Skip to main content
Erschienen in: Documenta Ophthalmologica 3/2007

01.11.2007 | Original Research Article

The mouse pattern electroretinogram

verfasst von: Vittorio Porciatti

Erschienen in: Documenta Ophthalmologica | Ausgabe 3/2007

Einloggen, um Zugang zu erhalten

Abstract

Mouse models of optic nerve disease such as glaucoma, optic neuritis, ischemic optic neuropathy, and mitochondrial optic neuropathy are being developed at increasing rate to investigate specific pathophysiological mechanisms and the effect of neuroprotective treatments. The use of these models may be greatly enhanced by the availability of non-invasive methods able to monitor retinal ganglion cell (RGC) function longitudinally such as the Pattern Electroretinogram (PERG). While the use of the PERG as a tool to probe inner retina function in mammals is known since 25 years, relatively less information is available for the mouse. Here, the PERG technique and the main applications in the mouse are reviewed.
Literatur
1.
Zurück zum Zitat Riggs LA, Johnson EP, Schick AML (1964) Electrical responses of the human eye to moving stimulus pattern. Science 144:567–568PubMedCrossRef Riggs LA, Johnson EP, Schick AML (1964) Electrical responses of the human eye to moving stimulus pattern. Science 144:567–568PubMedCrossRef
3.
Zurück zum Zitat Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211(4485):953–955CrossRef Maffei L, Fiorentini A (1981) Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211(4485):953–955CrossRef
4.
Zurück zum Zitat Regan D (1989) Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York Regan D (1989) Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine. Elsevier, New York
5.
Zurück zum Zitat Zrenner E (1990) The physiological basis of the pattern electroretinogram. In: Osborne N, Chader G (eds) Progress in retinal research. vol 9. Pergamon Press, Oxford Zrenner E (1990) The physiological basis of the pattern electroretinogram. In: Osborne N, Chader G (eds) Progress in retinal research. vol 9. Pergamon Press, Oxford
6.
Zurück zum Zitat Bach M, Hawlina M, Holder GE et al (2000) Standard for pattern electroretinography. International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 101(1):11–18PubMedCrossRef Bach M, Hawlina M, Holder GE et al (2000) Standard for pattern electroretinography. International Society for Clinical Electrophysiology of Vision. Doc Ophthalmol 101(1):11–18PubMedCrossRef
7.
Zurück zum Zitat Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111(1):161–168PubMedCrossRef Porciatti V, Ventura LM (2004) Normative data for a user-friendly paradigm for pattern electroretinogram recording. Ophthalmology 111(1):161–168PubMedCrossRef
8.
Zurück zum Zitat Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810PubMed Viswanathan S, Frishman LJ, Robson JG (2000) The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Invest Ophthalmol Vis Sci 41(9):2797–2810PubMed
9.
Zurück zum Zitat Porciatti V, Sorokac N, Buchser W (2005) Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci 46(4):1296–1302PubMedCrossRef Porciatti V, Sorokac N, Buchser W (2005) Habituation of retinal ganglion cell activity in response to steady state pattern visual stimuli in normal subjects. Invest Ophthalmol Vis Sci 46(4):1296–1302PubMedCrossRef
10.
Zurück zum Zitat Korth M, Rix R (1987) The pattern ERG in response to colored stimuli. Doc Ophthalmol 65(1):71–77PubMedCrossRef Korth M, Rix R (1987) The pattern ERG in response to colored stimuli. Doc Ophthalmol 65(1):71–77PubMedCrossRef
11.
Zurück zum Zitat Morrone C, Fiorentini A, Bisti S et al (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: II. Monkey. Vis Neurosci 11(5):873–884PubMed Morrone C, Fiorentini A, Bisti S et al (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: II. Monkey. Vis Neurosci 11(5):873–884PubMed
12.
Zurück zum Zitat Morrone C, Porciatti V, Fiorentini A, Burr DC (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: I. Humans. Vis Neurosci 11(5):861–871PubMed Morrone C, Porciatti V, Fiorentini A, Burr DC (1994) Pattern-reversal electroretinogram in response to chromatic stimuli: I. Humans. Vis Neurosci 11(5):861–871PubMed
