Skip to main content
Erschienen in: Brain Topography 6/2019

Open Access 14.11.2019 | Review

The Emotional Facet of Subjective and Neural Indices of Similarity

verfasst von: Martina Riberto, Gorana Pobric, Deborah Talmi

Erschienen in: Brain Topography | Ausgabe 6/2019

Abstract

Emotional similarity refers to the tendency to group stimuli together because they evoke the same feelings in us. The majority of research on similarity perception that has been conducted to date has focused on non-emotional stimuli. Different models have been proposed to explain how we represent semantic concepts, and judge the similarity among them. They are supported from behavioural and neural evidence, often combined by using Multivariate Pattern Analyses. By contrast, less is known about the cognitive and neural mechanisms underlying the judgement of similarity between real-life emotional experiences. This review summarizes the major findings, debates and limitations in the semantic similarity literature. They will serve as background to the emotional facet of similarity that will be the focus of this review. A multi-modal and overarching approach, which relates different levels of neuroscientific explanation (i.e., computational, algorithmic and implementation), would be the key to further unveil what makes emotional experiences similar to each other.
Hinweise
Handling Editor: Christoph M. Michel.
A group of people, books, whether of a certain kind and certain states of mind are all grouped together as alike […] What holds them together […] is the evocation of a defining affective response (Bruner 2017).
This is one of several papers published together in Brain Topography on the “Special Issue: Current Opinions in Brain Imaging Methods and Applications”.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Introduction

Emotional similarity refers to the similarity between the feelings that stimuli evoke in us. Poets and storytellers routinely use the power of emotional similarity to convey the emotional tone of a situation by analogy, for example, when the sadness that follows the breakup of a relationship is likened to that we feel when the weather is bad. As the famous song goes, it is ‘stormy weather, since my man and I ain’t together, keeps raining all the time…’. According to Bruner, stimuli that are very different visually and semantically may nevertheless be perceived as similar to each other because of the feelings they evoke in us (Bruner 2017). For example, we may judge an image of a homeless person begging for food and an image of a businesswoman talking on the phone as different, even if the pictures are taken at the same street corner, because one evokes a negative feeling and one a neutral feeling. On the contrary, the same image of a beggar and an image of a person injured in a car accident may be evaluated as more similar if both evoke negative feelings, even if the pictures are taken in different places around the world. In Bruner’s discussion, emotional similarity is considered an orthogonal dimension to the visual and semantic dimensions of a stimulus. Alternatively, the emotional facet of our experience of a stimulus may be considered part of its semantic meaning; in that case, emotional similarity may be reduced to a specific form of semantic similarity. This may be more appropriate when a person groups together neutral stimuli that they have experienced while the person is in the same mood. In this review, we define emotional similarity as the similarity between the emotional dimension of stimuli in the representational space. This space is in part objective and shared among individuals, and in part subjective and in continuous interaction with our experience.
The majority of research on similarity perception that has been conducted to date has focused on non-emotional stimuli, such as words, object, shapes, faces and scenes. In these studies (Goldstone et al. 1997; Golonka and Estes 2009; Greene et al. 2014; Iordan et al. 2015; King et al. 2019), participants were involved in explicit similarity judgement tasks. In others (Haxby et al. 2001; Kriegeskorte et al. 2008a, b, Haxby et al. 2011; Bruffaerts et al. 2013; Clarke and Tyler 2014; Guntupalli et al. 2016; Neyens et al. 2017), the main interest was the neural similarity, namely the similarity among neural representations associated with non-emotional stimuli during tasks not related to the similarity judgements. By contrast, less is known about what makes people perceive richer, life-like events as similar, and even less when these are emotional. Understanding the cognitive and neural mechanisms underlying emotional similarity may have implications for research on categorisation (Barrett 2004, 2017; Barsalou 2017), memory of emotional experiences (Talmi and McGarry 2012; Leal et al. 2014; Leal et al. 2018), and generalisation (Schechtman et al. 2010; Laufer and Paz 2012; Dunsmoor et al. 2013). From a clinical perspective, the study of emotional similarity could help in understanding why patients with anxiety disorders overgeneralise and judge a variety of subsequent experiences to be similar to the original fearful one (Lissek et al. 2009; Laufer et al. 2016).
Below, we review the major findings and debates in the literature on similarity, with the goal of placing the concept of ‘emotional similarity’ within the context of relevant research. With this aim, we will summarise two lines of research, one focused on explicit similarity judgements and the other on neural similarity. This is because both of them provide interesting information about what makes two stimuli similar, in terms of both cognitive dimensions and neural mechanisms. First, we will focus on semantic similarity, namely the similarity among non-emotional stimuli. We will use this literature as background for the emotional facet of the similarity, and to ask how the emotional similarity could be incorporated. Is emotional similarity a facet of semantic similarity or is a further dimension in a complex semantic space? We will end by proposing future directions in this research field.

Semantic Similarity

We may judge two stimuli, such as a blue circle and a blue ellipse, as similar, because they share some features (the rounded shape and blue colour). Because of the number of properties that they share, we will consider them more similar than a blue ellipse and a pink square. This is line with the ‘contrast model’, which posited that similarity between two items is a function of their common features weighed against their distinctive features (Tversky 1977). The ‘contrast model is limited in that it fails to consider the relationships among features (Markman and Gentner 1993, 1994, 1997). These include thematic and taxonomic relationships, which widely contribute to semantic memory and similarity judgements (Lin and Murphy 2001; Ralph et al. 2010; Schwartz et al. 2011; Hoffman et al. 2013).
Milk paired with jam is an example of thematic relationship. Thematic relationships are defined as any temporal, spatial, causal, or functional relationships between objects, which perform complementary roles in the same scenario or event (e.g., breakfast) (Estes et al. 2011). It is widely known in the semantic memory literature that people judge thematically related stimuli to be more similar to each other than other stimuli (Simmons and Estes 2008; Golonka and Estes 2009; Estes et al. 2011; Chen et al. 2013). The paradigmatic stimuli are natural, complex pictures (Lang et al. 2008; Marchewka et al. 2014). For these stimuli, thematic relationships can arise from affordances (Maguire 2010), namely the possible actions that a person can perform in a specific situation. As shown by Greene et al. (2014), affordances may even be the most salient dimension in the categorisation of natural scenes. In that study, participants categorised natural complex pictures mainly according to affordance, rather than visual or taxonomic similarity (Greene et al. 2014).
Labrador and Chihuahua are taxonomically similar. While visually these animals are different (different colour, size, etc.), they are also similar, because they share some features (both bark and are four-legged), which once related bring out the category dogs. Thus, we group these items in the same category, dogs, and judge them as more similar than items from different categories (Wisniewski and Bassok 1999; Chen et al. 2013; Xiao et al. 2016; Xu et al. 2018). People also generalise these properties to new items with similar features (e.g., German Shepherd), and attribute to these items extra features that define the category, even if those were never directly experienced (Jackson et al. 2015). Features-based categories are organised hierarchically in semantic memory (Rosch et al. 1976). Within this hierarchy, it is often possible to distinguish between different levels: the broadest level is the superordinate (e.g., animals), then the basic (e.g., dogs) and then the subordinate (e.g., Labrador). Although some examples do not fit this neat classification (e.g., screwdriver or lawnmower) and there are a number of contradictory findings (Rogers and Patterson 2007; Taylor et al. 2012), many studies showed that participants are more accurate and faster in categorising objects at the basic level than at the superordinate and the subordinate level (Anglin 1977, Horton et al. 1980; Murphy and Brownell 1985; Mack et al. 2009; Iordan et al. 2015). Many of the stimuli in the emotional cognition literature have taxonomic relationships. In the IAPS set, for example, a picture of a man pointing a gun and a man wielding a knife are subordinates of the basic level ‘aggravated assault’. Emotional events are the core of our life stories and their categorisation, as well as the similarity among them, are fundamental to make them meaningful. However, most of the studies focused on the neural mechanisms underlying the perception of similarity among neutral stimuli and on the neural representations of non-emotional stimuli during cognitive and perceptual tasks.

