Skip to main content
Erschienen in: Brain Topography 6/2019

09.11.2019 | Review

Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks

verfasst von: Lucina Q. Uddin, B. T. Thomas Yeo, R. Nathan Spreng

Erschienen in: Brain Topography | Ausgabe 6/2019

Einloggen, um Zugang zu erhalten

Abstract

The past decade has witnessed a proliferation of studies aimed at characterizing the human connectome. These projects map the brain regions comprising large-scale systems underlying cognition using non-invasive neuroimaging approaches and advanced analytic techniques adopted from network science. While the idea that the human brain is composed of multiple macro-scale functional networks has been gaining traction in cognitive neuroscience, the field has yet to reach consensus on several key issues regarding terminology. What constitutes a functional brain network? Are there “core” functional networks, and if so, what are their spatial topographies? What naming conventions, if universally adopted, will provide the most utility and facilitate communication amongst researchers? Can a taxonomy of functional brain networks be delineated? Here we survey the current landscape to identify six common macro-scale brain network naming schemes and conventions utilized in the literature, highlighting inconsistencies and points of confusion where appropriate. As a minimum recommendation upon which to build, we propose that a scheme incorporating anatomical terminology should provide the foundation for a taxonomy of functional brain networks. A logical starting point in this endeavor might delineate systems that we refer to here as “occipital”, “pericentral”, “dorsal frontoparietal”, “lateral frontoparietal”, “midcingulo-insular”, and “medial frontoparietal” networks. We posit that as the field of network neuroscience matures, it will become increasingly imperative to arrive at a taxonomy such as that proposed here, that can be consistently referenced across research groups.
Literatur
Zurück zum Zitat Allen EA, Damaraju E, Plis SM et al (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676PubMed Allen EA, Damaraju E, Plis SM et al (2014) Tracking whole-brain connectivity dynamics in the resting state. Cereb Cortex 24:663–676PubMed
Zurück zum Zitat Andrews-Hanna JR, Reidler JS, Sepulcre J et al (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562PubMedPubMedCentral Andrews-Hanna JR, Reidler JS, Sepulcre J et al (2010) Functional-anatomic fractionation of the brain’s default network. Neuron 65:550–562PubMedPubMedCentral
Zurück zum Zitat Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci 1316:29–52PubMedPubMedCentral Andrews-Hanna JR, Smallwood J, Spreng RN (2014) The default network and self-generated thought: component processes, dynamic control, and clinical relevance. Ann N Y Acad Sci 1316:29–52PubMedPubMedCentral
Zurück zum Zitat Bar M, Aminoff E, Mason M, Fenske M (2007) The units of thought. Hippocampus 17:420–428PubMed Bar M, Aminoff E, Mason M, Fenske M (2007) The units of thought. Hippocampus 17:420–428PubMed
Zurück zum Zitat Barrett LF, Satpute AB (2013) Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr Opin Neurobiol. 23:361–372PubMedPubMedCentral Barrett LF, Satpute AB (2013) Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Curr Opin Neurobiol. 23:361–372PubMedPubMedCentral
Zurück zum Zitat Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B 360:1001–1013 Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations into resting-state connectivity using independent component analysis. Philos Trans R Soc Lond B 360:1001–1013
Zurück zum Zitat Benoit RG, Schacter DL (2015) Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75:450–457PubMedPubMedCentral Benoit RG, Schacter DL (2015) Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia 75:450–457PubMedPubMedCentral
Zurück zum Zitat Betzel RF, Bassett DS (2017) Multi-scale brain networks. Neuroimage 160:73–83PubMed Betzel RF, Bassett DS (2017) Multi-scale brain networks. Neuroimage 160:73–83PubMed
Zurück zum Zitat Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796PubMedPubMedCentral Binder JR, Desai RH, Graves WW, Conant LL (2009) Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. Cereb Cortex 19:2767–2796PubMedPubMedCentral
Zurück zum Zitat Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMed Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541PubMed
Zurück zum Zitat Bolt T, Nomi JS, Rubinov M, Uddin LQ (2017a) Correspondence between evoked and intrinsic functional brain network configurations. Hum Brain Mapp 38:1992–2007PubMedPubMedCentral Bolt T, Nomi JS, Rubinov M, Uddin LQ (2017a) Correspondence between evoked and intrinsic functional brain network configurations. Hum Brain Mapp 38:1992–2007PubMedPubMedCentral
Zurück zum Zitat Bolt T, Nomi JS, Yeo BTT, Uddin LQ (2017b) Data-Driven extraction of a nested model of human brain function. J Neurosci 37:7263–7277PubMedPubMedCentral Bolt T, Nomi JS, Yeo BTT, Uddin LQ (2017b) Data-Driven extraction of a nested model of human brain function. J Neurosci 37:7263–7277PubMedPubMedCentral
Zurück zum Zitat Bolt T, Nomi JS, Bainter SA et al (2019) The situation or the person? Individual and task-evoked differences in BOLD activity. Hum Brain Mapp 40:2943–2954PubMedPubMedCentral Bolt T, Nomi JS, Bainter SA et al (2019) The situation or the person? Individual and task-evoked differences in BOLD activity. Hum Brain Mapp 40:2943–2954PubMedPubMedCentral
