Skip to main content
Erschienen in: Brain Structure and Function 8/2022

13.08.2022 | Original Article

The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion

verfasst von: Valentina Sulpizio, Francesca Strappini, Patrizia Fattori, Gaspare Galati, Claudio Galletti, Anna Pecchinenda, Sabrina Pitzalis

Erschienen in: Brain Structure and Function | Ausgabe 8/2022

Einloggen, um Zugang zu erhalten

Abstract

The human middle-temporal region MT+ is highly specialized in processing visual motion. However, recent studies have shown that this region is modulated by extraretinal signals, suggesting a possible involvement in processing motion information also from non-visual modalities. Here, we used functional MRI data to investigate the influence of retinal and extraretinal signals on MT+ in a large sample of subjects. Moreover, we used resting-state functional MRI to assess how the subdivisions of MT+ (i.e., MST, FST, MT, and V4t) are functionally connected. We first compared responses in MST, FST, MT, and V4t to coherent vs. random visual motion. We found that only MST and FST were positively activated by coherent motion. Furthermore, regional analyses revealed that MST and FST were positively activated by leg, but not arm, movements, while MT and V4t were deactivated by arm, but not leg, movements. Taken together, regional analyses revealed a visuomotor role for the anterior areas MST and FST and a pure visual role for the anterior areas MT and V4t. These findings were mirrored by the pattern of functional connections between these areas and the rest of the brain. Visual and visuomotor regions showed distinct patterns of functional connectivity, with the latter preferentially connected with the somatosensory and motor areas representing leg and foot. Overall, these findings reveal a functional sensitivity for coherent visual motion and lower-limb movements in MST and FST, suggesting their possible involvement in integrating sensory and motor information to perform locomotion.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akselrod M, Martuzzi R, Serino A, Van der Zwaag W, Gassert R, Blanke O (2017) Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: a 7T fMRI study. Neuroimage 159:473–487CrossRefPubMed Akselrod M, Martuzzi R, Serino A, Van der Zwaag W, Gassert R, Blanke O (2017) Anatomical and functional properties of the foot and leg representation in areas 3b, 1 and 2 of primary somatosensory cortex in humans: a 7T fMRI study. Neuroimage 159:473–487CrossRefPubMed
Zurück zum Zitat Albright TD, Desimone R (1987) Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Exp Brain Res 65(3):582–592CrossRefPubMed Albright TD, Desimone R (1987) Local precision of visuotopic organization in the middle temporal area (MT) of the macaque. Exp Brain Res 65(3):582–592CrossRefPubMed
Zurück zum Zitat Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102(5):2704–2718PubMedCentralCrossRefPubMed Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102(5):2704–2718PubMedCentralCrossRefPubMed
Zurück zum Zitat Amemiya T, Beck B, Walsh V, Gomi H, Haggard P (2017) Visual area V5/hMT+ contributes to perception of tactile motion direction: a TMS study. Sci Rep 7(1):1–7CrossRef Amemiya T, Beck B, Walsh V, Gomi H, Haggard P (2017) Visual area V5/hMT+ contributes to perception of tactile motion direction: a TMS study. Sci Rep 7(1):1–7CrossRef
Zurück zum Zitat Amiez C, Petrides M (2014) Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cereb Cortex 24(3):563–578CrossRefPubMed Amiez C, Petrides M (2014) Neuroimaging evidence of the anatomo-functional organization of the human cingulate motor areas. Cereb Cortex 24(3):563–578CrossRefPubMed
Zurück zum Zitat Arnoldussen DM, Goossens J, van den Berg AV (2011) Adjacent visual representations of self-motion in different reference frames. Proc Natl Acad Sci 108(28):11668–11673PubMedCentralCrossRefPubMed Arnoldussen DM, Goossens J, van den Berg AV (2011) Adjacent visual representations of self-motion in different reference frames. Proc Natl Acad Sci 108(28):11668–11673PubMedCentralCrossRefPubMed
Zurück zum Zitat Avanzini P, Abdollahi RO, Sartori I, Caruana F, Pelliccia V, Casaceli G, Orban GA (2016) Four-dimensional maps of the human somatosensory system. Proc Natl Acad Sci 113(13):E1936–E1943PubMedCentralCrossRefPubMed Avanzini P, Abdollahi RO, Sartori I, Caruana F, Pelliccia V, Casaceli G, Orban GA (2016) Four-dimensional maps of the human somatosensory system. Proc Natl Acad Sci 113(13):E1936–E1943PubMedCentralCrossRefPubMed
Zurück zum Zitat Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1):90–101CrossRefPubMed Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1):90–101CrossRefPubMed
Zurück zum Zitat Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296(3):462–495CrossRefPubMed Boussaoud D, Ungerleider LG, Desimone R (1990) Pathways for motion analysis: cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque. J Comp Neurol 296(3):462–495CrossRefPubMed
Zurück zum Zitat Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain: J Neurol 121(9):1749–1758CrossRef Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain: J Neurol 121(9):1749–1758CrossRef
Zurück zum Zitat Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, Leipzig Germany (Reprinted 1925) Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde. Barth, Leipzig Germany (Reprinted 1925)
Zurück zum Zitat Buckner RL, Krienen FM, Yeo BT (2013) Opportunities and limitations of intrinsic functional connectivity MRI. Nat Neurosci 16(7):832–837CrossRefPubMed Buckner RL, Krienen FM, Yeo BT (2013) Opportunities and limitations of intrinsic functional connectivity MRI. Nat Neurosci 16(7):832–837CrossRefPubMed