Neuroimaging Studies

It is possible to map in the brain the similarity structure observed at behavioural level, by using innovative Multivariate Pattern Analysis (MVPA) methods. Among them, Representational Similarity Analysis (RSA) gained popularity in neuroscience in the last decade to investigate the cognitive and neural mechanisms of perceived similarity. This technique allows combining neural evidence with behavioural and computational data by calculating their correlation. In this way, it is possible to test whether and where the similarity structure observed at behavioural level is represented in the brain. In addition, this correlational-based technique examines the correlation between the neural representations of stimuli, as it is measured through the BOLD signal during cognitive tasks in fMRI, to draw conclusions about their similarity (Kriegeskorte et al. 2008a, b, 2012; Nili et al. 2014). In a recent MVPA study, Iordan et al. (2015) explored how the different levels of semantic categories are represented across the occipitotemporal cortex. They hypothesised that categorisation may be an emergent property of the human ventral visual system. In order to test this hypothesis, they calculated the category boundary effect as the difference between cohesiveness (within-category neural similarity) and distinctiveness (between-categories neural similarity). This quantity provides a measure of how well categories are separated at each taxonomic level. For example, at the basic level, cohesion for ‘dogs’ is defined as the average correlation between voxel activations associated with the presentation of a ‘dog’ and any other type of ‘dog’. On the other side, at the basic level, distinctiveness for ‘dogs’ is defined as average correlation between voxel activations associated with the presentation of a ‘dog’ and, for example, a ‘flower’. They found high cohesiveness in V1, such that patterns elicited by subordinates are not distinguishable. As we move up in the ventral visual stream (i.e., lateral occipital cortex, posterior middle temporal gyrus, inferior temporal gyrus), the categories become more sharply distinguishable at basic level (Iordan et al. 2015). This is in line with other studies, which showed that inferior temporal regions are involved in semantic categorisation and perceived similarity of objects (Malach et al. 1995; Martin et al. 1996; Epstein and Kanwisher 1998; Grill-Spector et al. 1998; Kriegeskorte et al. 2008a, b; Charest et al. 2014) and faces (Haxby et al. 2001, 2011; Guntupalli et al. 2016). Thus, according to these studies, semantic knowledge is not ‘located in’ one brain area, but it arises from distinct patterns of response that are distributed across brain regions (Haxby et al. 2001).
A similar perspective is reflected in the ‘hub and spoke’ model, an influential model of semantic memory. According to this model, semantic categorisation is the result of an interaction between different modality-specific cortices (i.e., the ‘spokes’) distributed across the brain, and a transmodal ‘hub’, located in the ventral part of the anterior temporal lobe (vATL) (Rogers et al. 2004; Patterson et al. 2007; Ralph et al. 2010; Lambon Ralph 2014). In particular, the ‘hub’ integrates sensory, motor and verbal information that together define a concept, and which are encoded in the different ‘spokes’. It also extracts inter-stimulus relationships that go beyond visual similarities, such as taxonomic and thematic relationships, and generalise these relationships to new stimuli with similar features. Many neuropsychological and neuroimaging findings, both in patients with semantic dementia (Bozeat et al. 2000; Nestor et al. 2006; Ralph et al. 2007; Jefferies et al. 2009; Guo et al. 2013) and in healthy controls (Pobric et al. 2007; Visser et al. 2012) support this model. The vATL interacts also with other brain regions, which are part of the semantic control (SC) network, to generate context-dependent semantic representations. This network include the posterior middle temporal gyrus, the prefrontal cortex, the intraparietal sulcus, the pre-supplementary motor area and the anterior cingulate cortex (for a review on this topic, see (Ralph et al. 2017)). Finally, as reviewed by Rice et al. (2018), the ATL is also involved in processing socially relevant semantic concepts, including person face knowledge and emotional concepts (Zahn et al. 2007, 2009; Olson et al. 2013; Collins and Olson 2014; Wang et al. 2017), because of its connection with the amygdala and orbitofrontal regions through the uncinated fasciculus (Highley et al. 2002; Von Der Heide et al. 2013). These regions might be thought as ‘emotional spokes’, which interact with the ATL to generate emotional concepts. Future studies are needed to test this hypothesis.
To summarise, semantic similarity supports core cognitive functions, such as semantic categorisation and semantic memory. Recent neuroimaging findings showed that conceptual knowledge is a widely distributed neural network, which include occipitotemporal and prefrontal regions. Different model have been proposed to explain the cognitive and neural mechanisms of semantic knowledge and similarity judgments (Riddoch et al. 1988; Damasio 1989; Caramazza et al. 1990). However, to our knowledge, these perspectives are limited to non-emotional stimuli, and have never been tested in the context of emotional similarity and categorisation.

Emotional Similarity

While the majority of the studies about similarity judgements focused on non-emotional stimuli, a vast literature in emotion research asks what makes two emotional stimuli similar. To answer this question, participants are often asked to sort simple stimuli, such as words or faces, according to their similarity, or to rate the similarity among them on a Likert scale (Osgood 1952; Schlosberg 1952; Russell and Pratt 1980; Russell and Bullock 1985; Roberts and Wedell 1994; Halberstadt et al. 1995, 1997; Calvo and Nummenmaa 2008; Said et al. 2010; Koch et al. 2016; van Tilburg and Igou 2017). The paradigmatic finding is that participants judge the similarity according to two dimensions, the valence and the arousal of the stimuli. These dimensions are not explicitly used during the similarity judgements, but rather they represent implicit components of the cognitive structure underlying these stimuli (Barrett 2004). We can map this cognitive structure by using Multidimensional Scaling (MDS) procedure. When represented in a geometric space, defined by valence and arousal as orthogonal axes, emotional stimuli are placed along the perimeter of a circle. This is the core idea of Russell’s ‘circumplex model of emotion’ (Russell and Pratt 1980) and other dimensional theories of emotion (Mehrabian 1980; Watson and Tellegen 1985; Bradley et al. 1992; Plutchik 2001), which have been widely used in emotion research (Zevon and Tellegen 1982; Barrett and Russell 1999; Damasio 2003; Lang et al. 2008; Kuppens et al. 2013; Marchewka et al. 2014; Mäntylä et al. 2016; Yu et al. 2016). In this representational space, the distance among stimuli reflects their similarity, with short distances representing high similarity. The multi-arrangement method, a direct way to measure similarity, is based on this principle (Kriegeskorte and Mur 2012). This quick and efficient task is used for experiments with a relatively large set of stimuli, because participants simultaneously judge the similarity among many stimuli displayed together (Chikazoe et al. 2014; Chavez and Heatherton 2015), as opposed to a pairwise presentation.
Emotional similarity can be also quantified indirectly. Asking participants to rate the semantic relatedness between words (Talmi and Moscovitch 2004) or pictures (Sison and Mather 2007; Talmi et al. 2007; Gallo et al. 2009; Talmi and McGarry 2012) is an example of an indirect measure of similarity. This is because the higher the relatedness between concepts in semantic memory, the higher the similarity between them. These studies suggest that emotions increase the semantic relatedness, resulting in higher ratings among negative emotional stimuli compared to neutral ones. This might lead to a better organisation of emotional stimuli, and might explain the advantage they have in immediate memory tests (Talmi and McGarry 2012, 2013).
The findings above indicate that emotion increases perceived similarity between stimuli. Greater perceived similarity among emotional stimuli might be related to the effect of arousal on hippocampal pattern separation, the ability to store similar experiences in distinct and non-overlapping representations. This might explain why participants find it harder to discriminate between targets and similar lures when those are emotional (Segal et al. 2012; Leal et al. 2014, 2018; Mattar and Talmi 2019; Zheng et al. 2019). Other studies suggested that the arousal might also increase the generalisation among neutral stimuli during fear condition paradigms, both in healthy controls (Schechtman et al. 2010; Laufer and Paz 2012; Dunsmoor et al. 2013) and in patients with anxiety disorders (Lissek et al. 2009; Laufer et al. 2016). The generalisation is another example of indirect measure of similarity, because the higher the similarity between stimuli, the wider the generalisation between these stimuli.

Neuroimaging Studies

The number of neuroimaging studies in emotional similarity research is limited. To our knowledge, no neuroimaging studies have investigated neural differences in explicit judgments of similarity among the prevalent stimuli in research of emotional cognition, namely, natural, complex neutral and emotional picture scenes. Only a handful of studies have combined behavioural measures of similarity with neural data by using RSA. The results of these studies might help in understand the brain regions, which code the similarity among emotional stimuli. In these studies, during the fMRI scan participants were asked to attend to pictures while performing non-emotional rating tasks (e.g., ratings of indoor versus outdoor scenes). This was combined with behavioural judgements of similarity among the experimental stimuli. They found that brain activity patterns in regions involved in emotional processing, such as the insula and the ventromedial prefrontal cortex (VMPFC), represent the similarity structure between emotional and neutral stimuli observed at behavioural level (Chavez and Heatherton 2015; Levine et al. 2018).
Additional, indirect evidence about what make two emotional stimuli similar to each other at neural level is gleaned from neuroimaging investigations of emotional processing and categorisation. These mainly aimed at investigating how the brain codes the relationship between specific emotions, supporting either a categorical (Ekman and Friesen 1976), a dimensional (Russell and Pratt 1980), or a constructionist view (Barrett 2017). In these studies, participants were asked either to passively look at images, to attend to the feelings they evoke, to rate the valence and the arousal of these feelings, or to rate the valence and arousal of the picture and categorise it according to emotional labels (Costa et al. 2014; Ohira et al. 2006; Machajdik et al. 2010; Baucom et al. 2012; Sakaki et al. 2012; Yuen et al. 2012; Edmiston et al. 2013; den Stock et al. 2014; Motzkin et al. 2015; Hrybouski et al. 2016). The results of these studies were discrepant, probably because of the different perspectives of emotions adopted and methods used to elicit the emotions (Wager et al. 2015). In particular, locationist studies attempted to discover the unique brain feature associated with each emotional category, by adopting a one (brain region)-to-one (emotion) approach. For example, fear has been consistently localised in the amygdala (LaBar et al. 1998; LeDoux 2007; Öhman 2009), disgust in the anterior insula (Calder 2003; Wicker et al. 2003; Jabbi et al. 2008), sadness in the anterior cingulate cortex (Phan et al. 2002; Murphy et al. 2003), anger in the orbitofrontal cortex (Murphy et al. 2003; Vytal and Hamann 2010), and happiness in the dorsomedial prefrontal cortex (DMPFC) (Lindquist et al. 2012). As highlighted by Lindquist et al. (2012), supports for a locationist account would be found if instances of an emotion category (e.g., fear) are consistently and specifically associated with increased activity in a brain region (or in a set of regions within a network) across multiple published studies. However, first, many studies showed that the aforementioned regions are associated with multiple categories of emotions (Lindquist et al. 2012), and during many other sensory, perceptual and cognitive functions (Yarkoni et al. 2011; LeDoux 2012). Second, it is not clear whether the findings from the locationist literature are reliable enough or consistent across studies (Wager et al. 2015). For these reasons, a psychological constructionist approach to emotion is preferable. According to this perspective, emotions are ‘situated conceptualisations’, that is, subjective interpretations of what is happening around us. Emotions arise from the interaction among many brain regions, interconnected in large-scale networks, according to a many-to-one approach. These brain regions are implicated not only in emotional processing, but also in more ‘cognitive’ functions, such as conceptualization (simulation of previous experiences), language (representation and retrieval of semantic concepts), and executive attention (attention and working memory).
However, this represents only indirect evidence of the neurobiological underpinnings of emotional similarity. The neural mechanism that allows emotion to influence overall perceptions of similarity is still unknown, as are putative neural differences during explicit judgements of similarity between natural, complex neutral and emotional events.

