Skip to main content
Erschienen in: European Journal of Applied Physiology 4/2014

01.04.2014 | Original Article

The mechanics of jumping over an obstacle during running: a comparison between athletes trained to hurdling and recreational runners

verfasst von: G. Mauroy, B. Schepens, P. A. Willems

Erschienen in: European Journal of Applied Physiology | Ausgabe 4/2014

Einloggen, um Zugang zu erhalten

Abstract

Purpose

This study compares the mechanism of running in trained athletes (TA) experienced in hurdling and in recreational runners (RR), as they approach and jump over an obstacle.

Methods

The movements of the centre of mass of the body (COM), the external muscular work (W ext) and the leg-spring stiffness (k leg) were evaluated in athletes approaching an obstacle at 18 km h−1, from the ground reaction forces (measured by force-platforms) and the orientation of the lower-limb segments (measured by camera). These results were compared to those obtained in RR.

Results

Two steps before the obstacle, k leg is reduced by 10–20 %; so, the COM is lowered and accelerated forward. During the step preceding the obstacle, k leg is increased by 40–60 %; so the COM is raised and accelerated upwards, whereas its forward velocity is reduced. This change in the running pattern is similar to the one observed in RR while leaping an obstacle. However, in TA, the change in stiffness is less pronounced. As a result, the orientation of the velocity vector at the beginning of the aerial phase over the obstacle is more horizontal than in RR, which involves a 10–20 % greater horizontal velocity and a 40–60 % smaller vertical excursion of the COM when crossing the obstacle; subsequently, W ext during contact before the obstacle is 10–20 % less.

Conclusion

Athletes use the same mechanisms as non-specialists to cross an obstacle. However, athletes adapt the mechanism of jumping to reduce the loss in the velocity of progression when crossing an obstacle.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Brughelli M, Cronin J (2008) Influence of running velocity on vertical, leg and joint stiffness: modelling and recommendations for future research. Sports Med 38(8):647–657PubMedCrossRef Brughelli M, Cronin J (2008) Influence of running velocity on vertical, leg and joint stiffness: modelling and recommendations for future research. Sports Med 38(8):647–657PubMedCrossRef
Zurück zum Zitat Butler RJ, Crowell Iii HP, Davis IM (2003) Lower extremity stiffness: implications for performance and injury. Clin Biomech 18(6):511–517CrossRef Butler RJ, Crowell Iii HP, Davis IM (2003) Lower extremity stiffness: implications for performance and injury. Clin Biomech 18(6):511–517CrossRef
Zurück zum Zitat Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39(1):174–179PubMed Cavagna GA (1975) Force platforms as ergometers. J Appl Physiol 39(1):174–179PubMed
Zurück zum Zitat Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol 262(3):639–657PubMedCentralPubMed Cavagna GA, Thys H, Zamboni A (1976) The sources of external work in level walking and running. J Physiol 262(3):639–657PubMedCentralPubMed
Zurück zum Zitat Coh M, Iskra J (2012) Biomechanical studies of 110 m hurdle clearance technique. Sport Sci 5(1):10–14 Coh M, Iskra J (2012) Biomechanical studies of 110 m hurdle clearance technique. Sport Sci 5(1):10–14
Zurück zum Zitat Farley CT, Gonzalez O (1996) Leg stiffness and stride frequency in human running. J Biomech 29(2):181–186PubMedCrossRef Farley CT, Gonzalez O (1996) Leg stiffness and stride frequency in human running. J Biomech 29(2):181–186PubMedCrossRef
Zurück zum Zitat He JP, Kram R, McMahon TA (1991) Mechanics of running under simulated low gravity. J Appl Physiol 71(3):863–870PubMed He JP, Kram R, McMahon TA (1991) Mechanics of running under simulated low gravity. J Appl Physiol 71(3):863–870PubMed
Zurück zum Zitat Hobara H, Kanosue K, Suzuki S (2007) Changes in muscle activity with increase in leg stiffness during hopping. Neurosci Lett 418(1):55–59PubMedCrossRef Hobara H, Kanosue K, Suzuki S (2007) Changes in muscle activity with increase in leg stiffness during hopping. Neurosci Lett 418(1):55–59PubMedCrossRef
Zurück zum Zitat Hobara H, Kimura K, Omuro K, Gomi K, Muraoka T, Sakamoto M, Kanosue K (2010) Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects. J Sci Med Sport 13(1):106–111PubMedCrossRef Hobara H, Kimura K, Omuro K, Gomi K, Muraoka T, Sakamoto M, Kanosue K (2010) Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects. J Sci Med Sport 13(1):106–111PubMedCrossRef
Zurück zum Zitat Komi PV (1986) Training of muscle strength and power: interaction of neuromotoric, hypertrophic, and mechanical factors. Int J Sports Med 7(SUPPL. 1):10–15PubMedCrossRef Komi PV (1986) Training of muscle strength and power: interaction of neuromotoric, hypertrophic, and mechanical factors. Int J Sports Med 7(SUPPL. 1):10–15PubMedCrossRef
Zurück zum Zitat Mann R, Herman J (1985) Kinematic analysis of Olympic hurdle performance: women’s 100 meters. Int J Sport Biomech 1:163–173 Mann R, Herman J (1985) Kinematic analysis of Olympic hurdle performance: women’s 100 meters. Int J Sport Biomech 1:163–173
Zurück zum Zitat McDonald C, Dapena J (1991a) Angular momentum in the men’s 110-m and women’s 100-m hurdles races. Med Sci Sports Exerc 23(12):1392–1402PubMed McDonald C, Dapena J (1991a) Angular momentum in the men’s 110-m and women’s 100-m hurdles races. Med Sci Sports Exerc 23(12):1392–1402PubMed
Zurück zum Zitat McDonald C, Dapena J (1991b) Linear kinematics of the men’s 110-m and women’s 100-m hurdles races. Med Sci Sports Exerc 23(12):1382–1391PubMed McDonald C, Dapena J (1991b) Linear kinematics of the men’s 110-m and women’s 100-m hurdles races. Med Sci Sports Exerc 23(12):1382–1391PubMed
Zurück zum Zitat McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23(Suppl 1):65–78PubMedCrossRef McMahon TA, Cheng GC (1990) The mechanics of running: how does stiffness couple with speed? J Biomech 23(Suppl 1):65–78PubMedCrossRef
Zurück zum Zitat Mero A, Komi PV, Gregor RJ (1992) Biomechanics of sprint running. A review. Sports Med 13(6):376–392PubMedCrossRef Mero A, Komi PV, Gregor RJ (1992) Biomechanics of sprint running. A review. Sports Med 13(6):376–392PubMedCrossRef
Zurück zum Zitat Morin JB, Dalleau G, Kyrolainen H, Jeannin T, Belli A (2005) A simple method for measuring stiffness during running. J Appl Biomech 21(2):167–180PubMed Morin JB, Dalleau G, Kyrolainen H, Jeannin T, Belli A (2005) A simple method for measuring stiffness during running. J Appl Biomech 21(2):167–180PubMed
Zurück zum Zitat Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR (2012) Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. doi:10.1007/s00421-012-2379-8 Morin JB, Bourdin M, Edouard P, Peyrot N, Samozino P, Lacour JR (2012) Mechanical determinants of 100-m sprint running performance. Eur J Appl Physiol. doi:10.​1007/​s00421-012-2379-8
Zurück zum Zitat Salo A, Grimshaw PN, Marar L (1997) 3-D biomechanical analysis of sprint hurdles at different competitive levels. Med Sci Sports Exerc 29(2):231–237PubMedCrossRef Salo A, Grimshaw PN, Marar L (1997) 3-D biomechanical analysis of sprint hurdles at different competitive levels. Med Sci Sports Exerc 29(2):231–237PubMedCrossRef
Zurück zum Zitat Seyfarth A, Geyer H, Gunther M, Blickhan R (2002) A movement criterion for running. J Biomech 35(5):649–655PubMedCrossRef Seyfarth A, Geyer H, Gunther M, Blickhan R (2002) A movement criterion for running. J Biomech 35(5):649–655PubMedCrossRef
Metadaten
Titel
The mechanics of jumping over an obstacle during running: a comparison between athletes trained to hurdling and recreational runners
verfasst von
G. Mauroy
B. Schepens
P. A. Willems
Publikationsdatum
01.04.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
European Journal of Applied Physiology / Ausgabe 4/2014
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-013-2805-6

