Skip to main content
Erschienen in: European Journal of Applied Physiology 5-6/2003

01.11.2003 | Original Article

The metabolic transition speed between backward walking and running

verfasst von: Elmarie Terblanche, Werner A. Cloete, Pieter A. L. du Plessis, Jacques N. Sadie, Annemie Strauss, Marianne Unger

Erschienen in: European Journal of Applied Physiology | Ausgabe 5-6/2003

Einloggen, um Zugang zu erhalten

Abstract

Although the metabolic transition speed for forward exercise has already been determined, the walk–run transition speed for backward exercise has not been investigated before. The aim of this study was to determine the speed at which it becomes metabolically more efficient to run backwards than to walk backwards. Eighteen healthy volunteers, who successfully completed three backward exercise practice sessions, participated in the study. All subjects randomly performed two exercise tests: backward walking and backward running. Both protocols started at a treadmill speed of 5 km.h−1. Every minute the speed was increased by 0.5 km.h−1 until 8 km.h−1 was reached. Cardiorespiratory variables were continuously measured and blood lactate concentration [La] was determined every 2 min, using the Accusport lactate analyser. At each work load subjects rated their perceived exertion (RPE), using the Borg scale. There were no statistically significant differences in oxygen consumption, minute ventilation and heart rate between 6 and 7 km.h−1, for backward walking and backward running (P>0.05). There was no statistically significant difference in blood [La] between walking and running at 7.5 km.h-1 (P>0.05). According to the RPE values, subjects rated running at speeds less than 6 km.h−1 more difficult than walking at similar speeds. We conclude that the metabolic transition speed between backward walking and running is between 6 and 7 km.h−1, which is lower than the metabolic transition speed for forward locomotion (7.2–7.9 km.h−1).
Literatur
Zurück zum Zitat Abbott BC, Bigland B, Ritchie JM (1952) The physiological cost of negative work. J Physiol 117:380–390 Abbott BC, Bigland B, Ritchie JM (1952) The physiological cost of negative work. J Physiol 117:380–390
Zurück zum Zitat Alexander RM (1980) Optimum walking techniques for quadrupeds and bipeds. J Zool Soc Lond 192:97–117 Alexander RM (1980) Optimum walking techniques for quadrupeds and bipeds. J Zool Soc Lond 192:97–117
Zurück zum Zitat Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand. J Rehabil Med 2:92–98PubMed Borg G (1970) Perceived exertion as an indicator of somatic stress. Scand. J Rehabil Med 2:92–98PubMed
Zurück zum Zitat Brukner P, Kahn K (2001) Clinical sports medicine, 2nd edn. McGraw Hill, New York, pp 466, 468–469 Brukner P, Kahn K (2001) Clinical sports medicine, 2nd edn. McGraw Hill, New York, pp 466, 468–469
Zurück zum Zitat Cavagna GA, Kaneko M (1977) Mechanical work and efficiency in level walking and running. J Physiol (Lond) 268:467–481 Cavagna GA, Kaneko M (1977) Mechanical work and efficiency in level walking and running. J Physiol (Lond) 268:467–481
Zurück zum Zitat Cavagna GA, Saibene FP, Margaria R (1963) External work in walking. J Appl Physiol 18(1): 1–90 Cavagna GA, Saibene FP, Margaria R (1963) External work in walking. J Appl Physiol 18(1): 1–90
Zurück zum Zitat Cavanagh PR, Davies CTM, Grieve DW, Sargeant AJ (1973) Electromyographic, kinesiological, and metabolic examination of running on a treadmill. J Physiol (Lond) 223:7P Cavanagh PR, Davies CTM, Grieve DW, Sargeant AJ (1973) Electromyographic, kinesiological, and metabolic examination of running on a treadmill. J Physiol (Lond) 223:7P
Zurück zum Zitat Childs JD, Gantt C, Higgins D, Papazis JA, Franklin R, Metzler T, Underwood FB (2002) The effect of repeated bouts of backward walking on physiologic efficiency. J Strength Cond Res 16: 451–455PubMed Childs JD, Gantt C, Higgins D, Papazis JA, Franklin R, Metzler T, Underwood FB (2002) The effect of repeated bouts of backward walking on physiologic efficiency. J Strength Cond Res 16: 451–455PubMed
Zurück zum Zitat Coyle EF, Martin WH, Sinacore DR, Joyner MJ, Hagberg JM, Holloszy JH (1984) Time course of loss of adaptations after stopping prolonged intense endurance training. J Appl Phys 57:1857–1864 Coyle EF, Martin WH, Sinacore DR, Joyner MJ, Hagberg JM, Holloszy JH (1984) Time course of loss of adaptations after stopping prolonged intense endurance training. J Appl Phys 57:1857–1864
Zurück zum Zitat Devita P and Stribling J (1991) Lower extremity joint kinetics and energetics during backward running. Med Sci Sports Exerc 23:602–610PubMed Devita P and Stribling J (1991) Lower extremity joint kinetics and energetics during backward running. Med Sci Sports Exerc 23:602–610PubMed
Zurück zum Zitat Flynn TW, Soutas-Little RW (1991) Patello-femoral joint compressive forces during forward and backward running (abstract). Med Sci Sports Exerc 23:32S Flynn TW, Soutas-Little RW (1991) Patello-femoral joint compressive forces during forward and backward running (abstract). Med Sci Sports Exerc 23:32S
Zurück zum Zitat Flynn TW, Soutas-Little RW (1993) Mechanical power and muscle action during forward and backward running. J Orthop Sports Phys Ther 17:108–112PubMed Flynn TW, Soutas-Little RW (1993) Mechanical power and muscle action during forward and backward running. J Orthop Sports Phys Ther 17:108–112PubMed
Zurück zum Zitat Flynn TW, Connery SM, Smutok MA, Zeballos RJ, Weisman IM (1994) Comparison of cardiopulmonary responses to forward and backward walking and running. Med Sci Sports Exerc 26:89–94PubMed Flynn TW, Connery SM, Smutok MA, Zeballos RJ, Weisman IM (1994) Comparison of cardiopulmonary responses to forward and backward walking and running. Med Sci Sports Exerc 26:89–94PubMed
