Skip to main content
Erschienen in: BMC Cancer 1/2021

Open Access 01.12.2021 | Research

The identification of gene signatures in patients with extranodal NK/T-cell lymphoma from a pair of twins

verfasst von: Yang Wang, Huaicheng Tan, Ting Yu, Xuelei Ma, Xiaoxuan Chen, Fangqi Jing, Liqun Zou, Huashan Shi

Erschienen in: BMC Cancer | Ausgabe 1/2021

Abstract

Background

There is no unified treatment standard for patients with extranodal NK/T-cell lymphoma (ENKTL). Cancer neoantigens are the result of somatic mutations and cancer-specific. Increased number of somatic mutations are associated with anti-cancer effects. Screening out ENKTL-specific neoantigens on the surface of cancer cells relies on the understanding of ENKTL mutation patterns. Hence, it is imperative to identify ENKTL-specific genes for ENKTL diagnosis, the discovery of tumor-specific neoantigens and the development of novel therapeutic strategies. We investigated the gene signatures of ENKTL patients.

Methods

We collected the peripheral blood of a pair of twins for sequencing to identify unique variant genes. One of the twins is diagnosed with ENKTL. Seventy samples were analyzed by Robust Multi-array Analysis (RMA). Two methods (elastic net and Support Vector Machine-Recursive Feature Elimination) were used to select unique genes. Next, we performed functional enrichment analysis and pathway enrichment analysis. Then, we conducted single-sample gene set enrichment analysis of immune infiltration and validated the expression of the screened markers with limma packages.

Results

We screened out 126 unique variant genes. Among them, 11 unique genes were selected by the combination of elastic net and Support Vector Machine-Recursive Feature Elimination. Subsequently, GO and KEGG analysis indicated the biological function of identified unique genes. GSEA indicated five immunity-related pathways with high signature scores. In patients with ENKTL and the group with high signature scores, a proportion of functional immune cells are all of great infiltration. We finally found that CDC27, ZNF141, FCGR2C and NES were four significantly differential genes in ENKTL patients. ZNF141, FCGR2C and NES were upregulated in patients with ENKTL, while CDC27 was significantly downregulated.

Conclusion

We identified four ENKTL markers (ZNF141, FCGR2C, NES and CDC27) in patients with extranodal NK/T-cell lymphoma.
Hinweise
Yang Wang and Huaicheng Tan contributed equally to this work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Abkürzungen
ENKTL
Extranodal NK/T-cell lymphoma
RMA
Robust Multi-array Analysis
EBV
Epstein-Barrvirus
PD-1
Programmed cell death protein 1
PD-L1
Programmed cell death protein ligand 1
EGFR
Epidermal growth factor receptor
ALK
Anaplastic lymphoma kinase
GEP
Gene expression profiling
γδ-PTCLs
Gamma delta-peripheral T cell lymphomas
MCR
Minimal common region
SVMs
Support-vector machines
WGS
Whole-genome shotgun
GEO
Gene Expression Omnibus
GO
Gene Ontology
KEGG
Kyoto Encyclopedia of Genes and Genomes
SVM-RFE
Support Vector Machine-Recursive Feature Elimination
GSEA
Gene set enrichment analysis
GSVA
Gene Set Variation Analysis
ssGSEA
Single-sample gene set enrichment analysis
TLR4
Toll-like receptor 4
TME
Tumor microenvironment
LMP1
Latent membrane protein 1
eIF4E
Eukaryotic translation initiation factor 4E
PDGFR-α
Platelet-derived growth factor receptor-α
CDC27
Cell division cycle 27)
ZNF 141
Zinc finger protein141
FCGR2C
Fc gamma receptor 2C
NES
Nestin
DC
Dendritic cell
T-LBL
T-lymphoblastic lymphoma
DNBs
DNA Nanoballs

Introduction

Extranodal NK/T-cell lymphoma (ENKTL) is a subtype of non-Hodgkin lymphoma characterized by progressive lesions in nasal cavities, the middle of the face, upper aerodigestive tracts and other non-nasal sites. The disease frequently occurs in Asian and Latin Americans [1]. The infection of Epstein-Barrvirus (EBV) may be closely related to its pathogenesis [2]. At an early stage of ENKTL, the combination of chemotherapy and radiotherapy prolongs patients’ survival and improves the quality of life [3, 4]. However, for advanced refractory ENKTL patients, the efficacy of current treatment is not satisfactory [5]. Immunotherapy provides a new direction for these patients [6, 7]. Immunotherapy for programmed cell death protein 1 (PD-1) and programmed cell death protein ligand 1 (PD-L1) has enormously improved the therapeutic effect of ENKTL [8, 9]. Searching for tumor-specific genes is beneficial for ENKTL diagnosis, the discovery of tumor-specific neoantigens and the development of novel therapeutic strategies. These tumor-specific genes can be used as predictors of the prognosis. Nevertheless, the genetic landscape and the mutation signature of ENKTL remain to be elucidated.
By understanding the existence of the tumor-assocoated unique genes, we could enrich therapeutic methods to improve the prognosis. A good illustration is epidermal growth factor receptor (EGFR)/anaplastic lymphoma kinase (ALK) in lung cancer [10], CD19 in diffuse large B cell lymphoma [11] and HER2 in breast cancer [12]. Recently, gene detection has been a predictor for prognosis and treatment sensitivity of cancer patients. As for ENKTL, gene expression profiling (GEP) identified unique signatures which are mainly from neoplastic NK cells. Cytotoxic-molecule (granzyme H) levels and the activity of ENKTL signaling pathways (NF-κB and JAK/STAT3) are both elevated [8, 13]. Some gamma delta-peripheral T cell lymphomas (γδ-PTCLs) have STAT3 mutations [14]. Except for the above features, a genetic investigation found 6q21 deletion and PRDM1 as a candidate gene in NK cell-related malignancies. PRDM1 locates at the minimal common region (MCR). The methylation of PRDM1 inhibits PRDM1 expression [15]. When treated with decitabine, NK cells would experience toxicity by enhancing PRDM1 levels [16]. Therefore, The methylation of PRDM1 maybe exists in ENKTL. HACE1 is another gene located within the 6q21 region. The loss of HACE1 function is realized by the deletion and hypermethylation of cytosine phosphate guanine island. The abnormal HACE1 within 6q21 is a cause of NK cell lymphomagenesis [17].
Machine learning algorithms are now involved in numerous aspects of medical studies, which integrate AI tools into clinical practice. As for medicine, ML is a scientific tool to analyze large-scale data appropriately [18, 19]. It fosters us to understand cancer comprehensively from molecular perspectives, especially its cancer-diagnosis application [2022]. Therefore, ML is valuable to find out valuable biomarkers in multiple data. In ML, support-vector machines (SVMs) are significant learning models with algorithms for classification and regression analysis. They can select biomarkers that are the most effective classification [23, 24].
Our study aims at identifying gene signatures in patients with extranodal NK/T-cell lymphoma. Initially, we detected genes from a pair of twins with ENKTL and analyzed unique differential genes. Based on these genes, we analyzed ENKTL patients’ information in several databases to predict specific antigen mutations and new targets. We hope to understand the genetic background and to seek for targets to predict prognosis. Therefore, the understanding of ENKTL’s genetic background would benefit us enormously.

