Skip to main content
Erschienen in: Tumor Biology 1/2015

01.01.2015 | Research Article

The over-expression of aquaporin-1 alters erythroid gene expression in human erythroleukemia K562 cells

verfasst von: Min Wei, Rong Shi, Jun Zeng, Nisha Wang, Jueyu Zhou, Wenli Ma

Erschienen in: Tumor Biology | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Abstract

Aquaporin genes are differentially expressed in primitive versus definitive erythropoiesis. Our previous research results showed that over-expression of aquaporin-1 (AQP1) gene greatly promotes the erythroid differentiation of erythroleukemia K562 cells, using benzidine staining and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR) analysis for representative erythroid-related genes, including γ-globin. But the molecular mechanisms underlying erythroid-specific gene regulation remain unknown. In this study, we demonstrated that AQP1 induced hemoglobins expression and altered erythroid gene expression by microarray analysis in K562 cells. The retroviral expression vector of AQP1 (pBABE-puro-AQP1) was constructed and infected K562 cells to establish a stable AQP1 over-expression cell line (K562-AQP1). AQP1 over-expression effectively inhibited cell proliferation and induced cell growth arrest in G1 phase of K562 cells. Then microarray profile was applied to analyze the differentially expressed genes which involved the mechanism of AQP1 in erythroid differentiation induction. The DAVID functional annotation clustering tool was used to identify biological functions enriched with the differentially expressed genes (n = 466 genes) and to group genes into clusters based on their functional similarity. Significant enrichment of genes involved in “oxygen transporter activity” (p = 3.8E-7) including hemoglobins (HBD, HBG, HBB, HBE1, and HBQ1), HEMGN, and EBP42 were validated by qRT-PCR. Moreover, silencing of HEMGN by RNA interference in K562-AQP1 cells resulted in down-regulation of these genes. These data provide a better understanding of the role of AQP1 in erythroid differentiation, by promoting HEMGN induction and other potential signaling pathways associated with hemoglobin induction.
Literatur
1.
Zurück zum Zitat Verkman AS, Mitra AK. Structure and function of aquaporin water channels. Am J Physiol Renal Physiol. 2000;278(1):F13–28.PubMed Verkman AS, Mitra AK. Structure and function of aquaporin water channels. Am J Physiol Renal Physiol. 2000;278(1):F13–28.PubMed
2.
Zurück zum Zitat Denker BM, Smith BL, Kuhajda FP, Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem. 1988;263(30):15634–42.PubMed Denker BM, Smith BL, Kuhajda FP, Agre P. Identification, purification, and partial characterization of a novel Mr 28,000 integral membrane protein from erythrocytes and renal tubules. J Biol Chem. 1988;263(30):15634–42.PubMed
3.
Zurück zum Zitat Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992;256(5055):385–7.CrossRefPubMed Preston GM, Carroll TP, Guggino WB, Agre P. Appearance of water channels in Xenopus oocytes expressing red cell CHIP28 protein. Science. 1992;256(5055):385–7.CrossRefPubMed
4.
Zurück zum Zitat Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S. Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer. 2002;87(6):621–3.CrossRefPubMedPubMedCentral Saadoun S, Papadopoulos MC, Davies DC, Bell BA, Krishna S. Increased aquaporin 1 water channel expression in human brain tumours. Br J Cancer. 2002;87(6):621–3.CrossRefPubMedPubMedCentral
5.
Zurück zum Zitat Esteva-Font C, Jin BJ, Verkman AS. Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice. FASEB J. 2014;28(3):1446–53.CrossRefPubMedPubMedCentral Esteva-Font C, Jin BJ, Verkman AS. Aquaporin-1 gene deletion reduces breast tumor growth and lung metastasis in tumor-producing MMTV-PyVT mice. FASEB J. 2014;28(3):1446–53.CrossRefPubMedPubMedCentral
