.
Zurück zum Zitat Heath WR, Carbone FR (1999) Cytotoxic T lymphocyte activation by cross-priming. Curr Opin Immunol 11(3):314–318PubMedCrossRef Heath WR, Carbone FR (1999) Cytotoxic T lymphocyte activation by cross-priming. Curr Opin Immunol 11(3):314–318PubMedCrossRef
30.
Zurück zum Zitat van der Bruggen P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038):1643–1647PubMedCrossRef van der Bruggen P et al (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254(5038):1643–1647PubMedCrossRef
31.
Zurück zum Zitat De Plaen E et al (1988) Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum- antigen P91A and identification of the tum- mutation. Proc Natl Acad Sci U S A 85(7):2274–2278PubMedPubMedCentralCrossRef De Plaen E et al (1988) Immunogenic (tum-) variants of mouse tumor P815: cloning of the gene of tum- antigen P91A and identification of the tum- mutation. Proc Natl Acad Sci U S A 85(7):2274–2278PubMedPubMedCentralCrossRef
32.
Zurück zum Zitat Huang AY et al (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264(5161):961–965PubMedCrossRef Huang AY et al (1994) Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science 264(5161):961–965PubMedCrossRef
33.
Zurück zum Zitat Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162PubMedPubMedCentralCrossRef Steinman RM, Cohn ZA (1973) Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med 137(5):1142–1162PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Maroof A (2001) Generation of murine bone-marrow-derived dendritic cells. Methods Mol Med 64:191–198PubMed Maroof A (2001) Generation of murine bone-marrow-derived dendritic cells. Methods Mol Med 64:191–198PubMed
35.
Zurück zum Zitat Porgador A, Gilboa E (1995) Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J Exp Med 182(1):255–260PubMedCrossRef Porgador A, Gilboa E (1995) Bone marrow-generated dendritic cells pulsed with a class I-restricted peptide are potent inducers of cytotoxic T lymphocytes. J Exp Med 182(1):255–260PubMedCrossRef
36.
Zurück zum Zitat Flamand V et al (1994) Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol 24(3):605–610PubMedCrossRef Flamand V et al (1994) Murine dendritic cells pulsed in vitro with tumor antigen induce tumor resistance in vivo. Eur J Immunol 24(3):605–610PubMedCrossRef
37.
Zurück zum Zitat Cohen PJ et al (1994) Murine epidermal Langerhans cells and splenic dendritic cells present tumor-associated antigens to primed T cells. Eur J Immunol 24(2):315–319PubMedCrossRef Cohen PJ et al (1994) Murine epidermal Langerhans cells and splenic dendritic cells present tumor-associated antigens to primed T cells. Eur J Immunol 24(2):315–319PubMedCrossRef
38.
Zurück zum Zitat Shimizu J et al (1989) Induction of tumor-specific in vivo protective immunity by immunization with tumor antigen-pulsed antigen-presenting cells. J Immunol 142(3):1053–1059PubMed Shimizu J et al (1989) Induction of tumor-specific in vivo protective immunity by immunization with tumor antigen-pulsed antigen-presenting cells. J Immunol 142(3):1053–1059PubMed
39.
Zurück zum Zitat Zitvogel L et al (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 183(1):87–97PubMedCrossRef Zitvogel L et al (1996) Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med 183(1):87–97PubMedCrossRef
40.
Zurück zum Zitat Mayordomo JI et al (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1(12):1297–1302PubMedCrossRef Mayordomo JI et al (1995) Bone marrow-derived dendritic cells pulsed with synthetic tumour peptides elicit protective and therapeutic antitumour immunity. Nat Med 1(12):1297–1302PubMedCrossRef
41.
Zurück zum Zitat Porgador A, Snyder D, Gilboa E (1996) Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol 156(8):2918–2926PubMed Porgador A, Snyder D, Gilboa E (1996) Induction of antitumor immunity using bone marrow-generated dendritic cells. J Immunol 156(8):2918–2926PubMed
42.