Zurück zum Zitat Burr DC, Morrone MC, Vaina LM (1998) Large receptive fields for optic flow detection in humans. Vision Res 38(12):1731–1743CrossRefPubMed Burr DC, Morrone MC, Vaina LM (1998) Large receptive fields for optic flow detection in humans. Vision Res 38(12):1731–1743CrossRefPubMed
Zurück zum Zitat Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973CrossRefPubMed Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973CrossRefPubMed
Zurück zum Zitat Chen A, Gu Y, Takahashi K, Angelaki DE, DeAngelis GC (2008) Clustering of self-motion selectivity and visual response properties in Macaque area MSTd. J Neurophysiol 100:2669–2683PubMedCentralCrossRefPubMed Chen A, Gu Y, Takahashi K, Angelaki DE, DeAngelis GC (2008) Clustering of self-motion selectivity and visual response properties in Macaque area MSTd. J Neurophysiol 100:2669–2683PubMedCentralCrossRefPubMed
Zurück zum Zitat Cottereau BR, Smith AT, Rima S, Fize D, Héjja-Brichard Y, Renaud L, Durand JB (2017) Processing of egomotion-consistent optic flow in the rhesus macaque cortex. Cereb Cortex 27(1):330–343PubMedCentralPubMed Cottereau BR, Smith AT, Rima S, Fize D, Héjja-Brichard Y, Renaud L, Durand JB (2017) Processing of egomotion-consistent optic flow in the rhesus macaque cortex. Cereb Cortex 27(1):330–343PubMedCentralPubMed
Zurück zum Zitat Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I Segmentation and surface reconstruction. Neuroimage 9(2):179–194CrossRefPubMed Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I Segmentation and surface reconstruction. Neuroimage 9(2):179–194CrossRefPubMed
Zurück zum Zitat Dalla Volta R, Fasano F, Cerasa A, Mangone G, Quattrone A, Buccino G (2015) Walking indoors, walking outdoors: an fMRI study. Front Psychol 6:1502PubMedCentralCrossRefPubMed Dalla Volta R, Fasano F, Cerasa A, Mangone G, Quattrone A, Buccino G (2015) Walking indoors, walking outdoors: an fMRI study. Front Psychol 6:1502PubMedCentralCrossRefPubMed
Zurück zum Zitat Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980CrossRefPubMed Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31(3):968–980CrossRefPubMed
Zurück zum Zitat Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248(2):164–189CrossRefPubMed Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248(2):164–189CrossRefPubMed
Zurück zum Zitat DeSouza JF, Dukelow SP, Vilis T (2002) Eye position signals modulate early dorsal and ventral visual areas. Cereb Cortex 12(9):991–997CrossRefPubMed DeSouza JF, Dukelow SP, Vilis T (2002) Eye position signals modulate early dorsal and ventral visual areas. Cereb Cortex 12(9):991–997CrossRefPubMed
Zurück zum Zitat DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser JON, Cox R, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci 93(6):2382–2386PubMedCentralCrossRefPubMed DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser JON, Cox R, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci 93(6):2382–2386PubMedCentralCrossRefPubMed
Zurück zum Zitat Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Pitzalis S (2021a) Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 137:74–92CrossRefPubMed Di Marco S, Fattori P, Galati G, Galletti C, Lappe M, Maltempo T, Pitzalis S (2021a) Preference for locomotion-compatible curved paths and forward direction of self-motion in somatomotor and visual areas. Cortex 137:74–92CrossRefPubMed
Zurück zum Zitat Di Russo F, Committeri G, Pitzalis S, Spitoni G, Piccardi L, Galati G, Pizzamiglio L (2006) Cortical plasticity following surgical extension of lower limbs. Neuroimage 30(1):172–183CrossRefPubMed Di Russo F, Committeri G, Pitzalis S, Spitoni G, Piccardi L, Galati G, Pizzamiglio L (2006) Cortical plasticity following surgical extension of lower limbs. Neuroimage 30(1):172–183CrossRefPubMed
Zurück zum Zitat Duffy CJ (1998) MST neurons respond to optic flow and translational movement. J Neurophysiol 80(4):1816–1827CrossRefPubMed Duffy CJ (1998) MST neurons respond to optic flow and translational movement. J Neurophysiol 80(4):1816–1827CrossRefPubMed
Zurück zum Zitat Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65(6):1346–1359CrossRefPubMed Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli. II. Mechanisms of response selectivity revealed by small-field stimuli. J Neurophysiol 65(6):1346–1359CrossRefPubMed
Zurück zum Zitat Dukelow SP, DeSouza JF, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000CrossRefPubMed Dukelow SP, DeSouza JF, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000CrossRefPubMed
Zurück zum Zitat Durant S, Furlan M (2014) Measuring response saturation in human MT and MST as a function of motion density. J vis 14(8):19–19CrossRefPubMed Durant S, Furlan M (2014) Measuring response saturation in human MT and MST as a function of motion density. J vis 14(8):19–19CrossRefPubMed
Zurück zum Zitat Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16(2):268–279CrossRefPubMed Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16(2):268–279CrossRefPubMed
Zurück zum Zitat Eifuku S, Wurtz RH (1998) Response to motion in extrastriate area MSTl: center-surround interactions. J Neurophysiol 80(1):282–296CrossRefPubMed Eifuku S, Wurtz RH (1998) Response to motion in extrastriate area MSTl: center-surround interactions. J Neurophysiol 80(1):282–296CrossRefPubMed
Zurück zum Zitat Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37(4):1315–1328CrossRefPubMed Filimon F, Nelson JD, Hagler DJ, Sereno MI (2007) Human cortical representations for reaching: mirror neurons for execution, observation, and imagery. Neuroimage 37(4):1315–1328CrossRefPubMed
Zurück zum Zitat Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207CrossRefPubMed Fischl B, Sereno MI, Dale AM (1999a) Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. Neuroimage 9(2):195–207CrossRefPubMed