Limitations in Emotional Similarity Literature

Although the emotional similarity literature provided interesting and relevant results, it is also limited in several important ways. First, most studies used decontextualized, simple stimuli, such as emotional faces, or words, a choice that yields more experimental control at the cost of ecological validity. This is particularly important because the known influence of context on emotional categorisation (Barrett 2017). For example, Avierez et al. (2008) observed this effect in a study about emotional categorisation, where participants were asked to indicate the category that best describes the facial expressions. They were less accurate in categorising sad faces embedded in a fearful than in a sad context: they were more likely to categorise sad faces as fearful when the faces appeared in a fearful context than when they appeared in a sad context. The same effect was observed in the categorisation of disgusted faces embedded in a pride context (Aviezer et al. 2008). Future studies in emotional similarity should adopt complex stimuli, which depict both emotional and neutral real-world scenes, such as those provided in well-validated datasets, the International Affective Picture System (IAPS) (Lang et al. 2008) and the Nencki Affective Picture System (NAPS) (Marchewka et al. 2014). So far, these more complex stimuli have seldom been used to study emotional similarity (Gallo et al. 2009; Talmi and McGarry 2012; Chikazoe et al. 2014; Chavez and Heatherton 2015; Levine et al. 2018).
As hinted above, one of the reasons that research on semantic memory and emotional similarity shied away from these more life-like picture scenes might be because there are many factors to control for during the stimuli selection. To mention some of them: the low-level visual measures (e.g., luminance, contrast, and color), the visual complexity of the pictures, the different degrees of similarity among taxonomic levels, the action(s) that the situation can afford, and the thematic similarity within emotional stimuli. In particular, as explained by Talmi and McGarry (2012), emotional stimuli are more thematically inter-related than the neutral stimuli found in validated datasets. For example, the term car accident may be related to hospital, and then to death in a common scenario, while neutral stimuli, such as architecture, telephone and laundry, are less inter-related thematically. In addition, the range of themes within the set of negative and arousing pictures (e.g. death, violence, car accidents, hospital scenes, and assaults) is reduced compared to those within the neutral images. This is also in line with higher ratings of content overlap among arousing (both positive and negative) than neutral IAPS stimuli, observed by Gallo et al. (2009).
To our knowledge, there are no studies, which controlled for all these factors, and this represent a further limitation in emotional similarity literature. For example, few recent studies have controlled complex pictures (positive, negative, neutral) for visual properties, as well as for some elements of semantic similarity—animacy (Chikazoe et al. 2014) and social/non-social (Chavez and Heatherton 2015). However, like other studies (Yuen et al. 2012; Levine et al. 2018), they did not control the stimuli for thematic similarity. For example, in the study by Chavez et al. (2015), the negative categories (i.e., social: ‘depiction of pain’ and ‘people crying’; non-social: ‘polluted water’ and ‘dirty toilet’) look more thematically related compared to neutral (i.e., social: ‘person at a computer’ and ‘person on the phone’; non-social: ‘a stack of book’ and ‘a spoon’) (Chavez and Heatherton 2015). It is relevant to control for these factors to be able to decouple the effect of emotions and of other factors (e.g., thematic similarity) on the overall perception of similarity, both at behavioural and at neural level. For example, in an unpublished pilot study, we hypothesised higher similarity ratings within 10 negative versus 10 neutral complex pictures, randomly selected from the NAPS database. The results supported our hypothesis. However, we could not conclude whether this effect was related to the emotional nature of the pictures or to a bias in the stimulus selection. This is because we did not control for the higher thematic similarity within the emotional pictures: the range of emotional themes was reduced compared to that in the neutral set. The same reasoning would be valid at neural level, if we observe higher similarity within the activity patterns in occipitotemporal regions associated with emotional than neutral stimuli. Indeed, without a method to select natural scenes in a way that is representative of their frequency in the environment it is difficult to conclude that emotional stimuli are represented as more similar at neural level than neutral stimuli. To our knowledge, no studies investigated behavioural or neural differences between neutral and emotional complex stimuli during direct similarity judgements.

Conclusion and Future Directions

Emotional similarity is a core construct in neuroscience, because it supports many cognitive functions, including categorization, memory, and learning. It is also involved in mechanisms underlying psychiatric conditions, such as anxiety disorders. However, very little is known about what makes us perceive real-life emotional experiences as similar. At behavioral, or computational, level, most of the studies showed that we implicitly consider the valence and the arousal as relevant dimensions during similarity judgements. Although these studies were very successful in relating behavioral and neural data using innovative MVPA, they mainly used very simple and ‘non-naturalistic’ emotional stimuli.
At neural, or implementation level, we gleaned indirect evidence about brain regions involved in emotional similarity from research on the structure of the emotional representation of complex stimuli. However, they do not explain which mechanisms lead to the activity associated with those stimuli. As suggested by Barsalou (2017), this is a common mistake in neuroscience: most of the studies related the computational and the implementation levels, ignoring the algorithmic level, namely the latent mechanisms within the ‘system’ brain ‘that performs the task’ (Barsalou 2017). Future studies should relate all these levels of explanation in MVPA emotional similarity studies, which will benefit of new and well-controlled set of stimuli. This may help in unveiling the influence of emotional similarity on the overall perception of similarity. Finally, we might discover any neural and behavioral differences in this perception between emotional and neutral real-life events, to understand whether emotional similarity is a facet of semantic similarity or a further dimension in a complex semantic space.
Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://​creativecommons.​org/​licenses/​by/​4.​0/​), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Unsere Produktempfehlungen

e.Med Interdisziplinär

Kombi-Abonnement

Für Ihren Erfolg in Klinik und Praxis - Die beste Hilfe in Ihrem Arbeitsalltag

Mit e.Med Interdisziplinär erhalten Sie Zugang zu allen CME-Fortbildungen und Fachzeitschriften auf SpringerMedizin.de.

e.Med Neurologie & Psychiatrie

Kombi-Abonnement

Mit e.Med Neurologie & Psychiatrie erhalten Sie Zugang zu CME-Fortbildungen der Fachgebiete, den Premium-Inhalten der dazugehörigen Fachzeitschriften, inklusive einer gedruckten Zeitschrift Ihrer Wahl.

e.Med Neurologie

Kombi-Abonnement

Mit e.Med Neurologie erhalten Sie Zugang zu CME-Fortbildungen des Fachgebietes, den Premium-Inhalten der neurologischen Fachzeitschriften, inklusive einer gedruckten Neurologie-Zeitschrift Ihrer Wahl.