Zurück zum Zitat Braga RM, Buckner RL (2017) Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95:457–471.e5PubMedPubMedCentral Braga RM, Buckner RL (2017) Parallel interdigitated distributed networks within the individual estimated by intrinsic functional connectivity. Neuron 95:457–471.e5PubMedPubMedCentral
Zurück zum Zitat Braga RM, Van Dijk KRA, Polimeni JR et al (2019) Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J Neurophysiol 121:1513–1534PubMedPubMedCentral Braga RM, Van Dijk KRA, Polimeni JR et al (2019) Parallel distributed networks resolved at high resolution reveal close juxtaposition of distinct regions. J Neurophysiol 121:1513–1534PubMedPubMedCentral
Zurück zum Zitat Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMed Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38PubMed
Zurück zum Zitat Buckner RL, Krienen FM, Castellanos A et al (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–2345PubMedPubMedCentral Buckner RL, Krienen FM, Castellanos A et al (2011) The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 106:2322–2345PubMedPubMedCentral
Zurück zum Zitat Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50:81–98PubMed Chang C, Glover GH (2010) Time-frequency dynamics of resting-state brain connectivity measured with fMRI. Neuroimage 50:81–98PubMed
Zurück zum Zitat Choi EY, Yeo BTT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108:2242–2263PubMedPubMedCentral Choi EY, Yeo BTT, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. J Neurophysiol 108:2242–2263PubMedPubMedCentral
Zurück zum Zitat Chong M, Bhushan C, Joshi AA et al (2017) Individual parcellation of resting fMRI with a group functional connectivity prior. Neuroimage 156:87–100PubMed Chong M, Bhushan C, Joshi AA et al (2017) Individual parcellation of resting fMRI with a group functional connectivity prior. Neuroimage 156:87–100PubMed
Zurück zum Zitat Christoff K, Irving ZC, Fox KCR et al (2016) Mind-wandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci 17:718–731PubMed Christoff K, Irving ZC, Fox KCR et al (2016) Mind-wandering as spontaneous thought: a dynamic framework. Nat Rev Neurosci 17:718–731PubMed
Zurück zum Zitat Ciric R, Nomi JS, Uddin LQ, Satpute AB (2017) Contextual connectivity: a framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks. Sci Rep 7:6537PubMedPubMedCentral Ciric R, Nomi JS, Uddin LQ, Satpute AB (2017) Contextual connectivity: a framework for understanding the intrinsic dynamic architecture of large-scale functional brain networks. Sci Rep 7:6537PubMedPubMedCentral
Zurück zum Zitat Cole MW, Reynolds JR, Power JD et al (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355PubMedPubMedCentral Cole MW, Reynolds JR, Power JD et al (2013) Multi-task connectivity reveals flexible hubs for adaptive task control. Nat Neurosci 16:1348–1355PubMedPubMedCentral
Zurück zum Zitat Cole MW, Bassett DS, Power JD et al (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83:238–251PubMedPubMedCentral Cole MW, Bassett DS, Power JD et al (2014) Intrinsic and task-evoked network architectures of the human brain. Neuron 83:238–251PubMedPubMedCentral
Zurück zum Zitat Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205PubMed Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18:192–205PubMed
Zurück zum Zitat Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMed Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215PubMed
Zurück zum Zitat Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324PubMedPubMedCentral Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324PubMedPubMedCentral
Zurück zum Zitat Cui Z, Li H, Xia CH, et al (2019) Individual variation in control network topography supports executive function in youth Cui Z, Li H, Xia CH, et al (2019) Individual variation in control network topography supports executive function in youth
Zurück zum Zitat Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853PubMedPubMedCentral Damoiseaux JS, Rombouts SA, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853PubMedPubMedCentral
Zurück zum Zitat De Luca M, Beckmann CF, De Stefano N et al (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367PubMed De Luca M, Beckmann CF, De Stefano N et al (2006) fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29:1359–1367PubMed
Zurück zum Zitat Dixon ML, Andrews-Hanna JR, Spreng RN et al (2017) Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. Neuroimage 147:632–649PubMed Dixon ML, Andrews-Hanna JR, Spreng RN et al (2017) Interactions between the default network and dorsal attention network vary across default subsystems, time, and cognitive states. Neuroimage 147:632–649PubMed
Zurück zum Zitat Dixon ML, De La Vega A, Mills C et al (2018) Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci USA 115(7):E1598–E1607PubMedPubMedCentral Dixon ML, De La Vega A, Mills C et al (2018) Heterogeneity within the frontoparietal control network and its relationship to the default and dorsal attention networks. Proc Natl Acad Sci USA 115(7):E1598–E1607PubMedPubMedCentral
Zurück zum Zitat Dohmatob E, Dumas G, Bzdok D (2018) Dark control: towards a unified account of default mode function by Markov decision processes Dohmatob E, Dumas G, Bzdok D (2018) Dark control: towards a unified account of default mode function by Markov decision processes
Zurück zum Zitat Dosenbach NU, Fair DA, Miezin FM et al (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078PubMedPubMedCentral Dosenbach NU, Fair DA, Miezin FM et al (2007) Distinct brain networks for adaptive and stable task control in humans. Proc Natl Acad Sci USA 104:11073–11078PubMedPubMedCentral