Zurück zum Zitat Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284PubMedCentralCrossRefPubMed Fischl B, Sereno MI, Tootell RB, Dale AM (1999b) High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8(4):272–284PubMedCentralCrossRefPubMed
Zurück zum Zitat Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711CrossRefPubMed Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8(9):700–711CrossRefPubMed
Zurück zum Zitat Francis NA, Winkowski DE, Sheikhattar A, Armengol K, Babadi B, Kanold PO (2018) Small networks encode decision-making in primary auditory cortex. Neuron 97(4):885–897PubMedCentralCrossRefPubMed Francis NA, Winkowski DE, Sheikhattar A, Armengol K, Babadi B, Kanold PO (2018) Small networks encode decision-making in primary auditory cortex. Neuron 97(4):885–897PubMedCentralCrossRefPubMed
Zurück zum Zitat Frank SM, Baumann O, Mattingley JB, Greenlee MW (2014) Vestibular and visual responses in human posterior insular cortex. J Neurophysiol 112(10):2481–2491CrossRefPubMed Frank SM, Baumann O, Mattingley JB, Greenlee MW (2014) Vestibular and visual responses in human posterior insular cortex. J Neurophysiol 112(10):2481–2491CrossRefPubMed
Zurück zum Zitat Frankenstein U, Wennerberg A, Richter W, Bernstein C, Morden D, Rémy F, Mcintyre M (2003) Activation and deactivation in blood oxygenation level dependent functional magnetic resonance imaging. Concepts Magnetic Reson Part a: Edu J 16(1):63–70CrossRef Frankenstein U, Wennerberg A, Richter W, Bernstein C, Morden D, Rémy F, Mcintyre M (2003) Activation and deactivation in blood oxygenation level dependent functional magnetic resonance imaging. Concepts Magnetic Reson Part a: Edu J 16(1):63–70CrossRef
Zurück zum Zitat Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41(13):1717–1727CrossRefPubMed Galletti C, Fattori P (2003) Neuronal mechanisms for detection of motion in the field of view. Neuropsychologia 41(13):1717–1727CrossRefPubMed
Zurück zum Zitat Galletti C, Fattori P (2018) The dorsal visual stream revisited: stable circuits or dynamic pathways? Cortex 98:203–217CrossRefPubMed Galletti C, Fattori P (2018) The dorsal visual stream revisited: stable circuits or dynamic pathways? Cortex 98:203–217CrossRefPubMed
Zurück zum Zitat Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19(6):1239–1255CrossRefPubMed Gazzola V, Keysers C (2009) The observation and execution of actions share motor and somatosensory voxels in all tested subjects: single-subject analyses of unsmoothed fMRI data. Cereb Cortex 19(6):1239–1255CrossRefPubMed
Zurück zum Zitat Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, WU-Minn HCP Consortium (2013) The minimal preprocessing pipelines for the human connectome project. Neuroimage 80:105–124CrossRefPubMed Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B, Andersson JL, WU-Minn HCP Consortium (2013) The minimal preprocessing pipelines for the human connectome project. Neuroimage 80:105–124CrossRefPubMed
Zurück zum Zitat Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Van Essen DC (2016a) A multi-modal parcellation of human cerebral cortex. Nature 536(7615):171–178PubMedCentralCrossRefPubMed Glasser MF, Coalson TS, Robinson EC, Hacker CD, Harwell J, Yacoub E, Van Essen DC (2016a) A multi-modal parcellation of human cerebral cortex. Nature 536(7615):171–178PubMedCentralCrossRefPubMed
Zurück zum Zitat Glasser MF, Smith SM, Marcus DS, Andersson JL, Auerbach EJ, Behrens TE, Van Essen DC (2016b) The human connectome project’s neuroimaging approach. Nat Neurosci 19(9):1175–1187PubMedCentralCrossRefPubMed Glasser MF, Smith SM, Marcus DS, Andersson JL, Auerbach EJ, Behrens TE, Van Essen DC (2016b) The human connectome project’s neuroimaging approach. Nat Neurosci 19(9):1175–1187PubMedCentralCrossRefPubMed
Zurück zum Zitat Greenlee MW, Frank SM, Kaliuzhna M, Blanke O, Bremmer F, Churan J, Smith AT (2016) Multisensory integration in self motion perception. Multisensory Res 29(6–7):525–556CrossRef Greenlee MW, Frank SM, Kaliuzhna M, Blanke O, Bremmer F, Churan J, Smith AT (2016) Multisensory integration in self motion perception. Multisensory Res 29(6–7):525–556CrossRef
Zurück zum Zitat Gu Y, DeAngelis GC, Angelaki DE (2007) A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci 10:1038–1047PubMedCentralCrossRefPubMed Gu Y, DeAngelis GC, Angelaki DE (2007) A functional link between area MSTd and heading perception based on vestibular signals. Nat Neurosci 10:1038–1047PubMedCentralCrossRefPubMed
Zurück zum Zitat Hagen MC, Franzén O, McGlone F, Essick G, Dancer C, Pardo JV (2002) Tactile motion activates the human middle temporal/V5 (MT/V5) complex. Eur J Neurosci 16(5):957–964CrossRefPubMed Hagen MC, Franzén O, McGlone F, Essick G, Dancer C, Pardo JV (2002) Tactile motion activates the human middle temporal/V5 (MT/V5) complex. Eur J Neurosci 16(5):957–964CrossRefPubMed
Zurück zum Zitat Heed T, Beurze SM, Toni I, Röder B, Medendorp WP (2011) Functional rather than effector-specific organization of human posterior parietal cortex. J Neurosci 31(8):3066–3076PubMedCentralCrossRefPubMed Heed T, Beurze SM, Toni I, Röder B, Medendorp WP (2011) Functional rather than effector-specific organization of human posterior parietal cortex. J Neurosci 31(8):3066–3076PubMedCentralCrossRefPubMed
Zurück zum Zitat Heed T, Leone FT, Toni I, Medendorp WP (2016) Functional versus effector-specific organization of the human posterior parietal cortex: revisited. J Neurophysiol 116(4):1885–1899PubMedCentralCrossRefPubMed Heed T, Leone FT, Toni I, Medendorp WP (2016) Functional versus effector-specific organization of the human posterior parietal cortex: revisited. J Neurophysiol 116(4):1885–1899PubMedCentralCrossRefPubMed