Zurück zum Zitat Hreljac A (1993) Preferred and energetically optimal gait transition speeds in human locomotion. Med Sci Sports Exerc 25:1158–1162PubMed Hreljac A (1993) Preferred and energetically optimal gait transition speeds in human locomotion. Med Sci Sports Exerc 25:1158–1162PubMed
Zurück zum Zitat Kramer JF, Reid DC (1981) Backward walking: a cinematographic and electromyographic pilot study. Physiother Can 33:77–86 Kramer JF, Reid DC (1981) Backward walking: a cinematographic and electromyographic pilot study. Physiother Can 33:77–86
Zurück zum Zitat Mackie JW, Dean TE (1984) Running backward training effects on upper leg musculature and ligamentous instability of injured knees (abstract). Med Sci Sports Exerc 16: S151 Mackie JW, Dean TE (1984) Running backward training effects on upper leg musculature and ligamentous instability of injured knees (abstract). Med Sci Sports Exerc 16: S151
Zurück zum Zitat Margaria R, Cerretelli P, Aghemo P, Sassi G (1963) Energy cost of running. J Appl Physiol 18:367–370 Margaria R, Cerretelli P, Aghemo P, Sassi G (1963) Energy cost of running. J Appl Physiol 18:367–370
Zurück zum Zitat Mercier J, Le Gallais D, Durand M, Goudal C, Micallef JP, Prèfaut C (1994) Energy expenditure and cardiorespiratory responses at the transition between walking and running. Eur J Appl Physiol, 69:525–529 Mercier J, Le Gallais D, Durand M, Goudal C, Micallef JP, Prèfaut C (1994) Energy expenditure and cardiorespiratory responses at the transition between walking and running. Eur J Appl Physiol, 69:525–529
Zurück zum Zitat Minetti AE, Ardigo LP, Saibene F (1994) The transition between walking and running in humans: metabolic and mechanical aspects at different gradients. Acta Physiol Scand 150:315–323PubMed Minetti AE, Ardigo LP, Saibene F (1994) The transition between walking and running in humans: metabolic and mechanical aspects at different gradients. Acta Physiol Scand 150:315–323PubMed
Zurück zum Zitat Myatt G, Baxter R, Dougherty R, Williams G, Halle J, Stetts D, Underwood F (1995) The cardiopulmonary cost of backward walking at selected speeds. J Orthop Sports Phys Ther 21:132–138PubMed Myatt G, Baxter R, Dougherty R, Williams G, Halle J, Stetts D, Underwood F (1995) The cardiopulmonary cost of backward walking at selected speeds. J Orthop Sports Phys Ther 21:132–138PubMed
Zurück zum Zitat Nichols JF, Phores SL, Buono MJ (1997) Relationship between lactate response to exercise and endurance performance in competitive female master cyclists. Int J Sports Med 18:458–463PubMed Nichols JF, Phores SL, Buono MJ (1997) Relationship between lactate response to exercise and endurance performance in competitive female master cyclists. Int J Sports Med 18:458–463PubMed
Zurück zum Zitat Noble B, Metz K, Pandolf KB, Bell CW, Cafarelli E, Sime WE (1973) Perceived exertion during walking and running – II. Med Sci Sports 5:116–120PubMed Noble B, Metz K, Pandolf KB, Bell CW, Cafarelli E, Sime WE (1973) Perceived exertion during walking and running – II. Med Sci Sports 5:116–120PubMed
Zurück zum Zitat Prilutsky BI, Gregor RJ (2001) Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions. J Exp Biol 204:2277–2287PubMed Prilutsky BI, Gregor RJ (2001) Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions. J Exp Biol 204:2277–2287PubMed
Zurück zum Zitat Schwane JA, Johnson SR, Vandenakker CB, Armstrong RB (1983) Delayed-onset muscular soreness and plasm CPK and LDH activities after downhill running. Med Sci Sports Exerc 15:51–56PubMed Schwane JA, Johnson SR, Vandenakker CB, Armstrong RB (1983) Delayed-onset muscular soreness and plasm CPK and LDH activities after downhill running. Med Sci Sports Exerc 15:51–56PubMed
Zurück zum Zitat Thorstensson A (1986) How is the normal locomotor program modified to produce backward walking? Exp Brain Res 61:664–668 Thorstensson A (1986) How is the normal locomotor program modified to produce backward walking? Exp Brain Res 61:664–668
Zurück zum Zitat Thorstensson A and Roberthson H (1987) Adaptations to changing speed in human locomotion: speed of transition between walking and running. Acta Physiol Scand 131:211–214PubMed Thorstensson A and Roberthson H (1987) Adaptations to changing speed in human locomotion: speed of transition between walking and running. Acta Physiol Scand 131:211–214PubMed
Zurück zum Zitat Threlkeld AJ, Horn TS, Wojtowicz GM, Rooney JG, Shapiro R (1989) Kinematics, ground reaction forces, and muscle balance produced by backward running. J Orthop Sports Phys Ther 11:56–62 Threlkeld AJ, Horn TS, Wojtowicz GM, Rooney JG, Shapiro R (1989) Kinematics, ground reaction forces, and muscle balance produced by backward running. J Orthop Sports Phys Ther 11:56–62
Zurück zum Zitat Vilensky JA, Gankiewicz E, Gehlsen G (1987) A kinematic comparison of backward and forward walking in humans. J Hum Mov Stud 13:29–50 Vilensky JA, Gankiewicz E, Gehlsen G (1987) A kinematic comparison of backward and forward walking in humans. J Hum Mov Stud 13:29–50
Metadaten
Titel
The metabolic transition speed between backward walking and running
verfasst von
Elmarie Terblanche
Werner A. Cloete
Pieter A. L. du Plessis
Jacques N. Sadie
Annemie Strauss
Marianne Unger
Publikationsdatum
01.11.2003
Verlag
Springer-Verlag
Erschienen in
European Journal of Applied Physiology / Ausgabe 5-6/2003
Print ISSN: 1439-6319
Elektronische ISSN: 1439-6327
DOI
https://doi.org/10.1007/s00421-003-0890-7