Literatur
Zurück zum Zitat Anglin JM (1977) Word, object, and conceptual development. WW Norton, New York Anglin JM (1977) Word, object, and conceptual development. WW Norton, New York
Zurück zum Zitat Aviezer H, Hassin RR, Ryan J, Grady C, Susskind J, Anderson A, Moscovitch M, Bentin S (2008) Angry, disgusted, or afraid? studies on the malleability of emotion perception. Psychol Sci 19(7):724–732PubMedCrossRef Aviezer H, Hassin RR, Ryan J, Grady C, Susskind J, Anderson A, Moscovitch M, Bentin S (2008) Angry, disgusted, or afraid? studies on the malleability of emotion perception. Psychol Sci 19(7):724–732PubMedCrossRef
Zurück zum Zitat Barrett LF (2004) Feelings or words? understanding the content in self-report ratings of experienced emotion. J Personal Soc Psychol 87(2):266CrossRef Barrett LF (2004) Feelings or words? understanding the content in self-report ratings of experienced emotion. J Personal Soc Psychol 87(2):266CrossRef
Zurück zum Zitat Barrett LF (2017) The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci 12(1):1–23PubMedCrossRef Barrett LF (2017) The theory of constructed emotion: an active inference account of interoception and categorization. Soc Cogn Affect Neurosci 12(1):1–23PubMedCrossRef
Zurück zum Zitat Barrett LF, Russell JA (1999) The structure of current affect: controversies and emerging consensus. Curr Dir Psychol Sci 8(1):10–14CrossRef Barrett LF, Russell JA (1999) The structure of current affect: controversies and emerging consensus. Curr Dir Psychol Sci 8(1):10–14CrossRef
Zurück zum Zitat Barsalou LW (2017) What does semantic tiling of the cortex tell us about semantics? Neuropsychologia 105:18–38PubMedCrossRef Barsalou LW (2017) What does semantic tiling of the cortex tell us about semantics? Neuropsychologia 105:18–38PubMedCrossRef
Zurück zum Zitat Baucom LB, Wedell DH, Wang J, Blitzer DN, Shinkareva SV (2012) Decoding the neural representation of affective states. Neuroimage 59(1):718–727PubMedCrossRef Baucom LB, Wedell DH, Wang J, Blitzer DN, Shinkareva SV (2012) Decoding the neural representation of affective states. Neuroimage 59(1):718–727PubMedCrossRef
Zurück zum Zitat Bozeat S, Ralph MAL, Patterson K, Garrard P, Hodges JR (2000) Non-verbal semantic impairment in semantic dementia. Neuropsychologia 38(9):1207–1215PubMedCrossRef Bozeat S, Ralph MAL, Patterson K, Garrard P, Hodges JR (2000) Non-verbal semantic impairment in semantic dementia. Neuropsychologia 38(9):1207–1215PubMedCrossRef
Zurück zum Zitat Bradley MM, Greenwald MK, Petry MC, Lang PJ (1992) Remembering pictures: pleasure and arousal in memory. J Exp Psychol 18(2):379 Bradley MM, Greenwald MK, Petry MC, Lang PJ (1992) Remembering pictures: pleasure and arousal in memory. J Exp Psychol 18(2):379
Zurück zum Zitat Bruffaerts R, Dupont P, Peeters R, De Deyne S, Storms G, Vandenberghe R (2013) Similarity of fMRI activity patterns in left perirhinal cortex reflects semantic similarity between words. J Neurosci 33(47):18597–18607PubMedPubMedCentralCrossRef Bruffaerts R, Dupont P, Peeters R, De Deyne S, Storms G, Vandenberghe R (2013) Similarity of fMRI activity patterns in left perirhinal cortex reflects semantic similarity between words. J Neurosci 33(47):18597–18607PubMedPubMedCentralCrossRef
Zurück zum Zitat Calvo MG, Nummenmaa L (2008) Detection of emotional faces: salient physical features guide effective visual search. J Exp Psychol 137(3):471CrossRef Calvo MG, Nummenmaa L (2008) Detection of emotional faces: salient physical features guide effective visual search. J Exp Psychol 137(3):471CrossRef
Zurück zum Zitat Caramazza A, Hillis AE, Rapp BC, Romani C (1990) The multiple semantics hypothesis: multiple confusions? Cogn Neuropsychol 7(3):161–189CrossRef Caramazza A, Hillis AE, Rapp BC, Romani C (1990) The multiple semantics hypothesis: multiple confusions? Cogn Neuropsychol 7(3):161–189CrossRef
Zurück zum Zitat Charest I, Kievit RA, Schmitz TW, Deca D, Kriegeskorte N (2014) Unique semantic space in the brain of each beholder predicts perceived similarity. Proc Natl Acad Sci USA 111(40):14565–14570PubMedPubMedCentralCrossRef Charest I, Kievit RA, Schmitz TW, Deca D, Kriegeskorte N (2014) Unique semantic space in the brain of each beholder predicts perceived similarity. Proc Natl Acad Sci USA 111(40):14565–14570PubMedPubMedCentralCrossRef
Zurück zum Zitat Chen Q, Li P, Xi L, Li F, Lei Y, Li H (2013) How do taxonomic versus thematic relations impact similarity and difference judgments? an ERP study. Int J Psychophysiol 90(2):135–142PubMedCrossRef Chen Q, Li P, Xi L, Li F, Lei Y, Li H (2013) How do taxonomic versus thematic relations impact similarity and difference judgments? an ERP study. Int J Psychophysiol 90(2):135–142PubMedCrossRef
Zurück zum Zitat Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK (2014) Population coding of affect across stimuli, modalities and individuals. Nat Neurosci 17(8):1114PubMedPubMedCentralCrossRef Chikazoe J, Lee DH, Kriegeskorte N, Anderson AK (2014) Population coding of affect across stimuli, modalities and individuals. Nat Neurosci 17(8):1114PubMedPubMedCentralCrossRef
Zurück zum Zitat Collins JA, Olson IR (2014) Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61:65–79PubMedCrossRef Collins JA, Olson IR (2014) Beyond the FFA: the role of the ventral anterior temporal lobes in face processing. Neuropsychologia 61:65–79PubMedCrossRef
Zurück zum Zitat Costa T, Cauda F, Crini M, Tatu MK, Celeghin A, de Gelder B, Tamietto M (2014) Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes. Soc Cogn Affect Neurosci 9(11):1690–1703PubMedCrossRef Costa T, Cauda F, Crini M, Tatu MK, Celeghin A, de Gelder B, Tamietto M (2014) Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes. Soc Cogn Affect Neurosci 9(11):1690–1703PubMedCrossRef
Zurück zum Zitat Damasio AR (1989) The brain binds entities and events by multiregional activation from convergence zones. Neural Comput 1(1):123–132CrossRef Damasio AR (1989) The brain binds entities and events by multiregional activation from convergence zones. Neural Comput 1(1):123–132CrossRef
Zurück zum Zitat den Stock JV, Vandenbulcke M, Sinke CB, de Gelder B (2014) Affective scenes influence fear perception of individual body expressions. Hum Brain Mapp 35(2):492–502PubMedCrossRef den Stock JV, Vandenbulcke M, Sinke CB, de Gelder B (2014) Affective scenes influence fear perception of individual body expressions. Hum Brain Mapp 35(2):492–502PubMedCrossRef
Zurück zum Zitat Dunsmoor JE, Kragel PA, Martin A, LaBar KS (2013) Aversive learning modulates cortical representations of object categories. Cereb Cortex 24(11):2859–2872PubMedPubMedCentralCrossRef Dunsmoor JE, Kragel PA, Martin A, LaBar KS (2013) Aversive learning modulates cortical representations of object categories. Cereb Cortex 24(11):2859–2872PubMedPubMedCentralCrossRef
Zurück zum Zitat Edmiston EK, McHugo M, Dukic MS, Smith SD, Abou-Khalil B, Eggers E, Zald DH (2013) Enhanced visual cortical activation for emotional stimuli is preserved in patients with unilateral amygdala resection. J Neurosci 33(27):11023–11031PubMedPubMedCentralCrossRef Edmiston EK, McHugo M, Dukic MS, Smith SD, Abou-Khalil B, Eggers E, Zald DH (2013) Enhanced visual cortical activation for emotional stimuli is preserved in patients with unilateral amygdala resection. J Neurosci 33(27):11023–11031PubMedPubMedCentralCrossRef
Zurück zum Zitat Ekman P, Friesen WV (1976) Measuring facial movement. Environ Psychol Nonverbal Behav 1(1):56–75CrossRef Ekman P, Friesen WV (1976) Measuring facial movement. Environ Psychol Nonverbal Behav 1(1):56–75CrossRef
Zurück zum Zitat Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598PubMedCrossRef Epstein R, Kanwisher N (1998) A cortical representation of the local visual environment. Nature 392(6676):598PubMedCrossRef
Zurück zum Zitat Estes Z, Golonka S, Jones LL (2011) Thematic thinking: the apprehension and consequences of thematic relations. Psychol Learn Mot 54:249–294CrossRef Estes Z, Golonka S, Jones LL (2011) Thematic thinking: the apprehension and consequences of thematic relations. Psychol Learn Mot 54:249–294CrossRef
Zurück zum Zitat Gentner D, Markman AB (1994) Structural alignment in comparison: no difference without similarity. Psychol Sci 5(3):152–158CrossRef Gentner D, Markman AB (1994) Structural alignment in comparison: no difference without similarity. Psychol Sci 5(3):152–158CrossRef
Zurück zum Zitat Gentner D, Markman AB (1997) Structure mapping in analogy and similarity. Am Psychol 52(1):45CrossRef Gentner D, Markman AB (1997) Structure mapping in analogy and similarity. Am Psychol 52(1):45CrossRef
Zurück zum Zitat Goldstone RL, Medin DL, Halberstadt J (1997) Similarity in context. Mem Cogn 25(2):237–255CrossRef Goldstone RL, Medin DL, Halberstadt J (1997) Similarity in context. Mem Cogn 25(2):237–255CrossRef