13.
Zurück zum Zitat Porciatti V, Morrone MC, Fiorentini A et al. (1994) The pattern electroretinogram in response to colour contrast in man and monkey. Int J Psychophysiol 16(2–3):185–189PubMedCrossRef Porciatti V, Morrone MC, Fiorentini A et al. (1994) The pattern electroretinogram in response to colour contrast in man and monkey. Int J Psychophysiol 16(2–3):185–189PubMedCrossRef
14.
Zurück zum Zitat Porciatti V, Sartucci F (1996) Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119(Pt 3):723–740PubMedCrossRef Porciatti V, Sartucci F (1996) Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119(Pt 3):723–740PubMedCrossRef
15.
Zurück zum Zitat Porciatti V, Di Bartolo E, Nardi N, Fiorentini A (1997) Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study. Vision Res 37(14):1975–1987PubMedCrossRef Porciatti V, Di Bartolo E, Nardi N, Fiorentini A (1997) Responses to chromatic and luminance contrast in glaucoma: a psychophysical and electrophysiological study. Vision Res 37(14):1975–1987PubMedCrossRef
16.
Zurück zum Zitat Sartucci F, Orlandi G, Bonuccelli U et al (2006) Chromatic pattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophy compared with Parkinson’s disease. Neurol Sci 26(6):395–401PubMedCrossRef Sartucci F, Orlandi G, Bonuccelli U et al (2006) Chromatic pattern-reversal electroretinograms (ChPERGs) are spared in multiple system atrophy compared with Parkinson’s disease. Neurol Sci 26(6):395–401PubMedCrossRef
17.
Zurück zum Zitat Baker CL Jr, Hess RF (1984) Linear and nonlinear components of human electroretinogram. J Neurophysiol 51(5):952–967PubMed Baker CL Jr, Hess RF (1984) Linear and nonlinear components of human electroretinogram. J Neurophysiol 51(5):952–967PubMed
18.
Zurück zum Zitat Hess RF, Baker CL Jr (1984) Human pattern-evoked electroretinogram. J Neurophysiol 51(5):939–951PubMed Hess RF, Baker CL Jr (1984) Human pattern-evoked electroretinogram. J Neurophysiol 51(5):939–951PubMed
19.
Zurück zum Zitat Drasdo N, Thompson DA, Thompson CM, Edwards L (1987) Complementary components and local variations of the pattern electroretinogram. Invest Ophthalmol Vis Sci 28(1):158–162PubMed Drasdo N, Thompson DA, Thompson CM, Edwards L (1987) Complementary components and local variations of the pattern electroretinogram. Invest Ophthalmol Vis Sci 28(1):158–162PubMed
20.
Zurück zum Zitat Stone C, Pinto LH (1993) Response properties of ganglion cells in the isolated mouse retina. Vis Neurosci 10(1):31–39PubMedCrossRef Stone C, Pinto LH (1993) Response properties of ganglion cells in the isolated mouse retina. Vis Neurosci 10(1):31–39PubMedCrossRef
21.
Zurück zum Zitat Porciatti V, Saleh M, Nagaraju M (2007) The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol 48(2):745–751CrossRef Porciatti V, Saleh M, Nagaraju M (2007) The pattern electroretinogram as a tool to monitor progressive retinal ganglion cell dysfunction in the DBA/2J mouse model of glaucoma. Invest Ophthalmol 48(2):745–751CrossRef
22.
Zurück zum Zitat Drasdo N, Thompson DA, Arden GB (1990) A comparison of pattern ERG amplitudes and nuclear layer thickness in different zones of the retina. Clin Vision Sciences 5(4):415–420 Drasdo N, Thompson DA, Arden GB (1990) A comparison of pattern ERG amplitudes and nuclear layer thickness in different zones of the retina. Clin Vision Sciences 5(4):415–420
23.
Zurück zum Zitat Hollander H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 55(3):483–493PubMedCrossRef Hollander H, Bisti S, Maffei L, Hebel R (1984) Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Exp Brain Res 55(3):483–493PubMedCrossRef
24.
Zurück zum Zitat Maffei L, Fiorentini A, Bisti S, Hollander H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59(2):423–425PubMedCrossRef Maffei L, Fiorentini A, Bisti S, Hollander H (1985) Pattern ERG in the monkey after section of the optic nerve. Exp Brain Res 59(2):423–425PubMedCrossRef
25.
Zurück zum Zitat Berardi N, Domenici L, Gravina A, Maffei L (1990) Pattern ERG in rats following section of the optic nerve. Exp Brain Res 79(3):539–546PubMedCrossRef Berardi N, Domenici L, Gravina A, Maffei L (1990) Pattern ERG in rats following section of the optic nerve. Exp Brain Res 79(3):539–546PubMedCrossRef