Zurück zum Zitat Dosenbach NU, Fair DA, Cohen AL et al (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12:99–105PubMedPubMedCentral Dosenbach NU, Fair DA, Cohen AL et al (2008) A dual-networks architecture of top-down control. Trends Cogn Sci 12:99–105PubMedPubMedCentral
Zurück zum Zitat Doucet GE, Lee WH, Frangou S (2019) Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases. Hum Brain Mapp 40:4577–4587PubMedPubMedCentral Doucet GE, Lee WH, Frangou S (2019) Evaluation of the spatial variability in the major resting-state networks across human brain functional atlases. Hum Brain Mapp 40:4577–4587PubMedPubMedCentral
Zurück zum Zitat Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179PubMed Duncan J (2010) The multiple-demand (MD) system of the primate brain: mental programs for intelligent behaviour. Trends Cogn Sci 14:172–179PubMed
Zurück zum Zitat Eickhoff SB, Constable RT, Yeo BTT (2018a) Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170:332–347PubMed Eickhoff SB, Constable RT, Yeo BTT (2018a) Topographic organization of the cerebral cortex and brain cartography. Neuroimage 170:332–347PubMed
Zurück zum Zitat Eickhoff SB, Yeo BTT, Genon S (2018b) Imaging-based parcellations of the human brain. Nat Rev Neurosci 19:672–686PubMed Eickhoff SB, Yeo BTT, Genon S (2018b) Imaging-based parcellations of the human brain. Nat Rev Neurosci 19:672–686PubMed
Zurück zum Zitat Farrant K, Uddin LQ (2015) Asymmetric development of dorsal and ventral attention networks in the human brain. Dev Cogn Neurosci 12:165–174PubMedPubMedCentral Farrant K, Uddin LQ (2015) Asymmetric development of dorsal and ventral attention networks in the human brain. Dev Cogn Neurosci 12:165–174PubMedPubMedCentral
Zurück zum Zitat Fedorenko E, Duncan J, Kanwisher N (2013) Broad domain generality in focal regions of frontal and parietal cortex. Proc Natl Acad Sci USA 110:16616–16621PubMedPubMedCentral Fedorenko E, Duncan J, Kanwisher N (2013) Broad domain generality in focal regions of frontal and parietal cortex. Proc Natl Acad Sci USA 110:16616–16621PubMedPubMedCentral
Zurück zum Zitat Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMed Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47PubMed
Zurück zum Zitat Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMed Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMed
Zurück zum Zitat Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedPubMedCentral Fox MD, Snyder AZ, Vincent JL et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–9678PubMedPubMedCentral
Zurück zum Zitat Fox MD, Corbetta M, Snyder AZ et al (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051PubMedPubMedCentral Fox MD, Corbetta M, Snyder AZ et al (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–10051PubMedPubMedCentral
Zurück zum Zitat Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78 Friston K (1994) Functional and effective connectivity in neuroimaging: a synthesis. Hum Brain Mapp 2:56–78
Zurück zum Zitat Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178PubMedPubMedCentral Glasser MF, Coalson TS, Robinson EC et al (2016) A multi-modal parcellation of human cerebral cortex. Nature 536:171–178PubMedPubMedCentral
Zurück zum Zitat Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMed Goodale MA, Milner AD (1992) Separate visual pathways for perception and action. Trends Neurosci 15:20–25PubMed
Zurück zum Zitat Gordon EM, Laumann TO, Adeyemo B et al (2017a) Individual-specific features of brain systems identified with resting state functional correlations. NeuroImage 146:918–939PubMed Gordon EM, Laumann TO, Adeyemo B et al (2017a) Individual-specific features of brain systems identified with resting state functional correlations. NeuroImage 146:918–939PubMed
Zurück zum Zitat Gordon EM, Laumann TO, Adeyemo B, Petersen SE (2017b) Individual variability of the system-level organization of the human brain. Cereb Cortex 27:386–399PubMed Gordon EM, Laumann TO, Adeyemo B, Petersen SE (2017b) Individual variability of the system-level organization of the human brain. Cereb Cortex 27:386–399PubMed
Zurück zum Zitat Gordon EM, Laumann TO, Gilmore AW et al (2017c) Precision functional mapping of individual human brains. Neuron 95:791–807.e7PubMedPubMedCentral Gordon EM, Laumann TO, Gilmore AW et al (2017c) Precision functional mapping of individual human brains. Neuron 95:791–807.e7PubMedPubMedCentral
Zurück zum Zitat Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258PubMed Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA 100:253–258PubMed
Zurück zum Zitat Harrison SJ, Woolrich MW, Robinson EC et al (2015) Large-scale probabilistic functional modes from resting state fMRI. Neuroimage 109:217–231PubMed Harrison SJ, Woolrich MW, Robinson EC et al (2015) Large-scale probabilistic functional modes from resting state fMRI. Neuroimage 109:217–231PubMed
Zurück zum Zitat Haxby JV, Horwitz B, Ungerleider LG et al (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14:6336–6353PubMedPubMedCentral Haxby JV, Horwitz B, Ungerleider LG et al (1994) The functional organization of human extrastriate cortex: a PET-rCBF study of selective attention to faces and locations. J Neurosci 14:6336–6353PubMedPubMedCentral
Zurück zum Zitat Hayama HR, Vilberg KL, Rugg MD (2012) Overlap between the neural correlates of cued recall and source memory: evidence for a generic recollection network? J Cogn Neurosci 24:1127–1137PubMedPubMedCentral Hayama HR, Vilberg KL, Rugg MD (2012) Overlap between the neural correlates of cued recall and source memory: evidence for a generic recollection network? J Cogn Neurosci 24:1127–1137PubMedPubMedCentral