Zurück zum Zitat Helfrich RF, Becker HG, Haarmeier T (2013) Processing of coherent visual motion in topographically organized visual areas in human cerebral cortex. Brain Topogr 26(2):247–263CrossRefPubMed Helfrich RF, Becker HG, Haarmeier T (2013) Processing of coherent visual motion in topographically organized visual areas in human cerebral cortex. Brain Topogr 26(2):247–263CrossRefPubMed
Zurück zum Zitat Huang RS, Chen CF, Tran AT, Holstein KL, Sereno MI (2012) Mapping multisensory parietal face and body areas in humans. Proc Natl Acad Sci 109(44):18114–18119PubMedCentralCrossRefPubMed Huang RS, Chen CF, Tran AT, Holstein KL, Sereno MI (2012) Mapping multisensory parietal face and body areas in humans. Proc Natl Acad Sci 109(44):18114–18119PubMedCentralCrossRefPubMed
Zurück zum Zitat Kilintari M, Raos V, Savaki HE (2014) Involvement of the superior temporal cortex in action execution and action observation. J Neurosci 34(27):8999–9011PubMedCentralCrossRefPubMed Kilintari M, Raos V, Savaki HE (2014) Involvement of the superior temporal cortex in action execution and action observation. J Neurosci 34(27):8999–9011PubMedCentralCrossRefPubMed
Zurück zum Zitat Kimmig H, Ohlendorf S, Speck O, Sprenger A, Rutschmann RM, Haller S, Greenlee MW (2008) fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements. Neuropsychologia 46(8):2203–2213CrossRefPubMed Kimmig H, Ohlendorf S, Speck O, Sprenger A, Rutschmann RM, Haller S, Greenlee MW (2008) fMRI evidence for sensorimotor transformations in human cortex during smooth pursuit eye movements. Neuropsychologia 46(8):2203–2213CrossRefPubMed
Zurück zum Zitat Kolster H, Mandeville JB, Arsenault JT, Ekstrom LB, Wald LL, Vanduffel W (2009) Visual field map clusters in macaque extrastriate visual cortex. J Neurosci 29(21):7031–7039PubMedCentralCrossRefPubMed Kolster H, Mandeville JB, Arsenault JT, Ekstrom LB, Wald LL, Vanduffel W (2009) Visual field map clusters in macaque extrastriate visual cortex. J Neurosci 29(21):7031–7039PubMedCentralCrossRefPubMed
Zurück zum Zitat Kolster H, Peeters R, Orban GA (2010) The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 30(29):9801–9820PubMedCentralCrossRefPubMed Kolster H, Peeters R, Orban GA (2010) The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 30(29):9801–9820PubMedCentralCrossRefPubMed
Zurück zum Zitat Komatsu HIDEHIKO, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J Neurophysiol 60(2):580–603CrossRefPubMed Komatsu HIDEHIKO, Wurtz RH (1988) Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. J Neurophysiol 60(2):580–603CrossRefPubMed
Zurück zum Zitat Konen CS, Kleiser R, Seitz RJ, Bremmer F (2005) An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. Exp Brain Res 165(2):203–216CrossRefPubMed Konen CS, Kleiser R, Seitz RJ, Bremmer F (2005) An fMRI study of optokinetic nystagmus and smooth-pursuit eye movements in humans. Exp Brain Res 165(2):203–216CrossRefPubMed
Zurück zum Zitat Kourtzi Z, Bülthoff HH, Erb M, Grodd W (2002) Object-selective responses in the human motion area MT/MST. Nat Neurosci 5(1):17–18CrossRefPubMed Kourtzi Z, Bülthoff HH, Erb M, Grodd W (2002) Object-selective responses in the human motion area MT/MST. Nat Neurosci 5(1):17–18CrossRefPubMed
Zurück zum Zitat Kovács G, Raabe M, Greenlee MW (2008) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18(8):1779–1787CrossRefPubMed Kovács G, Raabe M, Greenlee MW (2008) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18(8):1779–1787CrossRefPubMed
Zurück zum Zitat Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Turner R (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci 89(12):5675–5679PubMedCentralCrossRefPubMed Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Turner R (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci 89(12):5675–5679PubMedCentralCrossRefPubMed
Zurück zum Zitat Lagae L, Maes H, Raiguel S, Xiao DK, Orban GA (1994) Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J Neurophysiol 71(5):1597–1626CrossRefPubMed Lagae L, Maes H, Raiguel S, Xiao DK, Orban GA (1994) Responses of macaque STS neurons to optic flow components: a comparison of areas MT and MST. J Neurophysiol 71(5):1597–1626CrossRefPubMed
Zurück zum Zitat Leoné FT, Heed T, Toni I, Medendorp WP (2014) Understanding effector selectivity in human posterior parietal cortex by combining information patterns and activation measures. J Neurosci 34(21):7102–7112PubMedCentralCrossRefPubMed Leoné FT, Heed T, Toni I, Medendorp WP (2014) Understanding effector selectivity in human posterior parietal cortex by combining information patterns and activation measures. J Neurosci 34(21):7102–7112PubMedCentralCrossRefPubMed
Zurück zum Zitat Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Petrides M (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci 106(47):20069–20074PubMedCentralCrossRefPubMed Margulies DS, Vincent JL, Kelly C, Lohmann G, Uddin LQ, Biswal BB, Petrides M (2009) Precuneus shares intrinsic functional architecture in humans and monkeys. Proc Natl Acad Sci 106(47):20069–20074PubMedCentralCrossRefPubMed
Zurück zum Zitat Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49(5):1127–1147CrossRefPubMed Maunsell JH, Van Essen DC (1983) Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. J Neurophysiol 49(5):1127–1147CrossRefPubMed
Zurück zum Zitat McKeefry DJ, Watson JDG, Frackowiak RSJ, Fong K, Zeki S (1997) The activity in human areas V1/V2, V3, and V5 during the perception of coherent and incoherent motion. Neuroimage 5(1):1–12CrossRefPubMed McKeefry DJ, Watson JDG, Frackowiak RSJ, Fong K, Zeki S (1997) The activity in human areas V1/V2, V3, and V5 during the perception of coherent and incoherent motion. Neuroimage 5(1):1–12CrossRefPubMed