Zurück zum Zitat Golonka S, Estes Z (2009) Thematic relations affect similarity via commonalities. J Exp Psychol Learn Mem Cogn 35(6):1454PubMedCrossRef Golonka S, Estes Z (2009) Thematic relations affect similarity via commonalities. J Exp Psychol Learn Mem Cogn 35(6):1454PubMedCrossRef
Zurück zum Zitat Greene MR, Baldassano C, Esteva A, Beck DM Fei-Fei L (2014) Affordances provide a fundamental categorization principle for visual scenes. arXiv preprint arXiv:1411.5340 Greene MR, Baldassano C, Esteva A, Beck DM Fei-Fei L (2014) Affordances provide a fundamental categorization principle for visual scenes. arXiv preprint arXiv:1411.5340
Zurück zum Zitat Grill-Spector K, Kushnir T, Edelman S, Itzchak Y, Malach R (1998) Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21(1):191–202PubMedCrossRef Grill-Spector K, Kushnir T, Edelman S, Itzchak Y, Malach R (1998) Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21(1):191–202PubMedCrossRef
Zurück zum Zitat Guntupalli JS, Wheeler KG, Gobbini MI (2016) Disentangling the representation of identity from head view along the human face processing pathway. Cereb Cortex 27(1):46–53PubMedCentralCrossRef Guntupalli JS, Wheeler KG, Gobbini MI (2016) Disentangling the representation of identity from head view along the human face processing pathway. Cereb Cortex 27(1):46–53PubMedCentralCrossRef
Zurück zum Zitat Guo CC, Gorno-Tempini ML, Gesierich B, Henry M, Trujillo A, Shany-Ur T, Jovicich J, Robinson SD, Kramer JH, Rankin KP (2013) Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain 136(10):2979–2991PubMedPubMedCentralCrossRef Guo CC, Gorno-Tempini ML, Gesierich B, Henry M, Trujillo A, Shany-Ur T, Jovicich J, Robinson SD, Kramer JH, Rankin KP (2013) Anterior temporal lobe degeneration produces widespread network-driven dysfunction. Brain 136(10):2979–2991PubMedPubMedCentralCrossRef
Zurück zum Zitat Halberstadt JB, Niedenthal PM (1997) Emotional state and the use of stimulus dimensions in judgment. J Pers Soc Psychol 72(5):1017PubMedCrossRef Halberstadt JB, Niedenthal PM (1997) Emotional state and the use of stimulus dimensions in judgment. J Pers Soc Psychol 72(5):1017PubMedCrossRef
Zurück zum Zitat Halberstadt JB, Niedenthal PM, Kushner J (1995) Resolution of lexical ambiguity by emotional state. Psychol Sci 6(5):278–282CrossRef Halberstadt JB, Niedenthal PM, Kushner J (1995) Resolution of lexical ambiguity by emotional state. Psychol Sci 6(5):278–282CrossRef
Zurück zum Zitat Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–2430PubMedCrossRef Haxby JV, Gobbini MI, Furey ML, Ishai A, Schouten JL, Pietrini P (2001) Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science 293(5539):2425–2430PubMedCrossRef
Zurück zum Zitat Haxby JV, Guntupalli JS, Connolly AC, Halchenko YO, Conroy BR, Gobbini MI, Hanke M, Ramadge PJ (2011) A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron 72(2):404–416PubMedPubMedCentralCrossRef Haxby JV, Guntupalli JS, Connolly AC, Halchenko YO, Conroy BR, Gobbini MI, Hanke M, Ramadge PJ (2011) A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron 72(2):404–416PubMedPubMedCentralCrossRef
Zurück zum Zitat Highley JR, Walker MA, Esiri MM, Crow TJ, Harrison PJ (2002) Asymmetry of the uncinate fasciculus: a post-mortem study of normal subjects and patients with schizophrenia. Cereb Cortex 12(11):1218–1224PubMedCrossRef Highley JR, Walker MA, Esiri MM, Crow TJ, Harrison PJ (2002) Asymmetry of the uncinate fasciculus: a post-mortem study of normal subjects and patients with schizophrenia. Cereb Cortex 12(11):1218–1224PubMedCrossRef
Zurück zum Zitat Hoffman P, Ralph MAL, Rogers TT (2013) Semantic diversity: a measure of semantic ambiguity based on variability in the contextual usage of words. Behav Res Methods 45(3):718–730PubMedCrossRef Hoffman P, Ralph MAL, Rogers TT (2013) Semantic diversity: a measure of semantic ambiguity based on variability in the contextual usage of words. Behav Res Methods 45(3):718–730PubMedCrossRef
Zurück zum Zitat Horton MS, Markman EM (1980) Developmental differences in the acquisition of basic and superordinate categories. Child Dev 51(3):708–719CrossRef Horton MS, Markman EM (1980) Developmental differences in the acquisition of basic and superordinate categories. Child Dev 51(3):708–719CrossRef
Zurück zum Zitat Hrybouski S, Aghamohammadi-Sereshki A, Madan CR, Shafer AT, Baron CA, Seres P, Beaulieu C, Olsen F, Malykhin NV (2016) Amygdala subnuclei response and connectivity during emotional processing. Neuroimage 133:98–110PubMedCrossRef Hrybouski S, Aghamohammadi-Sereshki A, Madan CR, Shafer AT, Baron CA, Seres P, Beaulieu C, Olsen F, Malykhin NV (2016) Amygdala subnuclei response and connectivity during emotional processing. Neuroimage 133:98–110PubMedCrossRef
Zurück zum Zitat Iordan MC, Greene MR, Beck DM, Fei-Fei L (2015) Basic level category structure emerges gradually across human ventral visual cortex. J Cogn Neurosci 27(7):1427–1446PubMedCrossRef Iordan MC, Greene MR, Beck DM, Fei-Fei L (2015) Basic level category structure emerges gradually across human ventral visual cortex. J Cogn Neurosci 27(7):1427–1446PubMedCrossRef
Zurück zum Zitat Jabbi M, Bastiaansen J, Keysers C (2008) A common anterior insula representation of disgust observation, experience and imagination shows divergent functional connectivity pathways. PLoS ONE 3(8):e2939PubMedPubMedCentralCrossRef Jabbi M, Bastiaansen J, Keysers C (2008) A common anterior insula representation of disgust observation, experience and imagination shows divergent functional connectivity pathways. PLoS ONE 3(8):e2939PubMedPubMedCentralCrossRef
Zurück zum Zitat Jackson RL, Hoffman P, Pobric G, Lambon Ralph MA (2015) The nature and neural correlates of semantic association versus conceptual similarity. Cereb Cortex 25(11):4319–4333PubMedPubMedCentralCrossRef Jackson RL, Hoffman P, Pobric G, Lambon Ralph MA (2015) The nature and neural correlates of semantic association versus conceptual similarity. Cereb Cortex 25(11):4319–4333PubMedPubMedCentralCrossRef
Zurück zum Zitat Jefferies E, Patterson K, Jones RW, Ralph L, Matthew A (2009) Comprehension of concrete and abstract words in semantic dementia. Neuropsychology 23(4):492PubMedPubMedCentralCrossRef Jefferies E, Patterson K, Jones RW, Ralph L, Matthew A (2009) Comprehension of concrete and abstract words in semantic dementia. Neuropsychology 23(4):492PubMedPubMedCentralCrossRef
Zurück zum Zitat King ML, Groen II, Steel A, Kravitz DJ, Baker CI (2019) Similarity judgments and cortical visual responses reflect different properties of object and scene categories in naturalistic images. NeuroImage 197:368–382PubMedCrossRef King ML, Groen II, Steel A, Kravitz DJ, Baker CI (2019) Similarity judgments and cortical visual responses reflect different properties of object and scene categories in naturalistic images. NeuroImage 197:368–382PubMedCrossRef
Zurück zum Zitat Koch A, Alves H, Krüger T, Unkelbach C (2016) A general valence asymmetry in similarity: good is more alike than bad. J Exp Psychol Learn Mem Cogn 42(8):1171PubMedCrossRef Koch A, Alves H, Krüger T, Unkelbach C (2016) A general valence asymmetry in similarity: good is more alike than bad. J Exp Psychol Learn Mem Cogn 42(8):1171PubMedCrossRef
Zurück zum Zitat Kriegeskorte N, Mur M, Bandettini PA (2008a) Representational similarity analysis-connecting the branches of systems neuroscience. Front Syst Neurosci 2:4PubMedPubMedCentralCrossRef Kriegeskorte N, Mur M, Bandettini PA (2008a) Representational similarity analysis-connecting the branches of systems neuroscience. Front Syst Neurosci 2:4PubMedPubMedCentralCrossRef
Zurück zum Zitat Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA (2008b) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6):1126–1141PubMedPubMedCentralCrossRef Kriegeskorte N, Mur M, Ruff DA, Kiani R, Bodurka J, Esteky H, Tanaka K, Bandettini PA (2008b) Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60(6):1126–1141PubMedPubMedCentralCrossRef
Zurück zum Zitat Kuppens P, Tuerlinckx F, Russell JA, Barrett LF (2013) The relation between valence and arousal in subjective experience. Psychol Bull 139(4):917PubMedCrossRef Kuppens P, Tuerlinckx F, Russell JA, Barrett LF (2013) The relation between valence and arousal in subjective experience. Psychol Bull 139(4):917PubMedCrossRef
Zurück zum Zitat LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20(5):937–945PubMedCrossRef LaBar KS, Gatenby JC, Gore JC, LeDoux JE, Phelps EA (1998) Human amygdala activation during conditioned fear acquisition and extinction: a mixed-trial fMRI study. Neuron 20(5):937–945PubMedCrossRef