Weitere Artikel der Ausgabe 5-6/2003

European Journal of Applied Physiology 5-6/2003 Zur Ausgabe

Neu im Fachgebiet Arbeitsmedizin

Das Geschlechterparadoxon in der gesundheitlich beeinträchtigten Lebenszeit – Ende eines Mythos?

Beginnend mit den 1920er-Jahren hat sich eine Vorstellung über die Geschlechterdifferenzen in Gesundheit und Mortalität etabliert, die von Lorber und Moore in dem einprägsamen Satz: „Women get sicker, but men die quicker“, zusammengefasst wurde [ 1 …, S. 13]. Tatsächlich erscheinen vor dem Hintergrund der höheren Lebenserwartung der Frauen die Studienergebnisse zu den Geschlechterdifferenzen in der Morbidität überraschend, wonach Frauen im Durchschnitt einen schlechteren Gesundheitszustand aufweisen als Männer [

Gesunde Lebenserwartung: Ein kritischer Blick auf Nutzen und Potenziale des demographischen Gesundheitsindikators

Open Access Leitthema

Die demographische Alterung hat vielfältige gesellschaftliche Konsequenzen, deren Ausmaß wesentlich vom Gesundheitszustand der Bevölkerung abhängt. Um diesen analysieren und bewerten zu können, wurden spezielle Kennziffern entwickelt, die in …

Wie hat sich die Lebenserwartung ohne funktionelle Einschränkungen in Deutschland entwickelt? Eine Analyse mit Daten des Deutschen Alterssurveys (DEAS)

Deutschland erfährt, wie andere Hocheinkommensstaaten, aufgrund kontinuierlich rückläufiger Mortalität und niedriger Geburtenraten tiefgreifende demografische Veränderungen. Der demografische Wandel führt in Deutschland zu einem zunehmend höheren …

Hitzeschutz im Fokus der hessischen Betreuungs- und Pflegeaufsicht

Open Access Klimawandel Übersichtsartikel

Im Sommer 2023 kündigte das Bundesministerium für Gesundheit (BMG) einen nationalen Hitzeschutzplan an und forderte die Länder auf, zu prüfen, „ob die Warnstufen des [Deutschen Wetterdienstes] DWD mit der Durchführung von Akutmaßnahmen …