Materials and methods

Data collection and sample cluster

The procedure of our study is illustrated in Fig. 1. First, from the peripheral blood of a pair of twins, we applied a whole-genome shotgun (WGS, Beijing Boao Biological Co., Ltd) for sequencing to identify unique variant genes. One individual is diagnosed with ENKTL, while the other is healthy. WGS relies on the Illumina NovaSeq 6000 sequencing system. The sequence libraries for the system are composed of conventional small DNA fragments from genomic DNA samples. The end-repair of DNA fragments was added an ‘A’ base at the 3′-end of each strand, followed by the ligation-mediated PCR, single strand separation and cyclization. DNA Nanoballs (DNBs) was produced by the rolling circle amplification, being loaded into nanoarrays and processed for 100 bp pair-end sequencing. The mothod has a 30× sequencing depth and data size of 90G [25]. Next, we downloaded a training dataset (GSE 80632) from Gene Expression Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​gds/​) based on the platform GPL6883 from Illumina HumanRef-8 v3.0 expression beadchip. The database contains 25 ENKTL tissues and 15 normal tissues. Similarly, our testing database (GSE 19067) is from GEO, containing 21 ENKTL samples and 11 NK-cell lines. Subsequently, we conducted the Robust Multi-array Analysis (RMA) and z score processing to preprocess the normalized data [26]. Although these two databases contain different sets of genes, they both contain unique mutated genes which was sequenced by WGS.

Functional enrichment analysis

To understand the biological function of unique mutated genes, GO (Gene Ontology) enrichment analysis and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis were performed in DAVID (https://​david.​ncifcrf.​gov/​). R package goplot was used for visualization.

Identification of unique genes for ENKTL

To select unique genes, we used an elastic net to fit a generalized linear model by the R package glmnet and analyzed the training dataset by using the elastic net [27, 28]. We performed leave-one-study-out cross validation for classification validation and selected a penalty of 0.6 to fit a generalized linear model. Simultaneously, we used another algorithm called Support Vector Machine-Recursive Feature Elimination (SVM-RFE) to identify unique genes by applying e1071 package [29]. Next, we combined unique genes from the elastic net and the SVM-RFE algorithms and selected a total of 11 signature genes for further validation. Finally, we calculated patients’ signature scores to evaluate the biological difference of patients who had different unique genes (signature scores = ∑i Coefficient (mRNAi) × Expression (mRNAi)).

Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA)

To explore pathway gene sets of selected markers, we conducted GSEA and GSVA of the training set data. Based on the median of signature scores, samples were divided into the high group and the low group. We performed GSEA with GSEA V4.1.0 software in which c2.cp.kegg.v7.2.symbols.gmt serves as our defined background set of genes to be tested for significant and concordant differences between two biological states. Correspondingly, GSVA relied on R package “GSVA” in which h.all.v7.4. symbols.gmt serves as our defined background set of genes to be tested for significant and concordant differences between two biological states. R package (Limma) is used to calculate differences.

Immune infiltration analysis

We conducted single-sample gene set enrichment analysis (ssGSEA) [30] to achieve enrichment scores of immune-filtrating cells by calculating enrichment scores that stand for absolute enrichment levels of a gene set in a sample. Then, we performed Spearman correlation tests to assess correlation and used R package pheatmap for visualization.

Validation of signature genes

To validate the reliability and accuracy of unique genes, the validation set was used to verify the expression of the screened markers. Limma packages were used to calculate differential genes between the normal group and ENKTL group. We defined lg|fc| > 1 and adj.pvalue < 0.05 as significant difference. For differential genes, we used Boxvolin plots to demonstrate their expression levels. Wilcox test is responsible for detecting statistical differences.

Results

Sequencing of twins’ unique variant genes

OmicCircos packages are used for the visualization of 126 unique variant genes. Figure 2 depicted the site and the expression of unique variant genes. The outer circle shows those genes’ location on the chromosomes. The middle circle is the heat map of the gene expression. The inner-circle presents the mutation frequency. In the heat map, red stands for high and blue for low.