Zurück zum Zitat Hindriks R, Adhikari MH, Murayama Y et al (2016) Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127:242–256PubMed Hindriks R, Adhikari MH, Murayama Y et al (2016) Can sliding-window correlations reveal dynamic functional connectivity in resting-state fMRI? Neuroimage 127:242–256PubMed
Zurück zum Zitat Hugdahl K, Raichle ME, Mitra A, Specht K (2015) On the existence of a generalized non-specific task-dependent network. Front Hum Neurosci 9:430PubMedPubMedCentral Hugdahl K, Raichle ME, Mitra A, Specht K (2015) On the existence of a generalized non-specific task-dependent network. Front Hum Neurosci 9:430PubMedPubMedCentral
Zurück zum Zitat Hutchison RM, Womelsdorf T, Allen EA et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378PubMed Hutchison RM, Womelsdorf T, Allen EA et al (2013) Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80:360–378PubMed
Zurück zum Zitat Ji JL, Spronk M, Kulkarni K et al (2019) Mapping the human brain’s cortical-subcortical functional network organization. Neuroimage 185:35–57PubMed Ji JL, Spronk M, Kulkarni K et al (2019) Mapping the human brain’s cortical-subcortical functional network organization. Neuroimage 185:35–57PubMed
Zurück zum Zitat Kennedy DP, Adolphs R (2012) The social brain in psychiatric and neurological disorders. Trends Cogn Sci 16:559–572PubMedPubMedCentral Kennedy DP, Adolphs R (2012) The social brain in psychiatric and neurological disorders. Trends Cogn Sci 16:559–572PubMedPubMedCentral
Zurück zum Zitat Kiviniemi V, Starck T, Remes J et al (2009) Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30:3865–3886PubMedPubMedCentral Kiviniemi V, Starck T, Remes J et al (2009) Functional segmentation of the brain cortex using high model order group PICA. Hum Brain Mapp 30:3865–3886PubMedPubMedCentral
Zurück zum Zitat Kong R, Li J, Orban C et al (2019) Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb Cortex 29:2533–2551PubMed Kong R, Li J, Orban C et al (2019) Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cereb Cortex 29:2533–2551PubMed
Zurück zum Zitat Krienen FM, Yeo BTT, Buckner RL (2014) Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos Trans R Soc B 369:20130526 Krienen FM, Yeo BTT, Buckner RL (2014) Reconfigurable task-dependent functional coupling modes cluster around a core functional architecture. Philos Trans R Soc B 369:20130526
Zurück zum Zitat Kucyi A, Hodaie M, Davis KD (2012) Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J Neurophysiol 108:3382–3392PubMed Kucyi A, Hodaie M, Davis KD (2012) Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. J Neurophysiol 108:3382–3392PubMed
Zurück zum Zitat Laird AR, Fox PM, Eickhoff SB et al (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23:4022–4037PubMedPubMedCentral Laird AR, Fox PM, Eickhoff SB et al (2011) Behavioral interpretations of intrinsic connectivity networks. J Cogn Neurosci 23:4022–4037PubMedPubMedCentral
Zurück zum Zitat Laumann TO, Gordon EM, Adeyemo B et al (2015) Functional system and areal organization of a highly sampled individual human brain. Neuron 87:657–670PubMedPubMedCentral Laumann TO, Gordon EM, Adeyemo B et al (2015) Functional system and areal organization of a highly sampled individual human brain. Neuron 87:657–670PubMedPubMedCentral
Zurück zum Zitat Laumann TO, Snyder AZ, Mitra A et al (2017) On the stability of BOLD fMRI correlations. Cereb Cortex 27:4719–4732PubMed Laumann TO, Snyder AZ, Mitra A et al (2017) On the stability of BOLD fMRI correlations. Cereb Cortex 27:4719–4732PubMed
Zurück zum Zitat Li J, Bolt T, Bzdok D et al (2019a) Topography and behavioral relevance of the global signal in the human brain. Sci Rep 9:14286PubMedPubMedCentral Li J, Bolt T, Bzdok D et al (2019a) Topography and behavioral relevance of the global signal in the human brain. Sci Rep 9:14286PubMedPubMedCentral
Zurück zum Zitat Li M, Wang D, Ren J et al (2019b) Performing group-level functional image analyses based on homologous functional regions mapped in individuals. PLoS Biol 17:e2007032PubMedPubMedCentral Li M, Wang D, Ren J et al (2019b) Performing group-level functional image analyses based on homologous functional regions mapped in individuals. PLoS Biol 17:e2007032PubMedPubMedCentral
Zurück zum Zitat Liégeois R, Laumann TO, Snyder AZ et al (2017) Interpreting temporal fluctuations in resting-state functional connectivity MRI. Neuroimage 163:437–455PubMed Liégeois R, Laumann TO, Snyder AZ et al (2017) Interpreting temporal fluctuations in resting-state functional connectivity MRI. Neuroimage 163:437–455PubMed
Zurück zum Zitat Lu J, Liu H, Zhang M et al (2011) Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. J Neurosci 31:15065–15071PubMedPubMedCentral Lu J, Liu H, Zhang M et al (2011) Focal pontine lesions provide evidence that intrinsic functional connectivity reflects polysynaptic anatomical pathways. J Neurosci 31:15065–15071PubMedPubMedCentral
Zurück zum Zitat Lurie D, Kessler D, Bassett D et al (2018) On the nature of resting fMRI and time-varying functional connectivity Lurie D, Kessler D, Bassett D et al (2018) On the nature of resting fMRI and time-varying functional connectivity
Zurück zum Zitat Mar RA (2004) The neuropsychology of narrative: story comprehension, story production and their interrelation. Neuropsychologia 42:1414–1434PubMed Mar RA (2004) The neuropsychology of narrative: story comprehension, story production and their interrelation. Neuropsychologia 42:1414–1434PubMed
Zurück zum Zitat Mar RA (2011) The neural bases of social cognition and story comprehension. Annu Rev Psychol 62:103–134PubMed Mar RA (2011) The neural bases of social cognition and story comprehension. Annu Rev Psychol 62:103–134PubMed