Zurück zum Zitat Ashley DM et al (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 186(7):1177–1182PubMedPubMedCentralCrossRef Ashley DM et al (1997) Bone marrow-generated dendritic cells pulsed with tumor extracts or tumor RNA induce antitumor immunity against central nervous system tumors. J Exp Med 186(7):1177–1182PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Heimberger AB et al (2000) Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 103(1):16–25PubMedCrossRef Heimberger AB et al (2000) Bone marrow-derived dendritic cells pulsed with tumor homogenate induce immunity against syngeneic intracerebral glioma. J Neuroimmunol 103(1):16–25PubMedCrossRef
44.
Zurück zum Zitat Fecci PE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167PubMedCrossRef Fecci PE et al (2007) Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 13(7):2158–2167PubMedCrossRef
45.
Zurück zum Zitat Kuwashima N et al (2005) Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 175(4):2730–2740PubMedCrossRef Kuwashima N et al (2005) Delivery of dendritic cells engineered to secrete IFN-alpha into central nervous system tumors enhances the efficacy of peripheral tumor cell vaccines: dependence on apoptotic pathways. J Immunol 175(4):2730–2740PubMedCrossRef
46.
Zurück zum Zitat Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63(23):8487–8491PubMed Prins RM, Odesa SK, Liau LM (2003) Immunotherapeutic targeting of shared melanoma-associated antigens in a murine glioma model. Cancer Res 63(23):8487–8491PubMed
47.
Zurück zum Zitat Batich KA, Swartz AM, Sampson JH (2015) Enhancing dendritic cell-based vaccination for highly aggressive glioblastoma. Expert Opin Biol Ther 15(1):79–94PubMedCrossRef Batich KA, Swartz AM, Sampson JH (2015) Enhancing dendritic cell-based vaccination for highly aggressive glioblastoma. Expert Opin Biol Ther 15(1):79–94PubMedCrossRef
48.
Zurück zum Zitat Kim CH et al (2007) Enhanced antitumour immunity by combined use of temozolomide and TAT-survivin pulsed dendritic cells in a murine glioma. Immunology 122(4):615–622PubMedPubMedCentralCrossRef Kim CH et al (2007) Enhanced antitumour immunity by combined use of temozolomide and TAT-survivin pulsed dendritic cells in a murine glioma. Immunology 122(4):615–622PubMedPubMedCentralCrossRef
49.
Zurück zum Zitat Bigner DD, Pitts OM, Wikstrand CJ (1981) Induction of lethal experimental allergic encephalomyelitis in nonhuman primates and guinea pigs with human glioblastoma multiforme tissue. J Neurosurg 55(1):32–42PubMedCrossRef Bigner DD, Pitts OM, Wikstrand CJ (1981) Induction of lethal experimental allergic encephalomyelitis in nonhuman primates and guinea pigs with human glioblastoma multiforme tissue. J Neurosurg 55(1):32–42PubMedCrossRef
50.
Zurück zum Zitat Yeh S et al (2009) Ocular and systemic autoimmunity after successful tumor-infiltrating lymphocyte immunotherapy for recurrent, metastatic melanoma. Ophthalmology 116(5):981–989 e1PubMedPubMedCentralCrossRef Yeh S et al (2009) Ocular and systemic autoimmunity after successful tumor-infiltrating lymphocyte immunotherapy for recurrent, metastatic melanoma. Ophthalmology 116(5):981–989 e1PubMedPubMedCentralCrossRef
51.
Zurück zum Zitat Overwijk WW et al (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580PubMedPubMedCentralCrossRef Overwijk WW et al (2003) Tumor regression and autoimmunity after reversal of a functionally tolerant state of self-reactive CD8+ T cells. J Exp Med 198(4):569–580PubMedPubMedCentralCrossRef
52.
Zurück zum Zitat Phan GQ et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100(14):8372–8377PubMedPubMedCentralCrossRef Phan GQ et al (2003) Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 100(14):8372–8377PubMedPubMedCentralCrossRef
53.
Zurück zum Zitat Kawakami Y, Robbins PF, Rosenberg SA (1996) Human melanoma antigens recognized by T lymphocytes. Keio J Med 45(2):100–108PubMedCrossRef Kawakami Y, Robbins PF, Rosenberg SA (1996) Human melanoma antigens recognized by T lymphocytes. Keio J Med 45(2):100–108PubMedCrossRef
54.