Functional enrichment analysis

We conducted GO and KEGG analysis to understand the biological function of identified unique genes, respectively. Chord diagram (Fig. 3A) showed that the unique genes were enriched in extracellular exosomes, Golgi membrane, T cell receptor signaling pathway, serine−type peptidase activity, clathrin−coated endocytic vesicle membrane, transport vesicle membrane, T cell costimulation, integral component of lumenal side of endoplasmic reticulum membrane, MHC class II protein complex and antigen processing and presentation of peptide or polysaccharide antigen via MHC class II. Bubble diagram (Fig. 3B) depicted that the unique genes were enriched in antigen-processing and presentation, asthma, graft-versus-host disease and staphylococcus aureus infection.

Identification of unique genes for ENKTL

To find the best gene signature in the 126 unique variant genes, we constructed an elastic net. In Fig. 4A, the binomial classifier model is the most stable when we selected 17 genes. Similarly, we used SVM-RFE to identify the gene signature. In Fig. 4B, the model is intensively stable when we selected 18 genes (accuracy = 0.971) for classifying ENKTL patients and healthy individuals. By combining unique genes from the elastic net and the SVM-RFE algorithms, we identified 11 unique genes (Fig. 4C).

GSEA and GSVA for pathway enrichment analysis

GSEA (Fig. 5A) indicated five immunity-related pathways with high signature scores: antigen-processing and presentation, FC-epsilon RI signaling pathway, glyoxylate and dicarboxylate metabolism, lysosome and Toll-like receptor signaling pathway. Antigen processing/presentation and Fc-related signaling pathways require the activation of antigen-presenting cells, implying that the inactivation of antigens may be a contributor for tumor cells to escape the surveillance. A synthetic toll-like receptor 4 (TLR4) agonist resulted in T-cell inflammation of the tumor microenvironment (TME) to cure lymphomas [17]. We assume that targeting the Toll-like receptor signaling pathway might be a method to treat ENKTL.
The heat map (Fig. 5B) shows GSVA results. The group with high signature scores was significantly enriched in the p53 pathway, reactive oxygen species pathway and protein secretion. The group with low signature scores was significantly enriched in coagulation, angiogenesis and myogenesis. p53 expression was associated with tumor stage and international prognostic index in patients with ENKTL [31]. p53 mutation and the upregulation of anti-apoptotic protein (survivin) favors the progression of ENKTL [32].

Immune infiltration analysis

The spearman correlation of unique-gene expression and corresponding immune enrichment scores were presented in Fig. 6. In ENKTL patients of the training set and the group with high signature scores, CD8+ T cells, NK CD56dim cells, T helper cells, cytotoxic cells and central memory T cells (Tcm) are all of great infiltration. The two groups shared the same results. On the other hand, dendritic cells effector and memory T cells (Tem) are all of great infiltration in healthy individuals and the group with low signature scores.

Validation of signature genes

We used validation sets to confirm the accuracy of our signature genes. Subsequently, the pheatmap and the volcano plot showed significantly differential genes (CDC27, ZNF141, FCGR2C and NES) in those 11 signature genes. ZNF141, FCGR2C and NES were upregulated in patients with ENKTL, while CDC27 was significantly downregulated in those patients (Fig. 7A and B). More convincingly, Boxviolin plot (Fig. 7C) indicated the expression levels of four unique genes. Consistently, the mRNA levels of ZNF141, FCGR2C and NES were higher in patients with ENKTL, while CDC27 was significantly lower.