Zurück zum Zitat Margulies DS, Ghosh SS, Goulas A et al (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci USA 113:12574–12579PubMedPubMedCentral Margulies DS, Ghosh SS, Goulas A et al (2016) Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci USA 113:12574–12579PubMedPubMedCentral
Zurück zum Zitat McIntosh AR (2004) Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2:175–182PubMed McIntosh AR (2004) Contexts and catalysts: a resolution of the localization and integration of function in the brain. Neuroinformatics 2:175–182PubMed
Zurück zum Zitat Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667PubMedPubMedCentral Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct 214:655–667PubMedPubMedCentral
Zurück zum Zitat Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613PubMed Mesulam MM (1990) Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28:597–613PubMed
Zurück zum Zitat Murphy AC, Bertolero MA, Papadopoulos L et al (2019) Multiscale and multimodal network dynamics underpinning working memory Murphy AC, Bertolero MA, Papadopoulos L et al (2019) Multiscale and multimodal network dynamics underpinning working memory
Zurück zum Zitat Mwilambwe-Tshilobo L, Ge T, Chong M et al (2019) Loneliness and meaning in life are reflected in the intrinsic network architecture of the brain. Soc Cogn Affect Neurosci 14:423–433PubMedPubMedCentral Mwilambwe-Tshilobo L, Ge T, Chong M et al (2019) Loneliness and meaning in life are reflected in the intrinsic network architecture of the brain. Soc Cogn Affect Neurosci 14:423–433PubMedPubMedCentral
Zurück zum Zitat Ngo GH, Eickhoff SB, Nguyen M et al (2019) Beyond consensus: embracing heterogeneity in curated neuroimaging meta-analysis. Neuroimage 200:142–158PubMed Ngo GH, Eickhoff SB, Nguyen M et al (2019) Beyond consensus: embracing heterogeneity in curated neuroimaging meta-analysis. Neuroimage 200:142–158PubMed
Zurück zum Zitat Nichols TE, Das S, Eickhoff SB et al (2017) Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 20:299–303PubMedPubMedCentral Nichols TE, Das S, Eickhoff SB et al (2017) Best practices in data analysis and sharing in neuroimaging using MRI. Nat Neurosci 20:299–303PubMedPubMedCentral
Zurück zum Zitat Niendam TA, Laird AR, Ray KL et al (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12:241–268PubMedPubMedCentral Niendam TA, Laird AR, Ray KL et al (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cogn Affect Behav Neurosci 12:241–268PubMedPubMedCentral
Zurück zum Zitat Nomi JS, Farrant K, Damaraju E et al (2016) Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions. Hum Brain Mapp 37:1770–1787PubMedPubMedCentral Nomi JS, Farrant K, Damaraju E et al (2016) Dynamic functional network connectivity reveals unique and overlapping profiles of insula subdivisions. Hum Brain Mapp 37:1770–1787PubMedPubMedCentral
Zurück zum Zitat Nomi JS, Schettini E, Broce I et al (2018) Structural connections of functionally defined human insular subdivisions. Cereb Cortex 28:3445–3456PubMed Nomi JS, Schettini E, Broce I et al (2018) Structural connections of functionally defined human insular subdivisions. Cereb Cortex 28:3445–3456PubMed
Zurück zum Zitat Pessoa L (2014) Understanding brain networks and brain organization. Phys Life Rev 11:460–461 Pessoa L (2014) Understanding brain networks and brain organization. Phys Life Rev 11:460–461
Zurück zum Zitat Poldrack RA, Kittur A, Kalar D et al (2011) The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front Neuroinformatics 5:17 Poldrack RA, Kittur A, Kalar D et al (2011) The cognitive atlas: toward a knowledge foundation for cognitive neuroscience. Front Neuroinformatics 5:17
Zurück zum Zitat Power JD, Cohen AL, Nelson SM et al (2011) Functional network organization of the human brain. Neuron 72:665–678PubMedPubMedCentral Power JD, Cohen AL, Nelson SM et al (2011) Functional network organization of the human brain. Neuron 72:665–678PubMedPubMedCentral
Zurück zum Zitat Preti MG, Van De Ville D (2017) Dynamics of functional connectivity at high spatial resolution reveal long-range interactions and fine-scale organization. Sci Rep 7 Preti MG, Van De Ville D (2017) Dynamics of functional connectivity at high spatial resolution reveal long-range interactions and fine-scale organization. Sci Rep 7
Zurück zum Zitat Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682PubMedPubMedCentral Raichle ME, MacLeod AM, Snyder AZ et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–682PubMedPubMedCentral
Zurück zum Zitat Ralph MAL, Lambon Ralph MA, Jefferies E et al (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42–55PubMed Ralph MAL, Lambon Ralph MA, Jefferies E et al (2017) The neural and computational bases of semantic cognition. Nat Rev Neurosci 18:42–55PubMed
Zurück zum Zitat Ray KL, McKay DR, Fox PM et al (2013) ICA model order selection of task co-activation networks. Front Neurosci 7:237PubMedPubMedCentral Ray KL, McKay DR, Fox PM et al (2013) ICA model order selection of task co-activation networks. Front Neurosci 7:237PubMedPubMedCentral
Zurück zum Zitat Reid AT, Headley DB, Mill RD et al (2019) Advancing functional connectivity research from association to causation. Nat Neurosci 22:1751–1760PubMedPubMedCentral Reid AT, Headley DB, Mill RD et al (2019) Advancing functional connectivity research from association to causation. Nat Neurosci 22:1751–1760PubMedPubMedCentral