Zurück zum Zitat Mikellidou K, Kurzawski JW, Frijia F, Montanaro D, Greco V, Burr DC, Morrone MC (2017) Area prostriata in the human brain. Curr Biol 27(19):3056–3060CrossRefPubMed Mikellidou K, Kurzawski JW, Frijia F, Montanaro D, Greco V, Burr DC, Morrone MC (2017) Area prostriata in the human brain. Curr Biol 27(19):3056–3060CrossRefPubMed
Zurück zum Zitat Miura K, Inaba N, Aoki Y, Kawano K (2014) Difference in visual motion representation between cortical areas MT and MST during ocular following responses. J Neurosci 34(6):2160–2168PubMedCentralCrossRefPubMed Miura K, Inaba N, Aoki Y, Kawano K (2014) Difference in visual motion representation between cortical areas MT and MST during ocular following responses. J Neurosci 34(6):2160–2168PubMedCentralCrossRefPubMed
Zurück zum Zitat Mysore SG, Vogels R, Raiguel SE, Todd JT, Orban GA (2010) The selectivity of neurons in the macaque fundus of the superior temporal area for three-dimensional structure from motion. J Neurosci 30(46):15491–15508PubMedCentralCrossRefPubMed Mysore SG, Vogels R, Raiguel SE, Todd JT, Orban GA (2010) The selectivity of neurons in the macaque fundus of the superior temporal area for three-dimensional structure from motion. J Neurosci 30(46):15491–15508PubMedCentralCrossRefPubMed
Zurück zum Zitat Nakata H, Domoto R, Mizuguchi N, Sakamoto K, Kanosue K (2019) Negative BOLD responses during hand and foot movements: an fMRI study. PLoS ONE 14(4):e0215736PubMedCentralCrossRefPubMed Nakata H, Domoto R, Mizuguchi N, Sakamoto K, Kanosue K (2019) Negative BOLD responses during hand and foot movements: an fMRI study. PLoS ONE 14(4):e0215736PubMedCentralCrossRefPubMed
Zurück zum Zitat Nelissen K, Vanduffel W, Orban GA (2006) Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus. J Neurosci 26(22):5929–5947PubMedCentralCrossRefPubMed Nelissen K, Vanduffel W, Orban GA (2006) Charting the lower superior temporal region, a new motion-sensitive region in monkey superior temporal sulcus. J Neurosci 26(22):5929–5947PubMedCentralCrossRefPubMed
Zurück zum Zitat Newton JM, Dong Y, Hidler J, Plummer-D’Amato P, Marehbian J, Albistegui-DuBois RM, Dobkin BH (2008) Reliable assessment of lower limb motor representations with fMRI: use of a novel MR compatible device for real-time monitoring of ankle, knee and hip torques. Neuroimage 43(1):136–146CrossRefPubMed Newton JM, Dong Y, Hidler J, Plummer-D’Amato P, Marehbian J, Albistegui-DuBois RM, Dobkin BH (2008) Reliable assessment of lower limb motor representations with fMRI: use of a novel MR compatible device for real-time monitoring of ankle, knee and hip torques. Neuroimage 43(1):136–146CrossRefPubMed
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113CrossRefPubMed
Zurück zum Zitat Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J Cogn Neurosci 6(2):99–116CrossRefPubMed Oram MW, Perrett DI (1994) Responses of anterior superior temporal polysensory (STPa) neurons to “biological motion” stimuli. J Cogn Neurosci 6(2):99–116CrossRefPubMed
Zurück zum Zitat Orban GA (2011) The extraction of 3D shape in the visual system of human and nonhuman primates. Annu Rev Neurosci 34:361–388CrossRefPubMed Orban GA (2011) The extraction of 3D shape in the visual system of human and nonhuman primates. Annu Rev Neurosci 34:361–388CrossRefPubMed
Zurück zum Zitat Orban GA, Vanduffel W (2004) Functional mapping of motion regions. In: Chalupa LM, Werner JS (eds) The visual neurosciences, vol 2. MIT Press, Cambridge MA, pp 1229–1246 Orban GA, Vanduffel W (2004) Functional mapping of motion regions. In: Chalupa LM, Werner JS (eds) The visual neurosciences, vol 2. MIT Press, Cambridge MA, pp 1229–1246
Zurück zum Zitat Orban GA, Lagae L, Verri A, Raiguel S, Xiao D, Maes H, Torre V (1992) First-order analysis of optical flow in monkey brain. Proc Natl Acad Sci 89(7):2595–2599PubMedCentralCrossRefPubMed Orban GA, Lagae L, Verri A, Raiguel S, Xiao D, Maes H, Torre V (1992) First-order analysis of optical flow in monkey brain. Proc Natl Acad Sci 89(7):2595–2599PubMedCentralCrossRefPubMed
Zurück zum Zitat Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41:1757–1768CrossRefPubMed Orban GA, Fize D, Peuskens H, Denys K, Nelissen K, Sunaert S, Todd J, Vanduffel W (2003) Similarities and differences in motion processing between the human and macaque brain: evidence from fMRI. Neuropsychologia 41:1757–1768CrossRefPubMed
Zurück zum Zitat Palmer SM, Rosa MGP (2006) A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24(8):2389–2405CrossRefPubMed Palmer SM, Rosa MGP (2006) A distinct anatomical network of cortical areas for analysis of motion in far peripheral vision. Eur J Neurosci 24(8):2389–2405CrossRefPubMed
Zurück zum Zitat Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6(3):342–353CrossRefPubMed Picard N, Strick PL (1996) Motor areas of the medial wall: a review of their location and functional activation. Cereb Cortex 6(3):342–353CrossRefPubMed
Zurück zum Zitat Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human V6: the medial motion area. Cereb Cortex 20(2):411–424CrossRefPubMed Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human V6: the medial motion area. Cereb Cortex 20(2):411–424CrossRefPubMed
Zurück zum Zitat Pitzalis S, Sdoia S, Bultrini A, Committeri G, Di Russo F, Fattori P, Galati G (2013) Selectivity to translational egomotion in human brain motion areas. PLoS ONE 8(4):e60241PubMedCentralCrossRefPubMed Pitzalis S, Sdoia S, Bultrini A, Committeri G, Di Russo F, Fattori P, Galati G (2013) Selectivity to translational egomotion in human brain motion areas. PLoS ONE 8(4):e60241PubMedCentralCrossRefPubMed
Zurück zum Zitat Pitzalis S, Serra C, Sulpizio V, Di Marco S, Fattori P, Galati G, Galletti C (2019) A putative human homologue of the macaque area PEc. Neuroimage 202:116092CrossRefPubMed Pitzalis S, Serra C, Sulpizio V, Di Marco S, Fattori P, Galati G, Galletti C (2019) A putative human homologue of the macaque area PEc. Neuroimage 202:116092CrossRefPubMed