Discussion

ENKTL can be easily diagnosed by morphology, immunohistochemical markers and in situ hybridization. Currently, there is no standard ENKTL guideline for prevention and treatment and no retrospective study with large samples. Previous retrospective studies indicated that the therapeutic effect of advanced and recurent ENKTL is unsatisfactory. In multiple studies, corresponding prognostic factors are inconsistent [3335]. Also, there is no prognostic molecular marker that is applied in clinical practice. Therefore, it is imperative to seek ENKTL biomarkers for treatment and prognosis. We hope that these biomarkers could accurately evaluate the prognosis of patients, promote targeted therapy in ENKTL and develop individualized treatment plans.
Several methods are used to build linear regression models. Each method is suitable for a given dataset with different features. The response variable (n) and the predictive variable (p) reflect the bias of these linear regression models. Our study consists of 38 samples. Elastic networks and SVM were used to screen specific target genes from unique variants to distinguish tumors from normal samples [36]. Elastic networks are suitable for our data that independent variables are much less than dependent variables (n < < p). We screened out 11 gene expression signatures for prediction. These are CDC27, MOV10L1, CROCC, RP1L1, ZNF141, FCGR2C, NES, CCDC9, TPSD1, CACNA1I, BMP8A.
With algorithms, scientists have applied machine learning to predict diagnosis, prognosis and therapeutic efficacy in lymphoma [3739]. For example, Hyungsoon et al. developed an automated device for the molecular diagnosis of aggressive lymphomas. They validated nodal lesions suspicious for lymphoma in 40 patients. The device can be portable to classify benign and malignant tumors [37]. Moreover, Shipp et al. applied supervised learning to identify cured diseases and fatal/refractory diseases. Specifically, the algorithm classified patients with different five-year survival rates and prognostic indexes (IPI) into two groups for outcome prediction, respectively [38]. Besides, Julkunen et al. constructed a machine learning framework (comboFM) to predict the responses of drug combinations. They found synergistic action in the combination of an anaplastic lymphoma kinase inhibitor (crizotinib) and a proteasome inhibitor (bortezomib) in lymphoma [39]. The performance stability of these models could be further compensated by choosing the study population, classifying pathological type and enlarging sample size.
Importantly, our data is from a pair of identical twins. One is diagnosed with ENKTL, while the other is healthy. We collected a cancerous sample from the ENKTL patient and a non-cancerous sample from the healthy one. We screened out unique mutant genes from the cancerous patient by setting the healthy one as control, which suggests that some of these mutant genes might be potential pathogenic genes. Our result is more convincing to explain the alterations in ENKTL pathogenesis. Next, our study performed an elastic analysis of ENKTL patients from international multi-platforms with SVMs for improved accuracy. Compared with linear mixed effect models (NONMEMs) and neural network models, SVMs solve problems better, including model selection, over-learning, nonlinear and dimension disaster and local minimum. According to the limited sample information, SVMs can find the best compromise between the complexity and learning ability of the model to obtain the best generalization. The method enables our predictive models appliable in predicting ENKTL.
Mechanically, the tumorigenesis and invasion of ENKTL are complicated. We comprehensively analyzed the molecular network by using GO and KEGG enrichment analysis. The purpose is to elucidate the pathogenesis of ENKTL and find sites for targeted therapy. Through the functional enrichment of unique variant genes, we understand the biological processes of these genes in ENKTL. Figure 3A indicated that extracellular exosomes were significantly correlated with ENKTL. A study showed similar results that the upregulated exosomal miRNA was a biomarker to identify ENKTL patients with treatment failure [35]. Exosomal miRNAs might be a biomarker to indicate therapeutic efficacy. Besides, we found that Golgi membrane, clathrin−coated endocytic vesicle membrane, transport vesicle membrane, endoplasmic reticulum membrane were all participated in the development of ENKTL, according to Fig. 3A. Latent membrane protein 1 (LMP1) is a stimulant of NKTL progression, which upregulates eukaryotic translation initiation factor 4E (eIF4E) mediated by the NF-κB pathway [40]. We hypothesized that these membrane-related mechanisms are involved in the activation of the tumorgenesis pathway, serving as an indicator of tumor progression. Other immunological signals (T cell receptor signaling pathway and phosphatidylcholine /phosphatidylserine-translocating ATPase activity) and complexes (MHC class II) are involved in ENKTL. A study identified the expression of T-cell receptors in ENKTL and the re-arrangement of T-cell-receptor genes [41]. The inhibition of ATPase activity and the regulation of MHC class II might be potential sites for targeted therapy.
Additionally, several eregulated cellular signaling networks have been extensively investigated in ENKTL. Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is the first representative. Compared with normal NK cells, proteins in the JAK/STAT pathway are differentially expressed in ENKTL cells [13, 42]. Platelet-derived growth factor receptor-α (PDGFR-α) pathway is another activated pathway in ENKTL and is correlated with cellular biological functions. Huang et al. used a tyrosine kinase inhibitor (imatinib mesylate) to inhibit the growth of the PDGFRα-overexpressing ENKTL cell line (MEC04) [13]. NOTCH-1 signaling pathway involves Notch 1 and Notch 2 which synergistically regulate the differentiation and function of NKT cells [43]. Similarly, Huang et al. used two NOTCH-1 inhibitors to hinder NK cell growth [13]. Figure 5A indicated that these potential pathways are related to antigen processing and the Fc epsilon RI-mediated signaling pathway. Stimulatory antigens might be processed for presentation. Precessed antigens could bind to the extracellular domain of the α chain of Fc epsilon RI to initiate intracellular signals. Furthermore, our results show the involvement of metabolic pathways, lysosomal pathways and Toll-like receptor pathways. JAK/STAT pathway, PDGFR-α pathway and NOTCH-1 participate in the energy metabolism and lysosomal activities. Our findings are consistent with the previous study.
We depicted the landscape of ENKTL and identified a series of targetable genes. Among them, CDC27 (Cell division cycle 27), ZNF 141 (Zinc finger protein141), Fc gamma receptor 2C (FCGR2C) and NES (nestin) are four promising candidates. Both the upregulation of ZNF141, FCGR2C and NES and the downregulation of CDC27 were associated with robust dendritic cell (DC) and T cell infiltration. Our deduction may be that ENKTL-associated proteins can be processed by DCs and presented to CD8+ T cells in the event of adequate other kinds of T cell infiltration to induce an immune attack. On the one hand, we analyzed these candidates functionally by GO enrichment analysis, KEGG enrichment analysis, GSEA and GSVA. On the other hand, their potential function in tumors was also investigated in previous literature. First, CDC27 is a significant subunit responsible for promoting anaphase. High levels of CDC27 were witnessed in T-lymphoblastic lymphoma (T-LBL). It facilitated proliferation, G1/S transition, protein upregulation (cyclin D1, CDK4 and PD-L1) and the inhibition of apoptosis [44]. Next, ZNF 141 encodes gene mapping and is related to chromosomal aneusomy syndromes. Its defect causes developmental disorders, involving some transcriptional regulators. Chromosomal aneusomy is one of the common genetic features of malignant tumor cells. Fetal death is a common outcome of chromosomal aneusomy [45]. Then, FCGR2C correlates with Fc gamma receptors of low-affinity immunoglobulins. It is a transmembrane glycoprotein located on the surface of immune cells and participates in phagocytosis and clearance of immune complexes [46]. NES is a kind of intermediate filament protein which is used as a marker of neural stem cells and progenitor cells in the central nervous system and a marker of endothelial cells. As for cancer, nestin exists in cancer stem-like cells and poorly differentiated cancer cells [47].
While our study was the first large-scale data analysis focusing gene signatures in patients with ENKTL, several limitations were noticed. We obtained a number of NKTL’s unique variant genes from the sequencing data of a pair of twins. Due to the limited number of samples, we selected the training set and validation sets of ENKTL from the public library to explore the predictive efficacy of these unique variant genes for ENKTL. We hope to find out a set of the most important signature genes for ENKTL. First, we conducted WGS, instead of detecting the mRNA level of these genes. Hence, the transcriptional level of gene expression is lack of validation in twins. Second, in multiple platforms, analyzing large cohort results in batch effects which are caused by different time, operators, reagents and instruments. Finally, a limited number of patients is another limitation. Our patients are a pair of twins. The best identification results need more data for validation and confirmation.