Zurück zum Zitat Dittel BN et al (1999) Presentation of the self antigen myelin basic protein by dendritic cells leads to experimental autoimmune encephalomyelitis. J Immunol 163(1):32–39PubMed Dittel BN et al (1999) Presentation of the self antigen myelin basic protein by dendritic cells leads to experimental autoimmune encephalomyelitis. J Immunol 163(1):32–39PubMed
55.
56.
Zurück zum Zitat Vu Manh TP et al (2015) Investigating evolutionary conservation of dendritic cell subset identity and functions. Front Immunol 6:260PubMedPubMedCentral Vu Manh TP et al (2015) Investigating evolutionary conservation of dendritic cell subset identity and functions. Front Immunol 6:260PubMedPubMedCentral
57.
Zurück zum Zitat Anguille S et al (2015) Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev 67(4):731–753PubMedCrossRef Anguille S et al (2015) Dendritic cells as pharmacological tools for cancer immunotherapy. Pharmacol Rev 67(4):731–753PubMedCrossRef
58.
Zurück zum Zitat Moiseyenko V et al (2007) Cell technologies in immunotherapy of cancer. Adv Exp Med Biol 601:387–393PubMedCrossRef Moiseyenko V et al (2007) Cell technologies in immunotherapy of cancer. Adv Exp Med Biol 601:387–393PubMedCrossRef
59.
Zurück zum Zitat Czerniecki BJ et al (2001) Diverse functional activity of CD83+ monocyte-derived dendritic cells and the implications for cancer vaccines. Crit Rev Immunol 21(1–3):157–178PubMed Czerniecki BJ et al (2001) Diverse functional activity of CD83+ monocyte-derived dendritic cells and the implications for cancer vaccines. Crit Rev Immunol 21(1–3):157–178PubMed
60.
Zurück zum Zitat Chen W et al (2000) Dendritic cell-based cancer immunotherapy: potential for treatment of colorectal cancer? J Gastroenterol Hepatol 15(7):698–705PubMedCrossRef Chen W et al (2000) Dendritic cell-based cancer immunotherapy: potential for treatment of colorectal cancer? J Gastroenterol Hepatol 15(7):698–705PubMedCrossRef
61.
Zurück zum Zitat Abraham RS, Mitchell DA (2016) Gene-modified dendritic cell vaccines for cancer. Cytotherapy 18(11):1446–1455PubMedCrossRef Abraham RS, Mitchell DA (2016) Gene-modified dendritic cell vaccines for cancer. Cytotherapy 18(11):1446–1455PubMedCrossRef
62.
63.
Zurück zum Zitat Hochrein H, O'Keeffe M, Wagner H (2002) Human and mouse plasmacytoid dendritic cells. Hum Immunol 63(12):1103–1110PubMedCrossRef Hochrein H, O'Keeffe M, Wagner H (2002) Human and mouse plasmacytoid dendritic cells. Hum Immunol 63(12):1103–1110PubMedCrossRef
64.
Zurück zum Zitat Spranger S, Frankenberger B, Schendel DJ (2012) NOD/scid IL-2Rg(null) mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo. J Transl Med 10:30PubMedPubMedCentralCrossRef Spranger S, Frankenberger B, Schendel DJ (2012) NOD/scid IL-2Rg(null) mice: a preclinical model system to evaluate human dendritic cell-based vaccine strategies in vivo. J Transl Med 10:30PubMedPubMedCentralCrossRef
65.
Zurück zum Zitat Inoue M et al (2009) An in vivo model of priming of antigen-specific human CTL by Mo-DC in NOD/Shi-scid IL2rgamma(null) (NOG) mice. Immunol Lett 126(1–2):67–72PubMedCrossRef Inoue M et al (2009) An in vivo model of priming of antigen-specific human CTL by Mo-DC in NOD/Shi-scid IL2rgamma(null) (NOG) mice. Immunol Lett 126(1–2):67–72PubMedCrossRef
66.
Zurück zum Zitat Ashizawa T et al. 2016 Antitumor effect of programmed death-1 (PD-1) blockade in humanized the NOG-MHC double knockout mouse. Clin Cancer Res Ashizawa T et al. 2016 Antitumor effect of programmed death-1 (PD-1) blockade in humanized the NOG-MHC double knockout mouse. Clin Cancer Res
67.