26.
Zurück zum Zitat Domenici L, Gravina A, Berardi N, Maffei L (1991) Different effects of intracranial and intraorbital section of the optic nerve on the functional responses of rat retinal ganglion cells. Exp Brain Res 86(3):579–584PubMedCrossRef Domenici L, Gravina A, Berardi N, Maffei L (1991) Different effects of intracranial and intraorbital section of the optic nerve on the functional responses of rat retinal ganglion cells. Exp Brain Res 86(3):579–584PubMedCrossRef
27.
Zurück zum Zitat Porciatti V, Pizzorusso T, Cenni MC, Maffei L (1996) The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. Proc Natl Acad Sci USA 93(25):14955–14959PubMedCrossRef Porciatti V, Pizzorusso T, Cenni MC, Maffei L (1996) The visual response of retinal ganglion cells is not altered by optic nerve transection in transgenic mice overexpressing Bcl-2. Proc Natl Acad Sci USA 93(25):14955–14959PubMedCrossRef
28.
Zurück zum Zitat Chierzi S, Cenni MC, Maffei L et al (1998) Protection or retinal ganglion cells and preservation of function after optic nerve lesion in bcl-2 transgenic mice. Vision Res 38:1537–1543PubMedCrossRef Chierzi S, Cenni MC, Maffei L et al (1998) Protection or retinal ganglion cells and preservation of function after optic nerve lesion in bcl-2 transgenic mice. Vision Res 38:1537–1543PubMedCrossRef
29.
Zurück zum Zitat Ratto GM, Bonfanti L, Cenni MC et al (1997) Retinal ganglion cell anatomy and physiology after section of the optic nerve in mice overexpressing bcl-2. Adv Neurol 72:87–94PubMed Ratto GM, Bonfanti L, Cenni MC et al (1997) Retinal ganglion cell anatomy and physiology after section of the optic nerve in mice overexpressing bcl-2. Adv Neurol 72:87–94PubMed
30.
Zurück zum Zitat Sieving PA, Steinberg RH (1987) Proximal retinal contribution to the intraretinal 8-Hz pattern ERG of cat. J Neurophysiol 57(1):104–120PubMed Sieving PA, Steinberg RH (1987) Proximal retinal contribution to the intraretinal 8-Hz pattern ERG of cat. J Neurophysiol 57(1):104–120PubMed
31.
Zurück zum Zitat Baker CL Jr, Hess RR, Olsen BT, Zrenner E (1988) Current source density analysis of linear and non-linear components of the primate electroretinogram. J Physiol 407:155–176PubMed Baker CL Jr, Hess RR, Olsen BT, Zrenner E (1988) Current source density analysis of linear and non-linear components of the primate electroretinogram. J Physiol 407:155–176PubMed
32.
Zurück zum Zitat Bagnoli P, Porciatti V, Francesconi W, Barsellotti R (1984) Pigeon pattern electroretinogram: a response unaffected by chronic section of the optic nerve. Exp Brain Res 55(2):253–262PubMedCrossRef Bagnoli P, Porciatti V, Francesconi W, Barsellotti R (1984) Pigeon pattern electroretinogram: a response unaffected by chronic section of the optic nerve. Exp Brain Res 55(2):253–262PubMedCrossRef
33.
Zurück zum Zitat Blondeau P, Lamarche J, Lafond G, Brunette JR (1987) Pattern electroretinogram and optic nerve section in pigeons. Curr Eye Res 6(6):747–756PubMed Blondeau P, Lamarche J, Lafond G, Brunette JR (1987) Pattern electroretinogram and optic nerve section in pigeons. Curr Eye Res 6(6):747–756PubMed
34.
Zurück zum Zitat Trimarchi C, Biral G, Domenici L et al (1990) The Flash- and pattern electroretinogram generators in the cat: a pharmacological approach. Clin Vision Sci 6:19–24 Trimarchi C, Biral G, Domenici L et al (1990) The Flash- and pattern electroretinogram generators in the cat: a pharmacological approach. Clin Vision Sci 6:19–24
35.
Zurück zum Zitat Siliprandi R, Bucci MG, Canella R, Carmignoto G (1988) Flash and pattern electroretinograms during and after acute intraocular pressure elevation in cats. Invest Ophthalmol Vis Sci 29(4):558–565PubMed Siliprandi R, Bucci MG, Canella R, Carmignoto G (1988) Flash and pattern electroretinograms during and after acute intraocular pressure elevation in cats. Invest Ophthalmol Vis Sci 29(4):558–565PubMed
36.