Zurück zum Zitat Roy M, Shohamy D, Wager TD (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn Sci 16:147–156PubMedPubMedCentral Roy M, Shohamy D, Wager TD (2012) Ventromedial prefrontal-subcortical systems and the generation of affective meaning. Trends Cogn Sci 16:147–156PubMedPubMedCentral
Zurück zum Zitat Rueter AR, Abram SV, MacDonald AW 3rd et al (2018) The goal priority network as a neural substrate of conscientiousness. Hum Brain Mapp 39:3574–3585PubMedPubMedCentral Rueter AR, Abram SV, MacDonald AW 3rd et al (2018) The goal priority network as a neural substrate of conscientiousness. Hum Brain Mapp 39:3574–3585PubMedPubMedCentral
Zurück zum Zitat Salehi M, Karbasi A, Shen X et al (2018) An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks. Neuroimage 170:54–67PubMed Salehi M, Karbasi A, Shen X et al (2018) An exemplar-based approach to individualized parcellation reveals the need for sex specific functional networks. Neuroimage 170:54–67PubMed
Zurück zum Zitat Schacter DL, Addis DR, Hassabis D et al (2012) The future of memory: remembering, imagining, and the brain. Neuron 76:677–694PubMed Schacter DL, Addis DR, Hassabis D et al (2012) The future of memory: remembering, imagining, and the brain. Neuron 76:677–694PubMed
Zurück zum Zitat Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedPubMedCentral Seeley WW, Menon V, Schatzberg AF et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–2356PubMedPubMedCentral
Zurück zum Zitat Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 241:1299–1306PubMed Sejnowski TJ, Koch C, Churchland PS (1988) Computational neuroscience. Science 241:1299–1306PubMed
Zurück zum Zitat Shulman GL, Fiez JA, Corbetta M et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663PubMed Shulman GL, Fiez JA, Corbetta M et al (1997) Common blood flow changes across visual tasks: II. Decreases in cerebral cortex. J Cogn Neurosci 9:648–663PubMed
Zurück zum Zitat Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045PubMedPubMedCentral Smith SM, Fox PT, Miller KL et al (2009) Correspondence of the brain’s functional architecture during activation and rest. Proc Natl Acad Sci USA 106:13040–13045PubMedPubMedCentral
Zurück zum Zitat Spreng RN, Andrews-Hanna JR (2015) The default network and social cognition. Brain Mapp 3:165–169 Spreng RN, Andrews-Hanna JR (2015) The default network and social cognition. Brain Mapp 3:165–169
Zurück zum Zitat Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510PubMed Spreng RN, Mar RA, Kim AS (2009) The common neural basis of autobiographical memory, prospection, navigation, theory of mind, and the default mode: a quantitative meta-analysis. J Cogn Neurosci 21:489–510PubMed
Zurück zum Zitat Spreng RN, Stevens WD, Chamberlain JP et al (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53:303–317PubMed Spreng RN, Stevens WD, Chamberlain JP et al (2010) Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage 53:303–317PubMed
Zurück zum Zitat Spreng RN, Schacter DL (2012) Default network modulation and large-scale network interactivity in healthy young and old adults. Cereb Cortex 22:2610–2621PubMed Spreng RN, Schacter DL (2012) Default network modulation and large-scale network interactivity in healthy young and old adults. Cereb Cortex 22:2610–2621PubMed
Zurück zum Zitat Spreng RN, Sepulcre J, Turner GR et al (2013) Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25:74–86PubMed Spreng RN, Sepulcre J, Turner GR et al (2013) Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. J Cogn Neurosci 25:74–86PubMed
Zurück zum Zitat Spreng RN, DuPre E, Selarka D et al (2014) Goal-congruent default network activity facilitates cognitive control. J Neurosci 34:14108–14114PubMedPubMedCentral Spreng RN, DuPre E, Selarka D et al (2014) Goal-congruent default network activity facilitates cognitive control. J Neurosci 34:14108–14114PubMedPubMedCentral
Zurück zum Zitat Spunt RP, Lieberman MD (2012) Dissociating modality-specific and supramodal neural systems for action understanding. J Neurosci 32:3575–3583PubMedPubMedCentral Spunt RP, Lieberman MD (2012) Dissociating modality-specific and supramodal neural systems for action understanding. J Neurosci 32:3575–3583PubMedPubMedCentral
Zurück zum Zitat Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574PubMedPubMedCentral Sridharan D, Levitin DJ, Menon V (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–12574PubMedPubMedCentral
Zurück zum Zitat Stevens WD, Tessler MH et al (2015) Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex. Hum Brain Mapp 36:2187–2206PubMedPubMedCentral Stevens WD, Tessler MH et al (2015) Functional connectivity constrains the category-related organization of human ventral occipitotemporal cortex. Hum Brain Mapp 36:2187–2206PubMedPubMedCentral
Zurück zum Zitat Stevens WD, Kravitz DJ et al (2017) Privileged functional connectivity between the visual word form area and the language system. J Neurosci 37:5288–5297PubMedPubMedCentral Stevens WD, Kravitz DJ et al (2017) Privileged functional connectivity between the visual word form area and the language system. J Neurosci 37:5288–5297PubMedPubMedCentral
Zurück zum Zitat Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Theime, New York Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. Theime, New York
Zurück zum Zitat Tamber-Rosenau BJ, Asplund CL, Marois R (2018) Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control. J Neurophysiol 120:2498–2512PubMedPubMedCentral Tamber-Rosenau BJ, Asplund CL, Marois R (2018) Functional dissociation of the inferior frontal junction from the dorsal attention network in top-down attentional control. J Neurophysiol 120:2498–2512PubMedPubMedCentral