Conclusion

We conducted WGS for sequencing to identify unique variant genes from the peripheral blood samples of an ENKTL patient and a healthy individual. By analyzing the database, we demonstrated CDC27, MOV10L1, CROCC, RP1L1, ZNF141, FCGR2C, NES, CCDC9, TPSD1, CACNA1I, BMP8A as unique genes of ENKTL. Their involvement of biological activity and immune filtration was associated with ENKTL tumorigenesis and progression. ENKTL was caused by antigen processing/presentation pathway, Fc epsilon RI signaling pathway, glyoxylate and dicarboxylate metabolism pathway, lysosome pathway and Toll-like receptor signaling pathway. Finally, our study concluded that ZNF141, FCGR2C, NES and CDC27 are promising ENKTL gene signatures. These four genes showed good predictive efficacy in the validation set, suggesting that they are convincing signature genes for ENKTL.

Acknowledgements

We appreciate all the participants who supported our research.

Declarations

The studies involving human participants were reviewed and approved by the ethics administration office of West China Hospital, Sichuan University. All methods were carried out in accordance with relevant guidelines and regulations. All experimental protocols were approved by the ethics administration office of West China Hospital, Sichuan University. The patients/participants provided their written informed consent to participate in this study.
All authors consent to publication.

Competing interests

The authors declare that they have no competing interests.
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://​creativecommons.​org/​licenses/​by/​4.​0/​. The Creative Commons Public Domain Dedication waiver (http://​creativecommons.​org/​publicdomain/​zero/​1.​0/​) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Literatur
1.
2.
Zurück zum Zitat Montes-Mojarro IA, Chen BJ, Ramirez-Ibarguen AF, Quezada-Fiallos CM, Pérez-Báez WB, Dueñas D, et al. Mutational profile and EBV strains of extranodal NK/T-cell lymphoma, nasal type in Latin America. Mod Pathol. 2020;33:781–91.PubMedCrossRef Montes-Mojarro IA, Chen BJ, Ramirez-Ibarguen AF, Quezada-Fiallos CM, Pérez-Báez WB, Dueñas D, et al. Mutational profile and EBV strains of extranodal NK/T-cell lymphoma, nasal type in Latin America. Mod Pathol. 2020;33:781–91.PubMedCrossRef
3.
Zurück zum Zitat Huang L, Wu Y, Wang Y, Xie Y, Wu F, Li S, et al. Prognostic nomogram for overall survival in early stage extranodal natural killer/T cell lymphoma treated with high-dose radiotherapy. Clin Lymphoma Myeloma Leuk. 2020;20:289–95.PubMedCrossRef Huang L, Wu Y, Wang Y, Xie Y, Wu F, Li S, et al. Prognostic nomogram for overall survival in early stage extranodal natural killer/T cell lymphoma treated with high-dose radiotherapy. Clin Lymphoma Myeloma Leuk. 2020;20:289–95.PubMedCrossRef
4.
Zurück zum Zitat Ghione P, Qi S, Imber BS, Seshan V, Moskowitz A, Galasso N, et al. Modified SMILE (mSMILE) and intensity-modulated radiotherapy (IMRT) for extranodal NK-T lymphoma nasal type in a single-center population. Leuk Lymphoma. 2020;61:3331–41.PubMedPubMedCentralCrossRef Ghione P, Qi S, Imber BS, Seshan V, Moskowitz A, Galasso N, et al. Modified SMILE (mSMILE) and intensity-modulated radiotherapy (IMRT) for extranodal NK-T lymphoma nasal type in a single-center population. Leuk Lymphoma. 2020;61:3331–41.PubMedPubMedCentralCrossRef
6.
Zurück zum Zitat Gaballa MR, Ramos CA. Cellular immunotherapy in lymphoma: beyond CART cells. Curr Treat Options in Oncol. 2020;21:21.CrossRef Gaballa MR, Ramos CA. Cellular immunotherapy in lymphoma: beyond CART cells. Curr Treat Options in Oncol. 2020;21:21.CrossRef
7.
Zurück zum Zitat Panjwani PK, Charu V, DeLisser M, Molina-Kirsch H, Natkunam Y, Zhao S. Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Hum Pathol. 2018;71:91–9.PubMedCrossRef Panjwani PK, Charu V, DeLisser M, Molina-Kirsch H, Natkunam Y, Zhao S. Programmed death-1 ligands PD-L1 and PD-L2 show distinctive and restricted patterns of expression in lymphoma subtypes. Hum Pathol. 2018;71:91–9.PubMedCrossRef
8.
Zurück zum Zitat Cai J, Liu P, Huang H, Li Y, Ma S, Zhou H, et al. Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma. Signal Transduct Target Ther. 2020;5:289.PubMedPubMedCentralCrossRef Cai J, Liu P, Huang H, Li Y, Ma S, Zhou H, et al. Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma. Signal Transduct Target Ther. 2020;5:289.PubMedPubMedCentralCrossRef
9.
Zurück zum Zitat Lv K, Li X, Yu H, Chen X, Zhang M, Wu X. Selection of new immunotherapy targets for NK/T cell lymphoma. Am J Transl Res. 2020;12:7034–47.PubMedPubMedCentral Lv K, Li X, Yu H, Chen X, Zhang M, Wu X. Selection of new immunotherapy targets for NK/T cell lymphoma. Am J Transl Res. 2020;12:7034–47.PubMedPubMedCentral
10.
Zurück zum Zitat Vellanki PJ, Mulkey F, Jaigirdar AA, Rodriguez L, Wang Y, Xu Y. FDA approval summary: Nivolumab with Ipilimumab and chemotherapy for metastatic non-small cell lung cancer, a collaborative project Orbis review. Clin Cancer Res. 2021;27(13):3522–7.PubMedPubMedCentralCrossRef Vellanki PJ, Mulkey F, Jaigirdar AA, Rodriguez L, Wang Y, Xu Y. FDA approval summary: Nivolumab with Ipilimumab and chemotherapy for metastatic non-small cell lung cancer, a collaborative project Orbis review. Clin Cancer Res. 2021;27(13):3522–7.PubMedPubMedCentralCrossRef
11.
Zurück zum Zitat Strati P, Ahmed S, Furqan F, Fayad LE, Lee HJ, Iyer SP, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–6.PubMedPubMedCentralCrossRef Strati P, Ahmed S, Furqan F, Fayad LE, Lee HJ, Iyer SP, et al. Prognostic impact of corticosteroids on efficacy of chimeric antigen receptor T-cell therapy in large B-cell lymphoma. Blood. 2021;137(23):3272–6.PubMedPubMedCentralCrossRef