Zurück zum Zitat Feghali JG, Jin JC, Odom JV (1991) Effect of short-term intraocular pressure elevation on the rabbit electroretinogram. Invest Ophthalmol Vis Sci 32(8):2184–2189PubMed Feghali JG, Jin JC, Odom JV (1991) Effect of short-term intraocular pressure elevation on the rabbit electroretinogram. Invest Ophthalmol Vis Sci 32(8):2184–2189PubMed
37.
Zurück zum Zitat Kline RP, Ripps H, Dowling JE (1978) Generation of b-wave currents in the skate retina. Proc Natl Acad Sci USA 75(11):5727–5731PubMedCrossRef Kline RP, Ripps H, Dowling JE (1978) Generation of b-wave currents in the skate retina. Proc Natl Acad Sci USA 75(11):5727–5731PubMedCrossRef
38.
Zurück zum Zitat Frishman LJ, Yamamoto F, Bogucka J, Steinberg RH (1992) Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina. J Neurophysiol 67(5):1201–1212PubMed Frishman LJ, Yamamoto F, Bogucka J, Steinberg RH (1992) Light-evoked changes in [K+]o in proximal portion of light-adapted cat retina. J Neurophysiol 67(5):1201–1212PubMed
39.
40.
Zurück zum Zitat Grover S, Fishman GA, Birch DG et al (2003) Variability of full-field electroretinogram responses in subjects without diffuse photoreceptor cell disease. Ophthalmology 110(6):1159–1163PubMedCrossRef Grover S, Fishman GA, Birch DG et al (2003) Variability of full-field electroretinogram responses in subjects without diffuse photoreceptor cell disease. Ophthalmology 110(6):1159–1163PubMedCrossRef
41.
Zurück zum Zitat Fraunfelder FT, Burns RP (1970) Acute reversible lens opacity: caused by drugs, cold, anoxia, asphyxia, stress, death and dehydration. Exp Eye Res 10(1):19–30PubMedCrossRef Fraunfelder FT, Burns RP (1970) Acute reversible lens opacity: caused by drugs, cold, anoxia, asphyxia, stress, death and dehydration. Exp Eye Res 10(1):19–30PubMedCrossRef
42.
Zurück zum Zitat Ridder W 3rd, Nusinowitz S, Heckenlively JR (2002) Causes of cataract development in anesthetized mice. Exp Eye Res 75(3):365–370PubMedCrossRef Ridder W 3rd, Nusinowitz S, Heckenlively JR (2002) Causes of cataract development in anesthetized mice. Exp Eye Res 75(3):365–370PubMedCrossRef
43.
Zurück zum Zitat Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vision Res 25(1):21–31PubMedCrossRef Remtulla S, Hallett PE (1985) A schematic eye for the mouse, and comparisons with the rat. Vision Res 25(1):21–31PubMedCrossRef
44.
Zurück zum Zitat Schmucker C, Schaeffel F (2004) A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res 44(16):1857–1867PubMedCrossRef Schmucker C, Schaeffel F (2004) A paraxial schematic eye model for the growing C57BL/6 mouse. Vision Res 44(16):1857–1867PubMedCrossRef
45.
Zurück zum Zitat Porciatti V, Pizzorusso T, Maffei L (1999) The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 39(18):3071–3081PubMedCrossRef Porciatti V, Pizzorusso T, Maffei L (1999) The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res 39(18):3071–3081PubMedCrossRef
46.
Zurück zum Zitat Rossi FM, Pizzorusso T, Porciatti V et al (2001) Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc Natl Acad Sci USA 98(11):6453–6458PubMedCrossRef Rossi FM, Pizzorusso T, Porciatti V et al (2001) Requirement of the nicotinic acetylcholine receptor beta 2 subunit for the anatomical and functional development of the visual system. Proc Natl Acad Sci USA 98(11):6453–6458PubMedCrossRef
47.
Zurück zum Zitat Porciatti V, Pizzorusso T, Maffei L (1999) Vision in mice with neuronal redundancy due to inhibition of developmental cell death. Vis Neurosci 16(4):721–726PubMedCrossRef Porciatti V, Pizzorusso T, Maffei L (1999) Vision in mice with neuronal redundancy due to inhibition of developmental cell death. Vis Neurosci 16(4):721–726PubMedCrossRef
48.
Zurück zum Zitat Porciatti V, Falsini B (2003) Physiological properties of the mouse pattern Electroretinogram. ARVO #2705 Porciatti V, Falsini B (2003) Physiological properties of the mouse pattern Electroretinogram. ARVO #2705
49.
Zurück zum Zitat Maffei L, Fiorentini A (1982) Electroretinographic responses to alternating gratings in the cat. Exp Brain Res 48(3):327–334PubMedCrossRef Maffei L, Fiorentini A (1982) Electroretinographic responses to alternating gratings in the cat. Exp Brain Res 48(3):327–334PubMedCrossRef
50.