Zurück zum Zitat Thakral PP, Wang TH, Rugg MD (2017) Decoding the content of recollection within the core recollection network and beyond. Cortex 91:101–113PubMed Thakral PP, Wang TH, Rugg MD (2017) Decoding the content of recollection within the core recollection network and beyond. Cortex 91:101–113PubMed
Zurück zum Zitat Uddin LQ (2014) Dynamic connectivity and dynamic affiliation. Comment on “Understanding brain networks and brain organization” by L. Pessoa. Phys Life Rev 11:460–461PubMedPubMedCentral Uddin LQ (2014) Dynamic connectivity and dynamic affiliation. Comment on “Understanding brain networks and brain organization” by L. Pessoa. Phys Life Rev 11:460–461PubMedPubMedCentral
Zurück zum Zitat Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61PubMed Uddin LQ (2015) Salience processing and insular cortical function and dysfunction. Nat Rev Neurosci 16:55–61PubMed
Zurück zum Zitat Uddin LQ (2016) Salience network of the human brain. Academic Press, Cambridge Uddin LQ (2016) Salience network of the human brain. Academic Press, Cambridge
Zurück zum Zitat Uddin LQ, Iacoboni M, Lange C, Keenan JP (2007) The self and social cognition: the role of cortical midline structures and mirror neurons. Trends Cogn Sci 11:153–157PubMed Uddin LQ, Iacoboni M, Lange C, Keenan JP (2007) The self and social cognition: the role of cortical midline structures and mirror neurons. Trends Cogn Sci 11:153–157PubMed
Zurück zum Zitat Uddin LQ, Kinnison J, Pessoa L, Anderson ML (2014) Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci 26:16–27PubMed Uddin LQ, Kinnison J, Pessoa L, Anderson ML (2014) Beyond the tripartite cognition-emotion-interoception model of the human insular cortex. J Cogn Neurosci 26:16–27PubMed
Zurück zum Zitat Ungerleider LG, Haxby JV (1994) “What”and “where”in the human brain. Curr Opin Neurobiol 4:157–165PubMed Ungerleider LG, Haxby JV (1994) “What”and “where”in the human brain. Curr Opin Neurobiol 4:157–165PubMed
Zurück zum Zitat Urchs S, Armoza J, Moreau C et al (2019) MIST: a multi-resolution parcellation of functional brain networks. MNI Open Res Urchs S, Armoza J, Moreau C et al (2019) MIST: a multi-resolution parcellation of functional brain networks. MNI Open Res
Zurück zum Zitat Van Essen DC, Glasser MF (2018) Parcellating cerebral cortex: how invasive animal studies inform noninvasive mapmaking in humans. Neuron 99:640–663PubMedPubMedCentral Van Essen DC, Glasser MF (2018) Parcellating cerebral cortex: how invasive animal studies inform noninvasive mapmaking in humans. Neuron 99:640–663PubMedPubMedCentral
Zurück zum Zitat Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79PubMed Van Essen DC, Smith SM, Barch DM et al (2013) The WU-Minn human connectome project: an overview. Neuroimage 80:62–79PubMed
Zurück zum Zitat Van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48:564–584PubMed Van Overwalle F, Baetens K (2009) Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. Neuroimage 48:564–584PubMed
Zurück zum Zitat Vincent JL, Kahn I, Snyder AZ et al (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342PubMedPubMedCentral Vincent JL, Kahn I, Snyder AZ et al (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–3342PubMedPubMedCentral
Zurück zum Zitat Wang D, Buckner RL, Fox MD et al (2015) Parcellating cortical functional networks in individuals. Nat Neurosci 18:1853–1860PubMedPubMedCentral Wang D, Buckner RL, Fox MD et al (2015) Parcellating cortical functional networks in individuals. Nat Neurosci 18:1853–1860PubMedPubMedCentral
Zurück zum Zitat Wig GS, Schlaggar BL, Petersen SE (2011) Concepts and principles in the analysis of brain networks. Ann N Y Acad Sci 1224:126–146PubMed Wig GS, Schlaggar BL, Petersen SE (2011) Concepts and principles in the analysis of brain networks. Ann N Y Acad Sci 1224:126–146PubMed
Zurück zum Zitat Wilk HA, Ezekiel F, Morton JB (2012) Brain regions associated with moment-to-moment adjustments in control and stable task-set maintenance. Neuroimage 59:1960–1967PubMed Wilk HA, Ezekiel F, Morton JB (2012) Brain regions associated with moment-to-moment adjustments in control and stable task-set maintenance. Neuroimage 59:1960–1967PubMed
Zurück zum Zitat Yeo BT, Krienen FM, Sepulcre J et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165PubMed Yeo BT, Krienen FM, Sepulcre J et al (2011) The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J Neurophysiol 106:1125–1165PubMed
Zurück zum Zitat Yeo BTT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner RL, Asplund CL, Chee MWL (2016) Functional specialization and flexibility in human association cortex. Cereb Cortex 25:3654–3672 Yeo BTT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner RL, Asplund CL, Chee MWL (2016) Functional specialization and flexibility in human association cortex. Cereb Cortex 25:3654–3672
Zurück zum Zitat Zaki J, Wager TD, Singer T et al (2016) The anatomy of suffering: understanding the relationship between nociceptive and empathic pain. Trends Cogn Sci 20:249–259PubMedPubMedCentral Zaki J, Wager TD, Singer T et al (2016) The anatomy of suffering: understanding the relationship between nociceptive and empathic pain. Trends Cogn Sci 20:249–259PubMedPubMedCentral
Metadaten
Titel
Towards a Universal Taxonomy of Macro-scale Functional Human Brain Networks
verfasst von
Lucina Q. Uddin
B. T. Thomas Yeo
R. Nathan Spreng
Publikationsdatum
09.11.2019
Verlag
Springer US
Erschienen in
Brain Topography / Ausgabe 6/2019
Print ISSN: 0896-0267
Elektronische ISSN: 1573-6792
DOI
https://doi.org/10.1007/s10548-019-00744-6