Zurück zum Zitat Poirier C, Collignon O, Scheiber C, Renier L, Vanlierde A, Tranduy D, De Volder AG (2006) Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage 31(1):279–285CrossRefPubMed Poirier C, Collignon O, Scheiber C, Renier L, Vanlierde A, Tranduy D, De Volder AG (2006) Auditory motion perception activates visual motion areas in early blind subjects. Neuroimage 31(1):279–285CrossRefPubMed
Zurück zum Zitat Previc FH, Liotti M, Blakemore C, Beer J, Fox P (2000) Functional imaging of brain areas involved in the processing of coherent and incoherent wide field-of-view visual motion. Exp Brain Res 131(4):393–405CrossRefPubMed Previc FH, Liotti M, Blakemore C, Beer J, Fox P (2000) Functional imaging of brain areas involved in the processing of coherent and incoherent wide field-of-view visual motion. Exp Brain Res 131(4):393–405CrossRefPubMed
Zurück zum Zitat Ptito M, Matteau I, Gjedde A, Kupers R (2009) Recruitment of the middle temporal area by tactile motion in congenital blindness. NeuroReport 20(6):543–547CrossRefPubMed Ptito M, Matteau I, Gjedde A, Kupers R (2009) Recruitment of the middle temporal area by tactile motion in congenital blindness. NeuroReport 20(6):543–547CrossRefPubMed
Zurück zum Zitat Raiguel S, Van Hulle MM, Xiao DK, Marcar VL, Lagae L, Orban GA (1997) Size and shape of receptive fields in the medial superior temporal area (MST) of the macaque. NeuroReport 8(12):2803–2808CrossRefPubMed Raiguel S, Van Hulle MM, Xiao DK, Marcar VL, Lagae L, Orban GA (1997) Size and shape of receptive fields in the medial superior temporal area (MST) of the macaque. NeuroReport 8(12):2803–2808CrossRefPubMed
Zurück zum Zitat Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3(7):716–723CrossRefPubMed Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3(7):716–723CrossRefPubMed
Zurück zum Zitat Rezk M, Cattoir S, Battal C, Occelli V, Mattioni S, Collignon O (2020) Shared representation of visual and auditory motion directions in the human middle-temporal cortex. Curr Biol 30(12):2289–2299CrossRefPubMed Rezk M, Cattoir S, Battal C, Occelli V, Mattioni S, Collignon O (2020) Shared representation of visual and auditory motion directions in the human middle-temporal cortex. Curr Biol 30(12):2289–2299CrossRefPubMed
Zurück zum Zitat Ricciardi E, Vanello N, Sani L, Gentili C, Scilingo EP, Landini L, Pietrini P (2007) The effect of visual experience on the development of functional architecture in hMT+. Cereb Cortex 17(12):2933–2939CrossRefPubMed Ricciardi E, Vanello N, Sani L, Gentili C, Scilingo EP, Landini L, Pietrini P (2007) The effect of visual experience on the development of functional architecture in hMT+. Cereb Cortex 17(12):2933–2939CrossRefPubMed
Zurück zum Zitat Rosenberg A, Wallisch P, Bradley DC (2008) Responses to direction and transparent motion stimuli in area FST of the macaque. Vis Neurosci 25(2):187–195CrossRefPubMed Rosenberg A, Wallisch P, Bradley DC (2008) Responses to direction and transparent motion stimuli in area FST of the macaque. Vis Neurosci 25(2):187–195CrossRefPubMed
Zurück zum Zitat Ruben J, Schwiemann J, Deuchert M, Meyer R, Krause T, Curio G, Villringer A (2001) Somatotopic organization of human secondary somatosensory cortex. Cereb Cortex 11(5):463–473CrossRefPubMed Ruben J, Schwiemann J, Deuchert M, Meyer R, Krause T, Curio G, Villringer A (2001) Somatotopic organization of human secondary somatosensory cortex. Cereb Cortex 11(5):463–473CrossRefPubMed
Zurück zum Zitat Rutschmann RM, Schrauf M, Greenlee MW (2000) Brain activation during dichoptic presentation of optic flow stimuli. Exp Brain Res 134(4):533–537CrossRefPubMed Rutschmann RM, Schrauf M, Greenlee MW (2000) Brain activation during dichoptic presentation of optic flow stimuli. Exp Brain Res 134(4):533–537CrossRefPubMed
Zurück zum Zitat Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6(1):145–157PubMedCentralCrossRefPubMed Saito H, Yukie M, Tanaka K, Hikosaka K, Fukada Y, Iwai E (1986) Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey. J Neurosci 6(1):145–157PubMedCentralCrossRefPubMed
Zurück zum Zitat Sakamoto ACL, Teixeira-Salmela LF, de Paula-Goulart FR, de Morais Faria CDC, Guimarães CQ (2009) Muscular activation patterns during active prone hip extension exercises. J Electromyogr Kinesiol 19(1):105–112CrossRefPubMed Sakamoto ACL, Teixeira-Salmela LF, de Paula-Goulart FR, de Morais Faria CDC, Guimarães CQ (2009) Muscular activation patterns during active prone hip extension exercises. J Electromyogr Kinesiol 19(1):105–112CrossRefPubMed
Zurück zum Zitat Shadmehr R, De Xivry JJO, Xu-Wilson M, Shih TY (2010) Temporal discounting of reward and the cost of time in motor control. J Neurosci 30(31):10507–10516PubMedCentralCrossRefPubMed Shadmehr R, De Xivry JJO, Xu-Wilson M, Shih TY (2010) Temporal discounting of reward and the cost of time in motor control. J Neurosci 30(31):10507–10516PubMedCentralCrossRefPubMed
Zurück zum Zitat Smith T, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23:561–569CrossRefPubMed Smith T, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23:561–569CrossRefPubMed
Zurück zum Zitat Smith AT, Wall MB, Thilo KV (2012) Vestibular inputs to human motion-sensitive visual cortex. Cereb Cortex 22(5):1068–1077CrossRefPubMed Smith AT, Wall MB, Thilo KV (2012) Vestibular inputs to human motion-sensitive visual cortex. Cereb Cortex 22(5):1068–1077CrossRefPubMed
Zurück zum Zitat Sulpizio V, Galati G, Fattori P, Galletti C, Pitzalis S (2020) A common neural substrate for processing scenes and egomotion-compatible visual motion. Brain Struct Funct 225(7):2091–2110PubMedCentralCrossRefPubMed Sulpizio V, Galati G, Fattori P, Galletti C, Pitzalis S (2020) A common neural substrate for processing scenes and egomotion-compatible visual motion. Brain Struct Funct 225(7):2091–2110PubMedCentralCrossRefPubMed