Zurück zum Zitat Fiorentini A, Pirchio M, Sandini G (1984) Development of retinal acuity in infants evaluated with pattern electroretinogram. Hum Neurobiol 3(2):93–95PubMed Fiorentini A, Pirchio M, Sandini G (1984) Development of retinal acuity in infants evaluated with pattern electroretinogram. Hum Neurobiol 3(2):93–95PubMed
51.
Zurück zum Zitat Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11):1571–1576PubMed Birch DG, Anderson JL (1992) Standardized full-field electroretinography. Normal values and their variation with age. Arch Ophthalmol 110(11):1571–1576PubMed
52.
Zurück zum Zitat Ver Hoeve JN, Danilov YP, Kim CB, Spear PD (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16(4):607–617PubMedCrossRef Ver Hoeve JN, Danilov YP, Kim CB, Spear PD (1999) VEP and PERG acuity in anesthetized young adult rhesus monkeys. Vis Neurosci 16(4):607–617PubMedCrossRef
53.
Zurück zum Zitat Sinex DG, Burdette LJ, Pearlman AL (1979) A psychophysical investigation of spatial vision in the normal and reeler mutant mouse. Vision Res 19(8):853–857PubMedCrossRef Sinex DG, Burdette LJ, Pearlman AL (1979) A psychophysical investigation of spatial vision in the normal and reeler mutant mouse. Vision Res 19(8):853–857PubMedCrossRef
54.
Zurück zum Zitat Gianfranceschi L, Fiorentini A, Maffei L (1999) Behavioural visual acuity of wild type and bcl2 transgenic mouse. Vision Res 39(3):569–574PubMedCrossRef Gianfranceschi L, Fiorentini A, Maffei L (1999) Behavioural visual acuity of wild type and bcl2 transgenic mouse. Vision Res 39(3):569–574PubMedCrossRef
55.
Zurück zum Zitat Prusky GT, Douglas RM (2004) Characterization of mouse cortical spatial vision. Vision Res 44(28):3411–3418PubMedCrossRef Prusky GT, Douglas RM (2004) Characterization of mouse cortical spatial vision. Vision Res 44(28):3411–3418PubMedCrossRef
56.
Zurück zum Zitat Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45(12):4611–4616PubMedCrossRef Prusky GT, Alam NM, Beekman S, Douglas RM (2004) Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest Ophthalmol Vis Sci 45(12):4611–4616PubMedCrossRef
57.
Zurück zum Zitat Schmucker C, Seeliger M, Humphries P et al (2005) Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function. Invest Ophthalmol Vis Sci 46(1):398–407PubMedCrossRef Schmucker C, Seeliger M, Humphries P et al (2005) Grating acuity at different luminances in wild-type mice and in mice lacking rod or cone function. Invest Ophthalmol Vis Sci 46(1):398–407PubMedCrossRef
58.
Zurück zum Zitat Porciatti V, Falsini B (2000) Maturation of flash-cone ERG and pattern ERG in the mouse. ARVO abstract # 500 Porciatti V, Falsini B (2000) Maturation of flash-cone ERG and pattern ERG in the mouse. ARVO abstract # 500
59.
Zurück zum Zitat Porciatti V, Pizzorusso T, Maffei L (2002) Electrophysiology of the postreceptoral visual pathway in mice. Doc Ophthalmol 104(1):69–82PubMedCrossRef Porciatti V, Pizzorusso T, Maffei L (2002) Electrophysiology of the postreceptoral visual pathway in mice. Doc Ophthalmol 104(1):69–82PubMedCrossRef
60.
Zurück zum Zitat Huang ZJ, Kirkwood A, Pizzorusso T et al (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98(6):739–755PubMedCrossRef Huang ZJ, Kirkwood A, Pizzorusso T et al (1999) BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98(6):739–755PubMedCrossRef
61.
62.
Zurück zum Zitat Feller MB, Wellis DP, Stellwagen D et al (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272(5265):1182–1187PubMedCrossRef Feller MB, Wellis DP, Stellwagen D et al (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272(5265):1182–1187PubMedCrossRef
63.
Zurück zum Zitat Picciotto MR, Zoli M, Lena C et al (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374(6517):65–67PubMedCrossRef Picciotto MR, Zoli M, Lena C et al (1995) Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374(6517):65–67PubMedCrossRef
64.
Zurück zum Zitat Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci 22(13):5259–5264PubMed Muir-Robinson G, Hwang BJ, Feller MB (2002) Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J Neurosci 22(13):5259–5264PubMed
65.