Weitere Artikel der Ausgabe 6/2019

Brain Topography 6/2019 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

Niedriger diastolischer Blutdruck erhöht Risiko für schwere kardiovaskuläre Komplikationen

25.04.2024 Hypotonie Nachrichten

Wenn unter einer medikamentösen Hochdrucktherapie der diastolische Blutdruck in den Keller geht, steigt das Risiko für schwere kardiovaskuläre Ereignisse: Darauf deutet eine Sekundäranalyse der SPRINT-Studie hin.

Frühe Alzheimertherapie lohnt sich

25.04.2024 AAN-Jahrestagung 2024 Nachrichten

Ist die Tau-Last noch gering, scheint der Vorteil von Lecanemab besonders groß zu sein. Und beginnen Erkrankte verzögert mit der Behandlung, erreichen sie nicht mehr die kognitive Leistung wie bei einem früheren Start. Darauf deuten neue Analysen der Phase-3-Studie Clarity AD.

Viel Bewegung in der Parkinsonforschung

25.04.2024 Parkinson-Krankheit Nachrichten

Neue arznei- und zellbasierte Ansätze, Frühdiagnose mit Bewegungssensoren, Rückenmarkstimulation gegen Gehblockaden – in der Parkinsonforschung tut sich einiges. Auf dem Deutschen Parkinsonkongress ging es auch viel um technische Innovationen.

Demenzkranke durch Antipsychotika vielfach gefährdet

23.04.2024 Demenz Nachrichten

Wenn Demenzkranke aufgrund von Symptomen wie Agitation oder Aggressivität mit Antipsychotika behandelt werden, sind damit offenbar noch mehr Risiken verbunden als bislang angenommen.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.