Zurück zum Zitat Eggert AA et al (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59(14):3340–3345PubMed Eggert AA et al (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59(14):3340–3345PubMed
68.
Zurück zum Zitat Quillien V et al (2005) Biodistribution of radiolabelled human dendritic cells injected by various routes. Eur J Nucl Med Mol Imaging 32(7):731–741PubMedCrossRef Quillien V et al (2005) Biodistribution of radiolabelled human dendritic cells injected by various routes. Eur J Nucl Med Mol Imaging 32(7):731–741PubMedCrossRef
69.
Zurück zum Zitat Pabst R (2015) Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)-structure, function and species differences. Vaccine 33(36):4406–4413PubMedCrossRef Pabst R (2015) Mucosal vaccination by the intranasal route. Nose-associated lymphoid tissue (NALT)-structure, function and species differences. Vaccine 33(36):4406–4413PubMedCrossRef
70.
Zurück zum Zitat Dey M et al (2016) Intranasal oncolytic virotherapy with CXCR4-enhanced stem cells extends survival in mouse model of glioma. Stem Cell Reports 7(3):471–482PubMedPubMedCentralCrossRef Dey M et al (2016) Intranasal oncolytic virotherapy with CXCR4-enhanced stem cells extends survival in mouse model of glioma. Stem Cell Reports 7(3):471–482PubMedPubMedCentralCrossRef
71.
Zurück zum Zitat Ohlfest JR et al (2013) Vaccine injection site matters: qualitative and quantitative defects in CD8 T cells primed as a function of proximity to the tumor in a murine glioma model. J Immunol 190(2):613–620PubMedCrossRef Ohlfest JR et al (2013) Vaccine injection site matters: qualitative and quantitative defects in CD8 T cells primed as a function of proximity to the tumor in a murine glioma model. J Immunol 190(2):613–620PubMedCrossRef
72.
Zurück zum Zitat Lesterhuis WJ et al (2011) Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res 17(17):5725–5735PubMedCrossRef Lesterhuis WJ et al (2011) Route of administration modulates the induction of dendritic cell vaccine-induced antigen-specific T cells in advanced melanoma patients. Clin Cancer Res 17(17):5725–5735PubMedCrossRef
73.
Zurück zum Zitat Seyfizadeh N et al (2016) Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit Rev Oncol Hematol 107:100–110PubMedCrossRef Seyfizadeh N et al (2016) Migration of dendritic cells to the lymph nodes and its enhancement to drive anti-tumor responses. Crit Rev Oncol Hematol 107:100–110PubMedCrossRef
74.
Zurück zum Zitat Martin-Fontecha A, Lanzavecchia A, Sallusto F (2009) Dendritic cell migration to peripheral lymph nodes. Handb Exp Pharmacol 188:31–49CrossRef Martin-Fontecha A, Lanzavecchia A, Sallusto F (2009) Dendritic cell migration to peripheral lymph nodes. Handb Exp Pharmacol 188:31–49CrossRef
75.
Zurück zum Zitat Adema GJ et al (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 17(2):170–174PubMedCrossRef Adema GJ et al (2005) Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol 17(2):170–174PubMedCrossRef
76.
77.
Zurück zum Zitat Wang X et al (2014) Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Investig 32(9):451–457CrossRef Wang X et al (2014) Dendritic cell-based vaccine for the treatment of malignant glioma: a systematic review. Cancer Investig 32(9):451–457CrossRef
78.
Zurück zum Zitat Fecci PE et al (2003) The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. J Neuro-Oncol 64(1–2):161–176 Fecci PE et al (2003) The history, evolution, and clinical use of dendritic cell-based immunization strategies in the therapy of brain tumors. J Neuro-Oncol 64(1–2):161–176
79.
Zurück zum Zitat Ward JP, Gubin MM, Schreiber RD (2016) The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol 130:25–74PubMedCrossRef Ward JP, Gubin MM, Schreiber RD (2016) The role of neoantigens in naturally occurring and therapeutically induced immune responses to cancer. Adv Immunol 130:25–74PubMedCrossRef
80.