Zurück zum Zitat Van der List DA, Coombs JL, Chalupa LM (2006) Normal development of retinal ganglion cell morphological properties in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. ARVO abstract # 3313 Van der List DA, Coombs JL, Chalupa LM (2006) Normal development of retinal ganglion cell morphological properties in mice lacking the beta2 subunit of the nicotinic acetylcholine receptor. ARVO abstract # 3313
66.
Zurück zum Zitat Martinou JC, Dubois-Dauphin M, Staple JK et al (1994) Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13(4):1017–1030PubMedCrossRef Martinou JC, Dubois-Dauphin M, Staple JK et al (1994) Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 13(4):1017–1030PubMedCrossRef
67.
Zurück zum Zitat Cenni MC, Bonfanti L, Martinou J-C et al (1996) Long-term survival of retinal ganglion cells following optic nerve section in adult I bcl-2 transgenic mice. Eur J Neurosci 8:1735–1745PubMedCrossRef Cenni MC, Bonfanti L, Martinou J-C et al (1996) Long-term survival of retinal ganglion cells following optic nerve section in adult I bcl-2 transgenic mice. Eur J Neurosci 8:1735–1745PubMedCrossRef
68.
Zurück zum Zitat Strettoi E, Volpini M (2002) Retinal organization in the bcl-2-overexpressing transgenic mouse. J Comp Neurol 446(1):1–10PubMedCrossRef Strettoi E, Volpini M (2002) Retinal organization in the bcl-2-overexpressing transgenic mouse. J Comp Neurol 446(1):1–10PubMedCrossRef
69.
Zurück zum Zitat Libby RT, Li Y, Savinova OV et al (2005) Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 1(1):17–26PubMedCrossRef Libby RT, Li Y, Savinova OV et al (2005) Susceptibility to neurodegeneration in a glaucoma is modified by Bax gene dosage. PLoS Genet 1(1):17–26PubMedCrossRef
70.
Zurück zum Zitat John SW, Smith RS, Savinova OV et al (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39(6):951–962PubMed John SW, Smith RS, Savinova OV et al (1998) Essential iris atrophy, pigment dispersion, and glaucoma in DBA/2J mice. Invest Ophthalmol Vis Sci 39(6):951–962PubMed
71.
Zurück zum Zitat Libby RT, Anderson MG, Pang IH et al (2005) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(5):637–648PubMed Libby RT, Anderson MG, Pang IH et al (2005) Inherited glaucoma in DBA/2J mice: pertinent disease features for studying the neurodegeneration. Vis Neurosci 22(5):637–648PubMed
72.
Zurück zum Zitat Saleh M, Nagaraju M, Porciatti V (2007) The natural history of retinal ganglion cells and its relationship with IOP in DBA/2J mice. ARVO #210 Saleh M, Nagaraju M, Porciatti V (2007) The natural history of retinal ganglion cells and its relationship with IOP in DBA/2J mice. ARVO #210
73.
Zurück zum Zitat Libby RT, Porciatti V, Tapia M et al (2006) Perg analysis detects physiological dysfunction prior to ganglion cell loss In DBA/2J Glaucoma. ARVO E-abstract # 4005 Libby RT, Porciatti V, Tapia M et al (2006) Perg analysis detects physiological dysfunction prior to ganglion cell loss In DBA/2J Glaucoma. ARVO E-abstract # 4005
74.
Zurück zum Zitat Jakobs TC, Libby RT, Ben Y et al (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313–325PubMedCrossRef Jakobs TC, Libby RT, Ben Y et al (2005) Retinal ganglion cell degeneration is topological but not cell type specific in DBA/2J mice. J Cell Biol 171(2):313–325PubMedCrossRef
75.
Zurück zum Zitat Aihara M, Lindsey JD, Weinreb RN (2003) Episcleral venous pressure of mouse eye and effect of body position. Curr Eye Res 27(6):355–362PubMedCrossRef Aihara M, Lindsey JD, Weinreb RN (2003) Episcleral venous pressure of mouse eye and effect of body position. Curr Eye Res 27(6):355–362PubMedCrossRef
76.
Zurück zum Zitat Nagaraju M, Saleh M, Porciatti V (2007) Postural changes of IOP and pattern ERG in DBA/2J mice. ARVO abstract #211 Nagaraju M, Saleh M, Porciatti V (2007) Postural changes of IOP and pattern ERG in DBA/2J mice. ARVO abstract #211
Metadaten
Titel
The mouse pattern electroretinogram
verfasst von
Vittorio Porciatti
Publikationsdatum
01.11.2007
Verlag
Springer-Verlag
Erschienen in
Documenta Ophthalmologica / Ausgabe 3/2007
Print ISSN: 0012-4486
Elektronische ISSN: 1573-2622
DOI
https://doi.org/10.1007/s10633-007-9059-8