Zurück zum Zitat Lambon Ralph MA (2014) Neurocognitive insights on conceptual knowledge and its breakdown. Philos Trans R Soc B 369(1634):20120392CrossRef Lambon Ralph MA (2014) Neurocognitive insights on conceptual knowledge and its breakdown. Philos Trans R Soc B 369(1634):20120392CrossRef
Zurück zum Zitat Lang PJ, Bradley MM, Cuthbert BN (2008) International affective picture system (IAPS): affective ratings of pictures and instruction manual. University of Florida, Gainesville Lang PJ, Bradley MM, Cuthbert BN (2008) International affective picture system (IAPS): affective ratings of pictures and instruction manual. University of Florida, Gainesville
Zurück zum Zitat Laufer O, Paz R (2012) Monetary loss alters perceptual thresholds and compromises future decisions via amygdala and prefrontal networks. J Neurosci 32(18):6304–6311PubMedPubMedCentralCrossRef Laufer O, Paz R (2012) Monetary loss alters perceptual thresholds and compromises future decisions via amygdala and prefrontal networks. J Neurosci 32(18):6304–6311PubMedPubMedCentralCrossRef
Zurück zum Zitat Laufer O, Israeli D, Paz R (2016) Behavioral and neural mechanisms of overgeneralization in anxiety. Curr Biol 26(6):713–722PubMedCrossRef Laufer O, Israeli D, Paz R (2016) Behavioral and neural mechanisms of overgeneralization in anxiety. Curr Biol 26(6):713–722PubMedCrossRef
Zurück zum Zitat Leal SL, Tighe SK, Jones CK, Yassa MA (2014) Pattern separation of emotional information in hippocampal dentate and CA3. Hippocampus 24(9):1146–1155PubMedPubMedCentralCrossRef Leal SL, Tighe SK, Jones CK, Yassa MA (2014) Pattern separation of emotional information in hippocampal dentate and CA3. Hippocampus 24(9):1146–1155PubMedPubMedCentralCrossRef
Zurück zum Zitat Levine SM, Wackerle A, Rupprecht R, Schwarzbach JV (2018) The neural representation of an individualized relational affective space. Neuropsychologia 120:35–42PubMedCrossRef Levine SM, Wackerle A, Rupprecht R, Schwarzbach JV (2018) The neural representation of an individualized relational affective space. Neuropsychologia 120:35–42PubMedCrossRef
Zurück zum Zitat Lin EL, Murphy GL (2001) Thematic relations in adults’ concepts. J Exp Psychol Gen 130(1):3PubMedCrossRef Lin EL, Murphy GL (2001) Thematic relations in adults’ concepts. J Exp Psychol Gen 130(1):3PubMedCrossRef
Zurück zum Zitat Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF (2012) The brain basis of emotion: a meta-analytic review. Behav Brain Sci 35(3):121–143PubMedPubMedCentralCrossRef Lindquist KA, Wager TD, Kober H, Bliss-Moreau E, Barrett LF (2012) The brain basis of emotion: a meta-analytic review. Behav Brain Sci 35(3):121–143PubMedPubMedCentralCrossRef
Zurück zum Zitat Lissek S, Rabin S, Heller RE, Lukenbaugh D, Geraci M, Pine DS, Grillon C (2009) Overgeneralization of conditioned fear as a pathogenic marker of panic disorder. Am J Psychiatry 167(1):47–55PubMedPubMedCentralCrossRef Lissek S, Rabin S, Heller RE, Lukenbaugh D, Geraci M, Pine DS, Grillon C (2009) Overgeneralization of conditioned fear as a pathogenic marker of panic disorder. Am J Psychiatry 167(1):47–55PubMedPubMedCentralCrossRef
Zurück zum Zitat Machajdik J, Hanbury A (2010) Affective image classification using features inspired by psychology and art theory. Proceedings of the 18th ACM International Conference on Multimedia, ACM Machajdik J, Hanbury A (2010) Affective image classification using features inspired by psychology and art theory. Proceedings of the 18th ACM International Conference on Multimedia, ACM
Zurück zum Zitat Mack ML, Wong AC-N, Gauthier I, Tanaka JW, Palmeri TJ (2009) Time course of visual object categorization: fastest does not necessarily mean first. Vision Res 49(15):1961–1968PubMedCrossRef Mack ML, Wong AC-N, Gauthier I, Tanaka JW, Palmeri TJ (2009) Time course of visual object categorization: fastest does not necessarily mean first. Vision Res 49(15):1961–1968PubMedCrossRef
Zurück zum Zitat Maguire P, Maguire R, Cater AW (2010) The influence of interactional semantic patterns on the interpretation of noun–noun compounds. J Exp Psychol Learn Mem Cogn 36(2):288PubMedCrossRef Maguire P, Maguire R, Cater AW (2010) The influence of interactional semantic patterns on the interpretation of noun–noun compounds. J Exp Psychol Learn Mem Cogn 36(2):288PubMedCrossRef
Zurück zum Zitat Malach R, Reppas J, Benson R, Kwong K, Jiang H, Kennedy W, Ledden P, Brady T, Rosen B, Tootell R (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92(18):8135–8139PubMedPubMedCentralCrossRef Malach R, Reppas J, Benson R, Kwong K, Jiang H, Kennedy W, Ledden P, Brady T, Rosen B, Tootell R (1995) Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci USA 92(18):8135–8139PubMedPubMedCentralCrossRef
Zurück zum Zitat Mäntylä M, Adams B, Destefanis G, Graziotin D, Ortu M (2016) Mining valence, arousal, and dominance: possibilities for detecting burnout and productivity? Proceedings of the 13th International Conference on Mining Software Repositories, ACM Mäntylä M, Adams B, Destefanis G, Graziotin D, Ortu M (2016) Mining valence, arousal, and dominance: possibilities for detecting burnout and productivity? Proceedings of the 13th International Conference on Mining Software Repositories, ACM
Zurück zum Zitat Marchewka A, Żurawski Ł, Jednoróg K, Grabowska A (2014) The Nencki Affective Picture System (NAPS): introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behav Res Methods 46(2):596–610PubMedCrossRef Marchewka A, Żurawski Ł, Jednoróg K, Grabowska A (2014) The Nencki Affective Picture System (NAPS): introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behav Res Methods 46(2):596–610PubMedCrossRef
Zurück zum Zitat Markman AB, Gentner D (1993) Splitting the differences: a structural alignment view of similarity. J Mem Lang 32(4):517–535CrossRef Markman AB, Gentner D (1993) Splitting the differences: a structural alignment view of similarity. J Mem Lang 32(4):517–535CrossRef
Zurück zum Zitat Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neural correlates of category-specific knowledge. Nature 379(6566):649PubMedCrossRef Martin A, Wiggs CL, Ungerleider LG, Haxby JV (1996) Neural correlates of category-specific knowledge. Nature 379(6566):649PubMedCrossRef
Zurück zum Zitat Mattar MG, Talmi D (2019) Patterns of neural oscillations in emotional memory discrimination. Neuron 102(4):715–717PubMedCrossRef Mattar MG, Talmi D (2019) Patterns of neural oscillations in emotional memory discrimination. Neuron 102(4):715–717PubMedCrossRef
Zurück zum Zitat Mehrabian A (1980) Basic dimensions for a general psychological theory: implications for personality, social, environmental, and developmental studies, Oelgeschlager. Gunn & Hain Cambridge, MA Mehrabian A (1980) Basic dimensions for a general psychological theory: implications for personality, social, environmental, and developmental studies, Oelgeschlager. Gunn & Hain Cambridge, MA
Zurück zum Zitat Motzkin JC, Philippi CL, Wolf RC, Baskaya MK, Koenigs M (2015) Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiat 77(3):276–284PubMedCrossRef Motzkin JC, Philippi CL, Wolf RC, Baskaya MK, Koenigs M (2015) Ventromedial prefrontal cortex is critical for the regulation of amygdala activity in humans. Biol Psychiat 77(3):276–284PubMedCrossRef
Zurück zum Zitat Murphy GL, Brownell HH (1985) Category differentiation in object recognition: typicality constraints on the basic category advantage. J Exp Psychol Learn Mem Cogn 11(1):70PubMedCrossRef Murphy GL, Brownell HH (1985) Category differentiation in object recognition: typicality constraints on the basic category advantage. J Exp Psychol Learn Mem Cogn 11(1):70PubMedCrossRef
Zurück zum Zitat Murphy FC, Nimmo-Smith I, Lawrence AD (2003) Functional neuroanatomy of emotions: a meta-analysis. Cogn Affect Behav Neurosci 3(3):207–233PubMedCrossRef Murphy FC, Nimmo-Smith I, Lawrence AD (2003) Functional neuroanatomy of emotions: a meta-analysis. Cogn Affect Behav Neurosci 3(3):207–233PubMedCrossRef
Zurück zum Zitat Nestor PJ, Fryer TD, Hodges JR (2006) Declarative memory impairments in Alzheimer’s disease and semantic dementia. Neuroimage 30(3):1010–1020PubMedCrossRef Nestor PJ, Fryer TD, Hodges JR (2006) Declarative memory impairments in Alzheimer’s disease and semantic dementia. Neuroimage 30(3):1010–1020PubMedCrossRef
Zurück zum Zitat Neyens V, Bruffaerts R, Liuzzi AG, Kalfas I, Peeters R, Keuleers E, Vogels R, De Deyne S, Storms G, Dupont P (2017) Representation of semantic similarity in the left intraparietal sulcus: functional magnetic resonance imaging evidence. Front Hum Neurosci 11:402PubMedPubMedCentralCrossRef Neyens V, Bruffaerts R, Liuzzi AG, Kalfas I, Peeters R, Keuleers E, Vogels R, De Deyne S, Storms G, Dupont P (2017) Representation of semantic similarity in the left intraparietal sulcus: functional magnetic resonance imaging evidence. Front Hum Neurosci 11:402PubMedPubMedCentralCrossRef