Zurück zum Zitat Desrichard A, Snyder A, Chan TA (2016) Cancer neoantigens and applications for immunotherapy. Clin Cancer Res 22(4):807–812PubMedCrossRef Desrichard A, Snyder A, Chan TA (2016) Cancer neoantigens and applications for immunotherapy. Clin Cancer Res 22(4):807–812PubMedCrossRef
81.
82.
Zurück zum Zitat Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74PubMedCrossRef Schumacher TN, Schreiber RD (2015) Neoantigens in cancer immunotherapy. Science 348(6230):69–74PubMedCrossRef
83.
Zurück zum Zitat Johanns TM et al (2016) Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol Res 4(12):1007–1015PubMedCrossRef Johanns TM et al (2016) Endogenous neoantigen-specific CD8 T cells identified in two glioblastoma models using a cancer immunogenomics approach. Cancer Immunol Res 4(12):1007–1015PubMedCrossRef
84.
Zurück zum Zitat Solomos AC, Rall GF (2016) Get it through your thick head: emerging principles in neuroimmunology and neurovirology redefine central nervous system “immune privilege”. ACS Chem Neurosci 7(4):435–441PubMedCrossRef Solomos AC, Rall GF (2016) Get it through your thick head: emerging principles in neuroimmunology and neurovirology redefine central nervous system “immune privilege”. ACS Chem Neurosci 7(4):435–441PubMedCrossRef
86.
Zurück zum Zitat Kleine TO (2015) Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: revealed with the new Marburg cerebrospinal-fluid model in healthy humans. Cytometry A 87(3):227–243PubMedCrossRef Kleine TO (2015) Cellular immune surveillance of central nervous system bypasses blood-brain barrier and blood-cerebrospinal-fluid barrier: revealed with the new Marburg cerebrospinal-fluid model in healthy humans. Cytometry A 87(3):227–243PubMedCrossRef
87.
Zurück zum Zitat Fischer HG, Reichmann G (2001) Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166(4):2717–2726PubMedCrossRef Fischer HG, Reichmann G (2001) Brain dendritic cells and macrophages/microglia in central nervous system inflammation. J Immunol 166(4):2717–2726PubMedCrossRef
88.
Zurück zum Zitat Fischer HG, Bonifas U, Reichmann G (2000) Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164(9):4826–4834PubMedCrossRef Fischer HG, Bonifas U, Reichmann G (2000) Phenotype and functions of brain dendritic cells emerging during chronic infection of mice with Toxoplasma gondii. J Immunol 164(9):4826–4834PubMedCrossRef
90.
Zurück zum Zitat Gan HK et al (2012) Assumptions of expected benefits in randomized phase III trials evaluating systemic treatments for cancer. J Natl Cancer Inst 104(8):590–598PubMedCrossRef Gan HK et al (2012) Assumptions of expected benefits in randomized phase III trials evaluating systemic treatments for cancer. J Natl Cancer Inst 104(8):590–598PubMedCrossRef
91.
Zurück zum Zitat Amiri-Kordestani L, Fojo T (2012) Why do phase III clinical trials in oncology fail so often? J Natl Cancer Inst 104(8):568–569PubMedCrossRef Amiri-Kordestani L, Fojo T (2012) Why do phase III clinical trials in oncology fail so often? J Natl Cancer Inst 104(8):568–569PubMedCrossRef
92.
Zurück zum Zitat Guermonprez P et al (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667PubMedCrossRef Guermonprez P et al (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667PubMedCrossRef
93.
Zurück zum Zitat Kastenmuller W et al (2014) Dendritic cell-targeted vaccines—hope or hype? Nat Rev Immunol 14(10):705–711PubMedCrossRef Kastenmuller W et al (2014) Dendritic cell-targeted vaccines—hope or hype? Nat Rev Immunol 14(10):705–711PubMedCrossRef
95.
96.
Zurück zum Zitat Storkus WJ et al (1993) Identification of T-cell epitopes: rapid isolation of class I- presented peptides from viable cells by mild acid elution. JImmunother 14(2):94–103CrossRef Storkus WJ et al (1993) Identification of T-cell epitopes: rapid isolation of class I- presented peptides from viable cells by mild acid elution. JImmunother 14(2):94–103CrossRef
97.