Weitere Artikel der Ausgabe 3/2007

Documenta Ophthalmologica 3/2007 Zur Ausgabe

Neu im Fachgebiet Augenheilkunde

Ophthalmika in der Schwangerschaft

Die Verwendung von Ophthalmika in der Schwangerschaft und Stillzeit stellt immer eine Off-label-Anwendung dar. Ein Einsatz von Arzneimitteln muss daher besonders sorgfältig auf sein Risiko-Nutzen-Verhältnis bewertet werden. In der vorliegenden …

Operative Therapie und Keimnachweis bei endogener Endophthalmitis

Vitrektomie Originalie

Die endogene Endophthalmitis ist eine hämatogen fortgeleitete, bakterielle oder fungale Infektion, die über choroidale oder retinale Gefäße in den Augapfel eingeschwemmt wird [ 1 – 3 ]. Von dort infiltrieren die Keime in die Netzhaut, den …

Bakterielle endogene Endophthalmitis

Vitrektomie Leitthema

Eine endogene Endophthalmitis stellt einen ophthalmologischen Notfall dar, der umgehender Diagnostik und Therapie bedarf. Es sollte mit geeigneten Methoden, wie beispielsweise dem Freiburger Endophthalmitis-Set, ein Keimnachweis erfolgen. Bei der …

So erreichen Sie eine bestmögliche Wundheilung der Kornea

Die bestmögliche Wundheilung der Kornea, insbesondere ohne die Ausbildung von lichtstreuenden Narben, ist oberstes Gebot, um einer dauerhaften Schädigung der Hornhaut frühzeitig entgegenzuwirken und die Funktion des Auges zu erhalten.   

Update Augenheilkunde

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.