Zurück zum Zitat Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N (2014) A toolbox for representational similarity analysis. PLoS Comput Biol 10(4):e1003553PubMedPubMedCentralCrossRef Nili H, Wingfield C, Walther A, Su L, Marslen-Wilson W, Kriegeskorte N (2014) A toolbox for representational similarity analysis. PLoS Comput Biol 10(4):e1003553PubMedPubMedCentralCrossRef
Zurück zum Zitat Ohira H, Nomura M, Ichikawa N, Isowa T, Iidaka T, Sato A, Fukuyama S, Nakajima T, Yamada J (2006) Association of neural and physiological responses during voluntary emotion suppression. Neuroimage 29(3):721–733PubMedCrossRef Ohira H, Nomura M, Ichikawa N, Isowa T, Iidaka T, Sato A, Fukuyama S, Nakajima T, Yamada J (2006) Association of neural and physiological responses during voluntary emotion suppression. Neuroimage 29(3):721–733PubMedCrossRef
Zurück zum Zitat Öhman A (2009) Of snakes and faces: an evolutionary perspective on the psychology of fear. Scand J Psychol 50(6):543–552PubMedCrossRef Öhman A (2009) Of snakes and faces: an evolutionary perspective on the psychology of fear. Scand J Psychol 50(6):543–552PubMedCrossRef
Zurück zum Zitat Olson IR, McCoy D, Klobusicky E, Ross LA (2013) Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc Cogn Affect Neurosci 8(2):123–133PubMedPubMedCentralCrossRef Olson IR, McCoy D, Klobusicky E, Ross LA (2013) Social cognition and the anterior temporal lobes: a review and theoretical framework. Soc Cogn Affect Neurosci 8(2):123–133PubMedPubMedCentralCrossRef
Zurück zum Zitat Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? the representation of semantic knowledge in the human brain. Nat Rev Neurosci 8(12):976PubMedCrossRef Patterson K, Nestor PJ, Rogers TT (2007) Where do you know what you know? the representation of semantic knowledge in the human brain. Nat Rev Neurosci 8(12):976PubMedCrossRef
Zurück zum Zitat Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2):331–348PubMedCrossRef Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2):331–348PubMedCrossRef
Zurück zum Zitat Plutchik R (2001) The nature of emotions: human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am Sci 89(4):344–350CrossRef Plutchik R (2001) The nature of emotions: human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am Sci 89(4):344–350CrossRef
Zurück zum Zitat Pobric G, Jefferies E, Ralph MAL (2007) Anterior temporal lobes mediate semantic representation: mimicking semantic dementia by using rTMS in normal participants. Proc Natl Acad Sci USA 104(50):20137–20141PubMedPubMedCentralCrossRef Pobric G, Jefferies E, Ralph MAL (2007) Anterior temporal lobes mediate semantic representation: mimicking semantic dementia by using rTMS in normal participants. Proc Natl Acad Sci USA 104(50):20137–20141PubMedPubMedCentralCrossRef
Zurück zum Zitat Ralph ML, Lowe C, Rogers TT (2007) Neural basis of category-specific semantic deficits for living things: evidence from semantic dementia, HSVE and a neural network model. Brain 130(4):1127–1137CrossRef Ralph ML, Lowe C, Rogers TT (2007) Neural basis of category-specific semantic deficits for living things: evidence from semantic dementia, HSVE and a neural network model. Brain 130(4):1127–1137CrossRef
Zurück zum Zitat Ralph MAL, Sage K, Jones RW, Mayberry EJ (2010) Coherent concepts are computed in the anterior temporal lobes. Proc Natl Acad Sci USA 107(6):2717–2722CrossRef Ralph MAL, Sage K, Jones RW, Mayberry EJ (2010) Coherent concepts are computed in the anterior temporal lobes. Proc Natl Acad Sci USA 107(6):2717–2722CrossRef
Zurück zum Zitat Ralph MAL, Jefferies E, Patterson K, Rogers TT (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18(1):42PubMedCrossRef Ralph MAL, Jefferies E, Patterson K, Rogers TT (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18(1):42PubMedCrossRef
Zurück zum Zitat Rice GE, Hoffman P, Binney RJ, Lambon Ralph MA (2018) Concrete versus abstract forms of social concept: an fMRI comparison of knowledge about people versus social terms. Philos Trans R Soc B 373(1752):20170136CrossRef Rice GE, Hoffman P, Binney RJ, Lambon Ralph MA (2018) Concrete versus abstract forms of social concept: an fMRI comparison of knowledge about people versus social terms. Philos Trans R Soc B 373(1752):20170136CrossRef
Zurück zum Zitat Riddoch MJ, Humphreys GW, Coltheart M, Funnell E (1988) Semantic systems or system? neuropsychological evidence re-examined. Cogn Neuropsychol 5(1):3–25CrossRef Riddoch MJ, Humphreys GW, Coltheart M, Funnell E (1988) Semantic systems or system? neuropsychological evidence re-examined. Cogn Neuropsychol 5(1):3–25CrossRef
Zurück zum Zitat Roberts JS, Wedell DH (1994) Context effects on similarity judgments of multidimensional stimuli: inferring the structure of the emotion space. J Exp Soc Psychol 30(1):1–38CrossRef Roberts JS, Wedell DH (1994) Context effects on similarity judgments of multidimensional stimuli: inferring the structure of the emotion space. J Exp Soc Psychol 30(1):1–38CrossRef
Zurück zum Zitat Rogers TT, Patterson K (2007) Object categorization: reversals and explanations of the basic-level advantage. J Exp Psychol Gen 136(3):451PubMedCrossRef Rogers TT, Patterson K (2007) Object categorization: reversals and explanations of the basic-level advantage. J Exp Psychol Gen 136(3):451PubMedCrossRef
Zurück zum Zitat Rogers TT, Ralph L, Matthew A, Garrard P, Bozeat S, McClelland JL, Hodges JR, Patterson K (2004) Structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychol Rev 111(1):205PubMedCrossRef Rogers TT, Ralph L, Matthew A, Garrard P, Bozeat S, McClelland JL, Hodges JR, Patterson K (2004) Structure and deterioration of semantic memory: a neuropsychological and computational investigation. Psychol Rev 111(1):205PubMedCrossRef
Zurück zum Zitat Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P (1976) Basic objects in natural categories. Cogn Psychol 8(3):382–439CrossRef Rosch E, Mervis CB, Gray WD, Johnson DM, Boyes-Braem P (1976) Basic objects in natural categories. Cogn Psychol 8(3):382–439CrossRef
Zurück zum Zitat Russell JA, Bullock M (1985) Multidimensional scaling of emotional facial expressions: similarity from preschoolers to adults. J Pers Soc Psychol 48(5):1290CrossRef Russell JA, Bullock M (1985) Multidimensional scaling of emotional facial expressions: similarity from preschoolers to adults. J Pers Soc Psychol 48(5):1290CrossRef
Zurück zum Zitat Russell JA, Pratt G (1980) A description of the affective quality attributed to environments. J Pers Soc Psychol 38(2):311CrossRef Russell JA, Pratt G (1980) A description of the affective quality attributed to environments. J Pers Soc Psychol 38(2):311CrossRef
Zurück zum Zitat Said CP, Moore CD, Engell AD, Todorov A, Haxby JV (2010) Distributed representations of dynamic facial expressions in the superior temporal sulcus. J Vision 10(5):11CrossRef Said CP, Moore CD, Engell AD, Todorov A, Haxby JV (2010) Distributed representations of dynamic facial expressions in the superior temporal sulcus. J Vision 10(5):11CrossRef
Zurück zum Zitat Sakaki M, Niki K, Mather M (2012) Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli. Cogn Affect Behav Neurosci 12(1):115–139PubMedPubMedCentralCrossRef Sakaki M, Niki K, Mather M (2012) Beyond arousal and valence: the importance of the biological versus social relevance of emotional stimuli. Cogn Affect Behav Neurosci 12(1):115–139PubMedPubMedCentralCrossRef
Zurück zum Zitat Schlosberg H (1952) The description of facial expressions in terms of two dimensions. J Exp Psychol 44(4):229PubMedCrossRef Schlosberg H (1952) The description of facial expressions in terms of two dimensions. J Exp Psychol 44(4):229PubMedCrossRef
Zurück zum Zitat Schwartz MF, Kimberg DY, Walker GM, Brecher A, Faseyitan OK, Dell GS, Mirman D, Coslett HB (2011) Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. Proc Natl Acad Sci USA 108(20):8520–8524PubMedPubMedCentralCrossRef Schwartz MF, Kimberg DY, Walker GM, Brecher A, Faseyitan OK, Dell GS, Mirman D, Coslett HB (2011) Neuroanatomical dissociation for taxonomic and thematic knowledge in the human brain. Proc Natl Acad Sci USA 108(20):8520–8524PubMedPubMedCentralCrossRef
Zurück zum Zitat Segal SK, Stark SM, Kattan D, Stark CE, Yassa MA (2012) Norepinephrine-mediated emotional arousal facilitates subsequent pattern separation. Neurobiol Learn Mem 97(4):465–469PubMedPubMedCentralCrossRef Segal SK, Stark SM, Kattan D, Stark CE, Yassa MA (2012) Norepinephrine-mediated emotional arousal facilitates subsequent pattern separation. Neurobiol Learn Mem 97(4):465–469PubMedPubMedCentralCrossRef
Zurück zum Zitat Simmons S, Estes Z (2008) Individual differences in the perception of similarity and difference. Cognition 108(3):781–795PubMedCrossRef Simmons S, Estes Z (2008) Individual differences in the perception of similarity and difference. Cognition 108(3):781–795PubMedCrossRef