Zurück zum Zitat Liau LM et al (2000) Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case report. Neurosurg Focus 9(6):e8PubMedCrossRef Liau LM et al (2000) Treatment of a patient by vaccination with autologous dendritic cells pulsed with allogeneic major histocompatibility complex class I-matched tumor peptides. Case report. Neurosurg Focus 9(6):e8PubMedCrossRef
98.
Zurück zum Zitat Yu JS et al (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61(3):842–847PubMed Yu JS et al (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61(3):842–847PubMed
99.
Zurück zum Zitat Liau LM et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11(15):5515–5525PubMedCrossRef Liau LM et al (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11(15):5515–5525PubMedCrossRef
100.
Zurück zum Zitat Yu JS et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64(14):4973–4979PubMedCrossRef Yu JS et al (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64(14):4973–4979PubMedCrossRef
101.
Zurück zum Zitat Wheeler CJ et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68(14):5955–5964PubMedCrossRef Wheeler CJ et al (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68(14):5955–5964PubMedCrossRef
102.
Zurück zum Zitat Rutkowski S et al (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91(9):1656–1662PubMedPubMedCentral Rutkowski S et al (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91(9):1656–1662PubMedPubMedCentral
103.
Zurück zum Zitat De Vleeschouwer S et al (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clinical cancer research : an official journal of the American Association for Cancer Research 14(10):3098–3104CrossRef De Vleeschouwer S et al (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clinical cancer research : an official journal of the American Association for Cancer Research 14(10):3098–3104CrossRef
104.
Zurück zum Zitat Hunn MK et al (2015) Dendritic cell vaccination combined with temozolomide retreatment: results of a phase I trial in patients with recurrent glioblastoma multiforme. J Neuro-Oncol 121(2):319–329CrossRef Hunn MK et al (2015) Dendritic cell vaccination combined with temozolomide retreatment: results of a phase I trial in patients with recurrent glioblastoma multiforme. J Neuro-Oncol 121(2):319–329CrossRef
105.
Zurück zum Zitat Yamanaka R et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89(7):1172–1179PubMedPubMedCentralCrossRef Yamanaka R et al (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89(7):1172–1179PubMedPubMedCentralCrossRef
106.
Zurück zum Zitat Yamanaka R et al (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11(11):4160–4167PubMedCrossRef Yamanaka R et al (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11(11):4160–4167PubMedCrossRef
107.
Zurück zum Zitat Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRef Stupp R et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996PubMedCrossRef
108.
Zurück zum Zitat Ardon H et al (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neuro-Oncol 99(2):261–272CrossRef Ardon H et al (2010) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neuro-Oncol 99(2):261–272CrossRef
109.
Zurück zum Zitat Ardon H et al. 2012 Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer immunology, immunotherapy: CII Ardon H et al. 2012 Integration of autologous dendritic cell-based immunotherapy in the standard of care treatment for patients with newly diagnosed glioblastoma: results of the HGG-2006 phase I/II trial. Cancer immunology, immunotherapy: CII
110.
Zurück zum Zitat Fadul CE et al (2011) Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 34(4):382–389PubMedPubMedCentralCrossRef Fadul CE et al (2011) Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 34(4):382–389PubMedPubMedCentralCrossRef
111.
Zurück zum Zitat Vik-Mo EO et al (2013) Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 62(9):1499–1509PubMedPubMedCentralCrossRef Vik-Mo EO et al (2013) Therapeutic vaccination against autologous cancer stem cells with mRNA-transfected dendritic cells in patients with glioblastoma. Cancer Immunol Immunother 62(9):1499–1509PubMedPubMedCentralCrossRef
112.
113.
Zurück zum Zitat Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRef Bao S et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760PubMedCrossRef
114.
Zurück zum Zitat Bao S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848PubMedCrossRef Bao S et al (2006) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66(16):7843–7848PubMedCrossRef
115.
Zurück zum Zitat Mirimanoff RO et al (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24(16):2563–2569PubMedCrossRef Mirimanoff RO et al (2006) Radiotherapy and temozolomide for newly diagnosed glioblastoma: recursive partitioning analysis of the EORTC 26981/22981-NCIC CE3 phase III randomized trial. J Clin Oncol 24(16):2563–2569PubMedCrossRef
116.