12.
Zurück zum Zitat Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. Lancet. 2021;397(10286):1750–69.PubMedCrossRef Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. Lancet. 2021;397(10286):1750–69.PubMedCrossRef
13.
Zurück zum Zitat Huang Y, de Reyniès A, de Leval L, Ghazi B, Martin-Garcia N, Travert M, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115:1226–37.PubMedPubMedCentralCrossRef Huang Y, de Reyniès A, de Leval L, Ghazi B, Martin-Garcia N, Travert M, et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood. 2010;115:1226–37.PubMedPubMedCentralCrossRef
14.
Zurück zum Zitat Küçük C, Jiang B, Hu X, Zhang W, Chan JK, Xiao W, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun. 2015;6:6025.PubMedCrossRef Küçük C, Jiang B, Hu X, Zhang W, Chan JK, Xiao W, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat Commun. 2015;6:6025.PubMedCrossRef
15.
Zurück zum Zitat Dong G, Li Y, Lee L, Liu X, Shi Y, Liu X, et al. Genetic manipulation of primary human natural killer cells to investigate the functional and oncogenic roles of PRDM1. Haematologica. 2020;106(9):2427–38.PubMedCentralCrossRef Dong G, Li Y, Lee L, Liu X, Shi Y, Liu X, et al. Genetic manipulation of primary human natural killer cells to investigate the functional and oncogenic roles of PRDM1. Haematologica. 2020;106(9):2427–38.PubMedCentralCrossRef
16.
Zurück zum Zitat Iqbal J, Kucuk C, Deleeuw RJ, Srivastava G, Tam W, Geng H, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009;23:1139–51.PubMedCrossRef Iqbal J, Kucuk C, Deleeuw RJ, Srivastava G, Tam W, Geng H, et al. Genomic analyses reveal global functional alterations that promote tumor growth and novel tumor suppressor genes in natural killer-cell malignancies. Leukemia. 2009;23:1139–51.PubMedCrossRef
17.
Zurück zum Zitat Küçük C, Hu X, Iqbal J, Gaulard P, Klinkebiel D, Cornish A, et al. HACE1 is a tumor suppressor gene candidate in natural killer cell neoplasms. Am J Pathol. 2013;182:49–55.PubMedPubMedCentralCrossRef Küçük C, Hu X, Iqbal J, Gaulard P, Klinkebiel D, Cornish A, et al. HACE1 is a tumor suppressor gene candidate in natural killer cell neoplasms. Am J Pathol. 2013;182:49–55.PubMedPubMedCentralCrossRef
18.
Zurück zum Zitat Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380:1347–58.PubMedCrossRef Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380:1347–58.PubMedCrossRef
19.
Zurück zum Zitat Saxe A, Nelli S. If deep learning is the answer, what is the question? Nat Rev Neurosci. 2021;22:55–67.PubMedCrossRef Saxe A, Nelli S. If deep learning is the answer, what is the question? Nat Rev Neurosci. 2021;22:55–67.PubMedCrossRef
20.
Zurück zum Zitat Kleppe A, Skrede OJ. Designing deep learning studies in cancer diagnostics. Nat Rev Cancer. 2021;21:199–211.PubMedCrossRef Kleppe A, Skrede OJ. Designing deep learning studies in cancer diagnostics. Nat Rev Cancer. 2021;21:199–211.PubMedCrossRef
22.
Zurück zum Zitat Yang Z, LaRiviere MJ. A multianalyte panel consisting of extracellular vesicle miRNAs and mRNAs, cfDNA, and CA19-9 shows utility for diagnosis and staging of pancreatic ductal adenocarcinoma. Adv Mater. 2020;26:3248–58. Yang Z, LaRiviere MJ. A multianalyte panel consisting of extracellular vesicle miRNAs and mRNAs, cfDNA, and CA19-9 shows utility for diagnosis and staging of pancreatic ductal adenocarcinoma. Adv Mater. 2020;26:3248–58.
26.
Zurück zum Zitat Leenhardt R, Souchaud M, Houist G, Le Mouel JP, Saurin JC, Cholet F, et al. A neural network-based algorithm for assessing the cleanliness of small bowel during capsule endoscopy. Endoscopy. 2021;53:932–6.PubMedCrossRef Leenhardt R, Souchaud M, Houist G, Le Mouel JP, Saurin JC, Cholet F, et al. A neural network-based algorithm for assessing the cleanliness of small bowel during capsule endoscopy. Endoscopy. 2021;53:932–6.PubMedCrossRef
27.
29.
Zurück zum Zitat Qiu J, Peng B, Tang Y, Qian Y, Guo P, Li M, et al. CpG methylation signature predicts recurrence in early-stage hepatocellular carcinoma: results from a multicenter study. J Clin Oncol. 2017;35:734–42.PubMedCrossRef Qiu J, Peng B, Tang Y, Qian Y, Guo P, Li M, et al. CpG methylation signature predicts recurrence in early-stage hepatocellular carcinoma: results from a multicenter study. J Clin Oncol. 2017;35:734–42.PubMedCrossRef
30.
Zurück zum Zitat Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.PubMedPubMedCentralCrossRef Barbie DA, Tamayo P, Boehm JS, Kim SY, Moody SE, Dunn IF, et al. Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1. Nature. 2009;462:108–12.PubMedPubMedCentralCrossRef
31.
Zurück zum Zitat Ye Z, Cao Q, Niu G, Liang Y, Liu Y, Jiang L, et al. p63 and p53 expression in extranodal NK/T cell lymphoma, nasal type. J Clin Pathol. 2013;66:676–80.PubMedCrossRef Ye Z, Cao Q, Niu G, Liang Y, Liu Y, Jiang L, et al. p63 and p53 expression in extranodal NK/T cell lymphoma, nasal type. J Clin Pathol. 2013;66:676–80.PubMedCrossRef
32.
33.
Zurück zum Zitat Shi H, Li C, Feng W, Yue J, Song J, Peng A, et al. BCL11A is oncogenic and predicts poor outcomes in natural killer/T-cell lymphoma. Front Pharmacol. 2020;11:820.PubMedPubMedCentralCrossRef Shi H, Li C, Feng W, Yue J, Song J, Peng A, et al. BCL11A is oncogenic and predicts poor outcomes in natural killer/T-cell lymphoma. Front Pharmacol. 2020;11:820.PubMedPubMedCentralCrossRef
34.
Zurück zum Zitat Yan J, Ng SB, Tay JL, Lin B, Koh TL, Tan J, et al. EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood. 2013;121:4512–20.PubMedCrossRef Yan J, Ng SB, Tay JL, Lin B, Koh TL, Tan J, et al. EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood. 2013;121:4512–20.PubMedCrossRef
35.