Zurück zum Zitat Sison JAG, Mather M (2007) Does remembering emotional items impair recall of same-emotion items? Psychon Bull Rev 14(2):282–287PubMedCrossRef Sison JAG, Mather M (2007) Does remembering emotional items impair recall of same-emotion items? Psychon Bull Rev 14(2):282–287PubMedCrossRef
Zurück zum Zitat Talmi D (2013) Enhanced emotional memory: cognitive and neural mechanisms. Curr Dir Psychol Sci 22(6):430–436CrossRef Talmi D (2013) Enhanced emotional memory: cognitive and neural mechanisms. Curr Dir Psychol Sci 22(6):430–436CrossRef
Zurück zum Zitat Talmi D, McGarry LM (2012) Accounting for immediate emotional memory enhancement. J Mem Lang 66(1):93–108CrossRef Talmi D, McGarry LM (2012) Accounting for immediate emotional memory enhancement. J Mem Lang 66(1):93–108CrossRef
Zurück zum Zitat Talmi D, Moscovitch M (2004) Can semantic relatedness explain the enhancement of memory for emotional words? Mem Cogn 32(5):742–751CrossRef Talmi D, Moscovitch M (2004) Can semantic relatedness explain the enhancement of memory for emotional words? Mem Cogn 32(5):742–751CrossRef
Zurück zum Zitat Talmi D, Luk BT, McGarry LM, Moscovitch M (2007) The contribution of relatedness and distinctiveness to emotionally-enhanced memory. J Mem Lang 56(4):555–574CrossRef Talmi D, Luk BT, McGarry LM, Moscovitch M (2007) The contribution of relatedness and distinctiveness to emotionally-enhanced memory. J Mem Lang 56(4):555–574CrossRef
Zurück zum Zitat Taylor KI, Devereux BJ, Acres K, Randall B, Tyler LK (2012) Contrasting effects of feature-based statistics on the categorisation and basic-level identification of visual objects. Cognition 122(3):363–374PubMedCrossRef Taylor KI, Devereux BJ, Acres K, Randall B, Tyler LK (2012) Contrasting effects of feature-based statistics on the categorisation and basic-level identification of visual objects. Cognition 122(3):363–374PubMedCrossRef
Zurück zum Zitat van Tilburg WA, Igou ER (2017) Boredom begs to differ: differentiation from other negative emotions. Emotion 17(2):309PubMedCrossRef van Tilburg WA, Igou ER (2017) Boredom begs to differ: differentiation from other negative emotions. Emotion 17(2):309PubMedCrossRef
Zurück zum Zitat Visser M, Jefferies E, Embleton KV, Lambon Ralph MA (2012) Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J Cogn Neurosci 24(8):1766–1778PubMedCrossRef Visser M, Jefferies E, Embleton KV, Lambon Ralph MA (2012) Both the middle temporal gyrus and the ventral anterior temporal area are crucial for multimodal semantic processing: distortion-corrected fMRI evidence for a double gradient of information convergence in the temporal lobes. J Cogn Neurosci 24(8):1766–1778PubMedCrossRef
Zurück zum Zitat Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR (2013) Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 136(6):1692–1707CrossRef Von Der Heide RJ, Skipper LM, Klobusicky E, Olson IR (2013) Dissecting the uncinate fasciculus: disorders, controversies and a hypothesis. Brain 136(6):1692–1707CrossRef
Zurück zum Zitat Vytal K, Hamann S (2010) Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J Cogn Neurosci 22(12):2864–2885PubMedCrossRef Vytal K, Hamann S (2010) Neuroimaging support for discrete neural correlates of basic emotions: a voxel-based meta-analysis. J Cogn Neurosci 22(12):2864–2885PubMedCrossRef
Zurück zum Zitat Wager TD, Kang J, Johnson TD, Nichols TE, Satpute AB, Barrett LF (2015) A Bayesian model of category-specific emotional brain responses. PLoS Comput Biol 11(4):e1004066PubMedPubMedCentralCrossRef Wager TD, Kang J, Johnson TD, Nichols TE, Satpute AB, Barrett LF (2015) A Bayesian model of category-specific emotional brain responses. PLoS Comput Biol 11(4):e1004066PubMedPubMedCentralCrossRef
Zurück zum Zitat Wang Y, Collins JA, Koski J, Nugiel T, Metoki A, Olson IR (2017) Dynamic neural architecture for social knowledge retrieval. Proc Natl Acad Sci USA 114(16):E3305–E3314PubMedPubMedCentralCrossRef Wang Y, Collins JA, Koski J, Nugiel T, Metoki A, Olson IR (2017) Dynamic neural architecture for social knowledge retrieval. Proc Natl Acad Sci USA 114(16):E3305–E3314PubMedPubMedCentralCrossRef
Zurück zum Zitat Wicker B, Keysers C, Plailly J, Royet J-P, Gallese V, Rizzolatti G (2003) Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron 40(3):655–664PubMedCrossRef Wicker B, Keysers C, Plailly J, Royet J-P, Gallese V, Rizzolatti G (2003) Both of us disgusted in My insula: the common neural basis of seeing and feeling disgust. Neuron 40(3):655–664PubMedCrossRef
Zurück zum Zitat Wisniewski EJ, Bassok M (1999) What makes a man similar to a tie? Stimulus compatibility with comparison and integration. Cogn Psychol 39(3–4):208–238PubMedCrossRef Wisniewski EJ, Bassok M (1999) What makes a man similar to a tie? Stimulus compatibility with comparison and integration. Cogn Psychol 39(3–4):208–238PubMedCrossRef
Zurück zum Zitat Xiao X, Dong Q, Chen C, Xue G (2016) Neural pattern similarity underlies the mnemonic advantages for living words. Cortex 79:99–111PubMedCrossRef Xiao X, Dong Q, Chen C, Xue G (2016) Neural pattern similarity underlies the mnemonic advantages for living words. Cortex 79:99–111PubMedCrossRef
Zurück zum Zitat Xu Y, Wang X, Wang X, Men W, Gao J-H, Bi Y (2018) Doctor, teacher, and stethoscope: neural representation of different types of semantic relations. J Neurosci 38(13):3303–3317PubMedPubMedCentralCrossRef Xu Y, Wang X, Wang X, Men W, Gao J-H, Bi Y (2018) Doctor, teacher, and stethoscope: neural representation of different types of semantic relations. J Neurosci 38(13):3303–3317PubMedPubMedCentralCrossRef
Zurück zum Zitat Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665PubMedPubMedCentralCrossRef Yarkoni T, Poldrack RA, Nichols TE, Van Essen DC, Wager TD (2011) Large-scale automated synthesis of human functional neuroimaging data. Nat Methods 8(8):665PubMedPubMedCentralCrossRef
Zurück zum Zitat Yu LC, Lee LH, Hao S, Wang J, He Y, Hu J, Lai KR, Zhang X (2016) Building Chinese affective resources in valence-arousal dimensions. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies Yu LC, Lee LH, Hao S, Wang J, He Y, Hu J, Lai KR, Zhang X (2016) Building Chinese affective resources in valence-arousal dimensions. Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies
Zurück zum Zitat Yuen K, Johnston S, Martino F, Sorger B, Formisano E, Linden D, Goebel R (2012) Pattern classification predicts individuals’ responses to affective stimuli. Trans Neurosci 3(3):278–287CrossRef Yuen K, Johnston S, Martino F, Sorger B, Formisano E, Linden D, Goebel R (2012) Pattern classification predicts individuals’ responses to affective stimuli. Trans Neurosci 3(3):278–287CrossRef
Zurück zum Zitat Zahn R, Moll J, Krueger F, Huey ED, Garrido G, Grafman J (2007) Social concepts are represented in the superior anterior temporal cortex. Proc Natl Acad Sci USA 104(15):6430–6435PubMedPubMedCentralCrossRef Zahn R, Moll J, Krueger F, Huey ED, Garrido G, Grafman J (2007) Social concepts are represented in the superior anterior temporal cortex. Proc Natl Acad Sci USA 104(15):6430–6435PubMedPubMedCentralCrossRef
Zurück zum Zitat Zahn R, Moll J, Iyengar V, Huey ED, Tierney M, Krueger F, Grafman J (2009) Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism. Brain 132(3):604–616PubMedPubMedCentralCrossRef Zahn R, Moll J, Iyengar V, Huey ED, Tierney M, Krueger F, Grafman J (2009) Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism. Brain 132(3):604–616PubMedPubMedCentralCrossRef
Zurück zum Zitat Zevon MA, Tellegen A (1982) The structure of mood change: an idiographic/nomothetic analysis. J Pers Soc Psychol 43(1):111CrossRef Zevon MA, Tellegen A (1982) The structure of mood change: an idiographic/nomothetic analysis. J Pers Soc Psychol 43(1):111CrossRef
Zurück zum Zitat Zheng J, Stevenson RF, Mander BA, Mnatsakanyan L, Hsu FP, Vadera S, Knight RT, Yassa MA, Lin JJ (2019) Multiplexing of theta and alpha rhythms in the amygdala-hippocampal circuit supports pattern separation of emotional information. Neuron 102(4):887–898PubMedPubMedCentralCrossRef Zheng J, Stevenson RF, Mander BA, Mnatsakanyan L, Hsu FP, Vadera S, Knight RT, Yassa MA, Lin JJ (2019) Multiplexing of theta and alpha rhythms in the amygdala-hippocampal circuit supports pattern separation of emotional information. Neuron 102(4):887–898PubMedPubMedCentralCrossRef
Metadaten
Titel
The Emotional Facet of Subjective and Neural Indices of Similarity
verfasst von
Martina Riberto
Gorana Pobric
Deborah Talmi
Publikationsdatum
14.11.2019
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 6/2019
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-019-00743-7

Weitere Artikel der Ausgabe 6/2019

Brain Topography 6/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.