Zurück zum Zitat Li J et al (2011) Validation and simplification of the radiation therapy oncology group recursive partitioning analysis classification for glioblastoma. Int J Radiat Oncol Biol Phys 81(3):623–630PubMedCrossRef Li J et al (2011) Validation and simplification of the radiation therapy oncology group recursive partitioning analysis classification for glioblastoma. Int J Radiat Oncol Biol Phys 81(3):623–630PubMedCrossRef
117.
Zurück zum Zitat De Vleeschouwer S et al. 2012 Stratification according to HGG-IMMUNO RPA model predicts outcome in a large group of patients with relapsed malignant glioma treated by adjuvant postoperative dendritic cell vaccination. Cancer immunology, immunotherapy : CII De Vleeschouwer S et al. 2012 Stratification according to HGG-IMMUNO RPA model predicts outcome in a large group of patients with relapsed malignant glioma treated by adjuvant postoperative dendritic cell vaccination. Cancer immunology, immunotherapy : CII
118.
Zurück zum Zitat Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173PubMedCrossRef Phillips HS et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9(3):157–173PubMedCrossRef
119.
Zurück zum Zitat Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedPubMedCentralCrossRef Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17(1):98–110PubMedPubMedCentralCrossRef
120.
Zurück zum Zitat Prins RM et al (2011) Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research 17(6):1603–1615CrossRef Prins RM et al (2011) Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clinical cancer research : an official journal of the American Association for Cancer Research 17(6):1603–1615CrossRef
121.
Zurück zum Zitat Fong, B., et al., Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients. PLoS One, 2012. 7(4): p. e32614. Fong, B., et al., Monitoring of regulatory T cell frequencies and expression of CTLA-4 on T cells, before and after DC vaccination, can predict survival in GBM patients. PLoS One, 2012. 7(4): p. e32614.
122.
Zurück zum Zitat Everson RG et al (2014) Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer 2:10PubMedPubMedCentralCrossRef Everson RG et al (2014) Cytokine responsiveness of CD8(+) T cells is a reproducible biomarker for the clinical efficacy of dendritic cell vaccination in glioblastoma patients. J Immunother Cancer 2:10PubMedPubMedCentralCrossRef
123.
Zurück zum Zitat Pellegatta, S., et al., The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates. Oncoimmunology, 2013. 2(3): p. e23401. Pellegatta, S., et al., The natural killer cell response and tumor debulking are associated with prolonged survival in recurrent glioblastoma patients receiving dendritic cells loaded with autologous tumor lysates. Oncoimmunology, 2013. 2(3): p. e23401.
124.
Zurück zum Zitat Humphrey PA et al (1990) Anti-synthetic peptide antibody reaching at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci U S A 87:4207–42011PubMedPubMedCentralCrossRef Humphrey PA et al (1990) Anti-synthetic peptide antibody reaching at the fusion junction of deletion-mutant epidermal growth factor receptors in human glioblastoma. Proc Natl Acad Sci U S A 87:4207–42011PubMedPubMedCentralCrossRef
125.
Zurück zum Zitat Wong AJ et al (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proceedings of the National Academy of Sciences of the USA 84(19):6899–6903PubMedPubMedCentralCrossRef Wong AJ et al (1987) Increased expression of the epidermal growth factor receptor gene in malignant gliomas is invariably associated with gene amplification. Proceedings of the National Academy of Sciences of the USA 84(19):6899–6903PubMedPubMedCentralCrossRef
126.
Zurück zum Zitat Chu CT et al (1997) Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII). Biochem J 324(Pt 3):855–861PubMedPubMedCentralCrossRef Chu CT et al (1997) Receptor dimerization is not a factor in the signalling activity of a transforming variant epidermal growth factor receptor (EGFRvIII). Biochem J 324(Pt 3):855–861PubMedPubMedCentralCrossRef
127.
Zurück zum Zitat Li B et al (2004) Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 23(26):4594–4602PubMedCrossRef Li B et al (2004) Mutant epidermal growth factor receptor displays increased signaling through the phosphatidylinositol-3 kinase/AKT pathway and promotes radioresistance in cells of astrocytic origin. Oncogene 23(26):4594–4602PubMedCrossRef
128.