Weitere Artikel der Ausgabe 4/2014

European Journal of Applied Physiology 4/2014 Zur Ausgabe

Neu im Fachgebiet Arbeitsmedizin

Das Geschlechterparadoxon in der gesundheitlich beeinträchtigten Lebenszeit – Ende eines Mythos?

Beginnend mit den 1920er-Jahren hat sich eine Vorstellung über die Geschlechterdifferenzen in Gesundheit und Mortalität etabliert, die von Lorber und Moore in dem einprägsamen Satz: „Women get sicker, but men die quicker“, zusammengefasst wurde [ 1 …, S. 13]. Tatsächlich erscheinen vor dem Hintergrund der höheren Lebenserwartung der Frauen die Studienergebnisse zu den Geschlechterdifferenzen in der Morbidität überraschend, wonach Frauen im Durchschnitt einen schlechteren Gesundheitszustand aufweisen als Männer [

Gesunde Lebenserwartung: Ein kritischer Blick auf Nutzen und Potenziale des demographischen Gesundheitsindikators

Open Access Leitthema

Die demographische Alterung hat vielfältige gesellschaftliche Konsequenzen, deren Ausmaß wesentlich vom Gesundheitszustand der Bevölkerung abhängt. Um diesen analysieren und bewerten zu können, wurden spezielle Kennziffern entwickelt, die in …

Wie hat sich die Lebenserwartung ohne funktionelle Einschränkungen in Deutschland entwickelt? Eine Analyse mit Daten des Deutschen Alterssurveys (DEAS)

Deutschland erfährt, wie andere Hocheinkommensstaaten, aufgrund kontinuierlich rückläufiger Mortalität und niedriger Geburtenraten tiefgreifende demografische Veränderungen. Der demografische Wandel führt in Deutschland zu einem zunehmend höheren …

Hitzeschutz im Fokus der hessischen Betreuungs- und Pflegeaufsicht

Open Access Klimawandel Übersichtsartikel

Im Sommer 2023 kündigte das Bundesministerium für Gesundheit (BMG) einen nationalen Hitzeschutzplan an und forderte die Länder auf, zu prüfen, „ob die Warnstufen des [Deutschen Wetterdienstes] DWD mit der Durchführung von Akutmaßnahmen …