Zurück zum Zitat Ryu KJ, Lee JY, Choi ME, Yoon SE, Cho J, Ko YH, et al. Serum-derived exosomal MicroRNA profiles can predict poor survival outcomes in patients with extranodal natural killer/T-cell lymphoma. Cancers (Basel). 2020;12(12):3548.CrossRef Ryu KJ, Lee JY, Choi ME, Yoon SE, Cho J, Ko YH, et al. Serum-derived exosomal MicroRNA profiles can predict poor survival outcomes in patients with extranodal natural killer/T-cell lymphoma. Cancers (Basel). 2020;12(12):3548.CrossRef
36.
Zurück zum Zitat Vidyasagar M. Identifying predictive features in drug response using machine learning: opportunities and challenges. Annu Rev Pharmacol Toxicol. 2015;55:15–34.PubMedCrossRef Vidyasagar M. Identifying predictive features in drug response using machine learning: opportunities and challenges. Annu Rev Pharmacol Toxicol. 2015;55:15–34.PubMedCrossRef
37.
Zurück zum Zitat Im H, Pathania D. Design and clinical validation of a point-of-care device for the diagnosis of lymphoma via contrast-enhanced microholography and machine learning. Nat Biomed Eng. 2018;2:666–74.PubMedPubMedCentralCrossRef Im H, Pathania D. Design and clinical validation of a point-of-care device for the diagnosis of lymphoma via contrast-enhanced microholography and machine learning. Nat Biomed Eng. 2018;2:666–74.PubMedPubMedCentralCrossRef
38.
Zurück zum Zitat Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8:68–74.PubMedCrossRef Shipp MA, Ross KN, Tamayo P, Weng AP, Kutok JL, Aguiar RC, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med. 2002;8:68–74.PubMedCrossRef
39.
Zurück zum Zitat Julkunen H, Cichonska A. Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects. Nat Commun. 2020;11:6136.PubMedPubMedCentralCrossRef Julkunen H, Cichonska A. Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects. Nat Commun. 2020;11:6136.PubMedPubMedCentralCrossRef
40.
Zurück zum Zitat Sun L, Zhao Y, Shi H, Ma C, Wei L. LMP1 promotes nasal NK/T-cell lymphoma cell function by eIF4E via NF-κB pathway. Oncol Rep. 2015;34:3264–71.PubMedCrossRef Sun L, Zhao Y, Shi H, Ma C, Wei L. LMP1 promotes nasal NK/T-cell lymphoma cell function by eIF4E via NF-κB pathway. Oncol Rep. 2015;34:3264–71.PubMedCrossRef
41.
Zurück zum Zitat Takayama T, Shin S, Kang S, Kim SJ, Kim WS, Ko YH. Identification of T-cell receptor expression in EBV-positive neoplastic cells in extranodal NK/T-cell lymphoma, nasal-type, and comparison with T-cell receptor gene rearrangement by BIOMED-2 assay. Hum Pathol. 2018;73:51–8.PubMedCrossRef Takayama T, Shin S, Kang S, Kim SJ, Kim WS, Ko YH. Identification of T-cell receptor expression in EBV-positive neoplastic cells in extranodal NK/T-cell lymphoma, nasal-type, and comparison with T-cell receptor gene rearrangement by BIOMED-2 assay. Hum Pathol. 2018;73:51–8.PubMedCrossRef
42.
Zurück zum Zitat Lee S, Park HY, Kang SY, Kim SJ, Hwang J, Lee S, et al. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget. 2015;6:17764–76.PubMedPubMedCentralCrossRef Lee S, Park HY, Kang SY, Kim SJ, Hwang J, Lee S, et al. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget. 2015;6:17764–76.PubMedPubMedCentralCrossRef
43.
Zurück zum Zitat Oh SJ, Ahn S, Jin YH, Ishifune C, Kim JH, Yasutomo K, et al. Notch 1 and Notch 2 synergistically regulate the differentiation and function of invariant NKT cells. J Leukoc Biol. 2015;98:781–9.PubMedCrossRef Oh SJ, Ahn S, Jin YH, Ishifune C, Kim JH, Yasutomo K, et al. Notch 1 and Notch 2 synergistically regulate the differentiation and function of invariant NKT cells. J Leukoc Biol. 2015;98:781–9.PubMedCrossRef
44.
Zurück zum Zitat Song Y, Song W, Li Z, Song W, Wen Y, Li J, et al. CDC27 promotes tumor progression and affects PD-L1 expression in T-cell lymphoblastic lymphoma. Front Oncol. 2020;10:488.PubMedPubMedCentralCrossRef Song Y, Song W, Li Z, Song W, Wen Y, Li J, et al. CDC27 promotes tumor progression and affects PD-L1 expression in T-cell lymphoblastic lymphoma. Front Oncol. 2020;10:488.PubMedPubMedCentralCrossRef
45.
Zurück zum Zitat Tommerup N, Aagaard L, Lund CL, Boel E, Baxendale S, Bates GP, et al. A zinc-finger gene ZNF141 mapping at 4p16.3/D4S90 is a candidate gene for the Wolf-Hirschhorn (4p-) syndrome. Hum Mol Genet. 1993;2:1571–5.PubMedCrossRef Tommerup N, Aagaard L, Lund CL, Boel E, Baxendale S, Bates GP, et al. A zinc-finger gene ZNF141 mapping at 4p16.3/D4S90 is a candidate gene for the Wolf-Hirschhorn (4p-) syndrome. Hum Mol Genet. 1993;2:1571–5.PubMedCrossRef
46.
Zurück zum Zitat Gorlova OY, Li Y, Gorlov I, Ying J, Chen WV, Assassi S, et al. Gene-level association analysis of systemic sclerosis: a comparison of African-Americans and White populations. PLoS One. 2018;13:e0189498.PubMedPubMedCentralCrossRef Gorlova OY, Li Y, Gorlov I, Ying J, Chen WV, Assassi S, et al. Gene-level association analysis of systemic sclerosis: a comparison of African-Americans and White populations. PLoS One. 2018;13:e0189498.PubMedPubMedCentralCrossRef
47.
Zurück zum Zitat Sharma P, Alsharif S, Fallatah A, Chung BM. Intermediate filaments as effectors of cancer development and metastasis: a focus on keratins, vimentin, and nestin. Cells. 2019;8(5):497.PubMedCentralCrossRef Sharma P, Alsharif S, Fallatah A, Chung BM. Intermediate filaments as effectors of cancer development and metastasis: a focus on keratins, vimentin, and nestin. Cells. 2019;8(5):497.PubMedCentralCrossRef
Metadaten
Titel
The identification of gene signatures in patients with extranodal NK/T-cell lymphoma from a pair of twins
verfasst von
Yang Wang
Huaicheng Tan
Ting Yu
Xuelei Ma
Xiaoxuan Chen
Fangqi Jing
Liqun Zou
Huashan Shi
Publikationsdatum
01.12.2021
Verlag
BioMed Central
Erschienen in
BMC Cancer / Ausgabe 1/2021
Elektronische ISSN: 1471-2407
DOI
https://doi.org/10.1186/s12885-021-09023-9