Zurück zum Zitat Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62(3):626–641CrossRefPubMed Tanaka K, Saito H (1989) Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. J Neurophysiol 62(3):626–641CrossRefPubMed
Zurück zum Zitat Tanaka K, Hikosaka K, Saito HA, Yukie M, Fukada Y, Iwai E (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6(1):134–144PubMedCentralCrossRefPubMed Tanaka K, Hikosaka K, Saito HA, Yukie M, Fukada Y, Iwai E (1986) Analysis of local and wide-field movements in the superior temporal visual areas of the macaque monkey. J Neurosci 6(1):134–144PubMedCentralCrossRefPubMed
Zurück zum Zitat Tanaka K, Fukada Y, Saito H (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the MST area of the macaque monkey. J Neurophysiol 62:642–656CrossRefPubMed Tanaka K, Fukada Y, Saito H (1989) Underlying mechanisms of the response specificity of expansion/contraction and rotation cells in the dorsal part of the MST area of the macaque monkey. J Neurophysiol 62:642–656CrossRefPubMed
Zurück zum Zitat Thier P, Ilg UJ (2005) The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol 15(6):645–652CrossRefPubMed Thier P, Ilg UJ (2005) The neural basis of smooth-pursuit eye movements. Curr Opin Neurobiol 15(6):645–652CrossRefPubMed
Zurück zum Zitat Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230PubMedCentralCrossRefPubMed Tootell RB, Reppas JB, Kwong KK, Malach R, Born RT, Brady TJ, Rosen BR, Belliveau JW (1995) Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging. J Neurosci 15:3215–3230PubMedCentralCrossRefPubMed
Zurück zum Zitat Tosoni A, Pitzalis S, Committeri G, Fattori P, Galletti C, Galati G (2015) Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Struct Funct 220(6):3307–3321CrossRefPubMed Tosoni A, Pitzalis S, Committeri G, Fattori P, Galletti C, Galati G (2015) Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Struct Funct 220(6):3307–3321CrossRefPubMed
Zurück zum Zitat Trinastic JP, Kautz SA, McGregor K, Gregory C, Bowden M, Benjamin MB, Crosson B (2010) An fMRI study of the differences in brain activity during active ankle dorsiflexion and plantarflexion. Brain Imaging Behav 4(2):121–131CrossRefPubMed Trinastic JP, Kautz SA, McGregor K, Gregory C, Bowden M, Benjamin MB, Crosson B (2010) An fMRI study of the differences in brain activity during active ankle dorsiflexion and plantarflexion. Brain Imaging Behav 4(2):121–131CrossRefPubMed
Zurück zum Zitat Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, Menon V (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex 20(11):2636–2646PubMedCentralCrossRefPubMed Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, Menon V (2010) Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex 20(11):2636–2646PubMedCentralCrossRefPubMed
Zurück zum Zitat Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T, WU-Minn HCP Consortium (2012a) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22(10):2241–2262CrossRefPubMed Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T, WU-Minn HCP Consortium (2012a) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22(10):2241–2262CrossRefPubMed
Zurück zum Zitat Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R (2012b) The Human Connectome Project: a data acquisition perspective. Neuroimage 62(4):2222–2231CrossRefPubMed Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TE, Bucholz R (2012b) The Human Connectome Project: a data acquisition perspective. Neuroimage 62(4):2222–2231CrossRefPubMed
Zurück zum Zitat Van Kemenade BM, Seymour K, Wacker E, Spitzer B, Blankenburg F, Sterzer P (2014) Tactile and visual motion direction processing in hMT+/V5. Neuroimage 84:420–427CrossRefPubMed Van Kemenade BM, Seymour K, Wacker E, Spitzer B, Blankenburg F, Sterzer P (2014) Tactile and visual motion direction processing in hMT+/V5. Neuroimage 84:420–427CrossRefPubMed
Zurück zum Zitat Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32(4):565–577CrossRefPubMed Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32(4):565–577CrossRefPubMed
Zurück zum Zitat Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18(3):191–194CrossRefPubMed Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18(3):191–194CrossRefPubMed
Zurück zum Zitat Xiao J, Padoa-Schioppa C, Bizzi E (2006) Neuronal correlates of movement dynamics in the dorsal and ventral premotor area in the monkey. Exp Brain Res 168(1–2):106–119CrossRefPubMed Xiao J, Padoa-Schioppa C, Bizzi E (2006) Neuronal correlates of movement dynamics in the dorsal and ventral premotor area in the monkey. Exp Brain Res 168(1–2):106–119CrossRefPubMed
Zurück zum Zitat Zeki SM (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236:549–573PubMedCentralCrossRefPubMed Zeki SM (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. J Physiol 236:549–573PubMedCentralCrossRefPubMed
Zurück zum Zitat Zhang S, Ide JS, Li CSR (2012) Resting-state functional connectivity of the medial superior frontal cortex. Cereb Cortex 22(1):99–111CrossRefPubMed Zhang S, Ide JS, Li CSR (2012) Resting-state functional connectivity of the medial superior frontal cortex. Cereb Cortex 22(1):99–111CrossRefPubMed
Metadaten
Titel
The human middle temporal cortex responds to both active leg movements and egomotion-compatible visual motion
verfasst von
Valentina Sulpizio
Francesca Strappini
Patrizia Fattori
Gaspare Galati
Claudio Galletti
Anna Pecchinenda
Sabrina Pitzalis
Publikationsdatum
13.08.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Brain Structure and Function / Ausgabe 8/2022
Print ISSN: 1863-2653
Elektronische ISSN: 1863-2661
DOI
https://doi.org/10.1007/s00429-022-02549-z