Zurück zum Zitat Sampson JH et al (2009) An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 8(10):2773–2779PubMedPubMedCentralCrossRef Sampson JH et al (2009) An epidermal growth factor receptor variant III-targeted vaccine is safe and immunogenic in patients with glioblastoma multiforme. Mol Cancer Ther 8(10):2773–2779PubMedPubMedCentralCrossRef
129.
Zurück zum Zitat Sampson JH et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology 13(3):324–333PubMedCrossRef Sampson JH et al (2011) Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro-Oncology 13(3):324–333PubMedCrossRef
130.
Zurück zum Zitat Heimberger AB et al (2008) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro-Oncology 10(1):98–103PubMedPubMedCentralCrossRef Heimberger AB et al (2008) Immunological responses in a patient with glioblastoma multiforme treated with sequential courses of temozolomide and immunotherapy: case study. Neuro-Oncology 10(1):98–103PubMedPubMedCentralCrossRef
131.
Zurück zum Zitat Sampson JH et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28(31):4722–4729CrossRef Sampson JH et al (2010) Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology 28(31):4722–4729CrossRef
132.
Zurück zum Zitat Sakai K et al (2015) Dendritic cell-based immunotherapy targeting Wilms' tumor 1 in patients with recurrent malignant glioma. J Neurosurg 123(4):989–997PubMedCrossRef Sakai K et al (2015) Dendritic cell-based immunotherapy targeting Wilms' tumor 1 in patients with recurrent malignant glioma. J Neurosurg 123(4):989–997PubMedCrossRef
134.
Zurück zum Zitat Okada H et al (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29(3):330–336PubMedCrossRef Okada H et al (2011) Induction of CD8+ T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol 29(3):330–336PubMedCrossRef
135.
Zurück zum Zitat Akiyama Y et al (2012) Alpha-type-1 polarized dendritic cell-based vaccination in recurrent high-grade glioma: a phase I clinical trial. BMC Cancer 12:623PubMedPubMedCentralCrossRef Akiyama Y et al (2012) Alpha-type-1 polarized dendritic cell-based vaccination in recurrent high-grade glioma: a phase I clinical trial. BMC Cancer 12:623PubMedPubMedCentralCrossRef
136.
Zurück zum Zitat Phuphanich S et al (2012) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer immunology, immunotherapy : CII 62(1):125–135PubMedPubMedCentralCrossRef Phuphanich S et al (2012) Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer immunology, immunotherapy : CII 62(1):125–135PubMedPubMedCentralCrossRef
137.
139.
Zurück zum Zitat Mitchell DA et al (2015) Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide. Cancer Immunol Res 3(4):320–325PubMedCrossRef Mitchell DA et al (2015) Severe adverse immunologic reaction in a patient with glioblastoma receiving autologous dendritic cell vaccines combined with GM-CSF and dose-intensified temozolomide. Cancer Immunol Res 3(4):320–325PubMedCrossRef
142.
Zurück zum Zitat Reardon DA et al (2015) Immunotherapy for neuro-oncology: the critical rationale for combinatorial therapy. Neuro-Oncology 17(Suppl 7):vii32–vii40PubMedPubMedCentralCrossRef Reardon DA et al (2015) Immunotherapy for neuro-oncology: the critical rationale for combinatorial therapy. Neuro-Oncology 17(Suppl 7):vii32–vii40PubMedPubMedCentralCrossRef
Metadaten
Titel
The development of dendritic cell vaccine-based immunotherapies for glioblastoma
verfasst von
David A. Reardon
Duane A. Mitchell
Publikationsdatum
30.01.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Seminars in Immunopathology / Ausgabe 2/2017
Print ISSN: 1863-2297
Elektronische ISSN: 1863-2300
DOI
https://doi.org/10.1007/s00281-016-0616-7

Weitere Artikel der Ausgabe 2/2017

Seminars in Immunopathology 2/2017 Zur Ausgabe

Leitlinien kompakt für die Innere Medizin

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Update Innere Medizin

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.