Weitere Artikel der Ausgabe 1/2021

BMC Cancer 1/2021 Zur Ausgabe

Alphablocker schützt vor Miktionsproblemen nach der Biopsie

16.05.2024 alpha-1-Rezeptorantagonisten Nachrichten

Nach einer Prostatabiopsie treten häufig Probleme beim Wasserlassen auf. Ob sich das durch den periinterventionellen Einsatz von Alphablockern verhindern lässt, haben australische Mediziner im Zuge einer Metaanalyse untersucht.

Antikörper-Wirkstoff-Konjugat hält solide Tumoren in Schach

16.05.2024 Zielgerichtete Therapie Nachrichten

Trastuzumab deruxtecan scheint auch jenseits von Lungenkrebs gut gegen solide Tumoren mit HER2-Mutationen zu wirken. Dafür sprechen die Daten einer offenen Pan-Tumor-Studie.

Mammakarzinom: Senken Statine das krebsbedingte Sterberisiko?

15.05.2024 Mammakarzinom Nachrichten

Frauen mit lokalem oder metastasiertem Brustkrebs, die Statine einnehmen, haben eine niedrigere krebsspezifische Mortalität als Patientinnen, die dies nicht tun, legen neue Daten aus den USA nahe.

Labor, CT-Anthropometrie zeigen Risiko für Pankreaskrebs

13.05.2024 Pankreaskarzinom Nachrichten

Gerade bei aggressiven Malignomen wie dem duktalen Adenokarzinom des Pankreas könnte Früherkennung die Therapiechancen verbessern. Noch jedoch klafft hier eine Lücke. Ein Studienteam hat einen Weg gesucht, sie zu schließen.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.