Weitere Artikel der Ausgabe 8/2022

Brain Structure and Function 8/2022 Zur Ausgabe

Leitlinien kompakt für die Neurologie

Mit medbee Pocketcards sicher entscheiden.

Seit 2022 gehört die medbee GmbH zum Springer Medizin Verlag

„Restriktion auf vier Wochen Therapie bei Schlaflosigkeit ist absurd!“

06.05.2024 Insomnie Nachrichten

Chronische Insomnie als eigenständiges Krankheitsbild ernst nehmen und adäquat nach dem aktuellen Forschungsstand behandeln: Das forderte der Schlafmediziner Dr. Dieter Kunz von der Berliner Charité beim Praxis Update.

Stuhltransfusion könnte Fortschreiten von Parkinson-Symptomen bremsen

03.05.2024 Parkinson-Krankheit Nachrichten

Kann eine frühzeitige Stuhltransplantation das Fortschreiten von Parkinson-Symptomen verlangsamen? Die Ergebnisse einer randomisierten Phase-2-Studie scheinen dafür zu sprechen.

Frühe Tranexamsäure-Therapie nützt wenig bei Hirnblutungen

02.05.2024 Hirnblutung Nachrichten

Erhalten Personen mit einer spontanen Hirnblutung innerhalb von zwei Stunden nach Symptombeginn eine Tranexamsäure-Therapie, kann dies weder die Hämatomexpansion eindämmen noch die Mortalität senken.

Sind Frauen die fähigeren Ärzte?

30.04.2024 Gendermedizin Nachrichten

Patienten, die von Ärztinnen behandelt werden, dürfen offenbar auf bessere Therapieergebnisse hoffen als Patienten von Ärzten. Besonders scheint das auf weibliche Kranke zuzutreffen, wie eine Studie zeigt.

Update Neurologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.