6.
Zurück zum Zitat Yoshida T, Hojo S, Sekine S, et al. Expression of aquaporin-1 is a poor prognostic factor for stage II and III colon cancer. Mol Clin Oncol. 2013;1(6):953–8.PubMedPubMedCentral Yoshida T, Hojo S, Sekine S, et al. Expression of aquaporin-1 is a poor prognostic factor for stage II and III colon cancer. Mol Clin Oncol. 2013;1(6):953–8.PubMedPubMedCentral
7.
Zurück zum Zitat Burghardt B, Elkaer ML, Kwon TH, et al. Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut. 2003;52(7):1008–16.CrossRefPubMedPubMedCentral Burghardt B, Elkaer ML, Kwon TH, et al. Distribution of aquaporin water channels AQP1 and AQP5 in the ductal system of the human pancreas. Gut. 2003;52(7):1008–16.CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Vacca A, Frigeri A, Ribatti D, et al. Microvessel over-expression of aquaporin 1 parallels bone marrow angiogenesis in patients with active multiple myeloma. Br J Haematol. 2001;113(2):415–21.CrossRefPubMed Vacca A, Frigeri A, Ribatti D, et al. Microvessel over-expression of aquaporin 1 parallels bone marrow angiogenesis in patients with active multiple myeloma. Br J Haematol. 2001;113(2):415–21.CrossRefPubMed
9.
Zurück zum Zitat Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature. 2005;434(7034):786–92.CrossRefPubMed Saadoun S, Papadopoulos MC, Hara-Chikuma M, Verkman AS. Impairment of angiogenesis and cell migration by targeted aquaporin-1 gene disruption. Nature. 2005;434(7034):786–92.CrossRefPubMed
10.
Zurück zum Zitat Hoque MO, Soria JC, Woo J, et al. Aquaporin 1 is overexpressed in lung cancer and stimulates NIH-3T3 cell proliferation and anchorage-independent growth. Am J Pathol. 2006;168(4):1345–53.CrossRefPubMedPubMedCentral Hoque MO, Soria JC, Woo J, et al. Aquaporin 1 is overexpressed in lung cancer and stimulates NIH-3T3 cell proliferation and anchorage-independent growth. Am J Pathol. 2006;168(4):1345–53.CrossRefPubMedPubMedCentral
11.
Zurück zum Zitat Kao SC, Armstrong N, Condon B, et al. Aquaporin 1 is an independent prognostic factor in pleural malignant mesothelioma. Cancer. 2012;118(11):2952–61.CrossRefPubMed Kao SC, Armstrong N, Condon B, et al. Aquaporin 1 is an independent prognostic factor in pleural malignant mesothelioma. Cancer. 2012;118(11):2952–61.CrossRefPubMed
12.
Zurück zum Zitat Umenishi F, Verkman AS. Isolation of the human aquaporin-1 promoter and functional characterization in human erythroleukemia cell lines. Genomics. 1998;47(3):341–9.CrossRefPubMed Umenishi F, Verkman AS. Isolation of the human aquaporin-1 promoter and functional characterization in human erythroleukemia cell lines. Genomics. 1998;47(3):341–9.CrossRefPubMed
13.
Zurück zum Zitat Umenishi F, Schrier RW. Induction of human aquaporin-1 gene by retinoic acid in human erythroleukemia HEL cells. Biochem Biophys Res Commun. 2002;293(3):913–7.CrossRefPubMed Umenishi F, Schrier RW. Induction of human aquaporin-1 gene by retinoic acid in human erythroleukemia HEL cells. Biochem Biophys Res Commun. 2002;293(3):913–7.CrossRefPubMed
14.
Zurück zum Zitat Moon C, King LS, Agre P. Aqp1 expression in erythroleukemia cells: genetic regulation of glucocorticoid and chemical induction. Am J Physiol. 1997;273(5 Pt 1):C1562–70.PubMed Moon C, King LS, Agre P. Aqp1 expression in erythroleukemia cells: genetic regulation of glucocorticoid and chemical induction. Am J Physiol. 1997;273(5 Pt 1):C1562–70.PubMed
15.
Zurück zum Zitat Wei M, Shi R, Jiang L, Wang N, Ma W. Role of aquaporin-1 gene in erythroid differentiation of erythroleukemia K562 cells induced by retinoic acid. Nan Fang Yi Ke Da Xue Xue Bao. 2012;32(12):1689–94.PubMed Wei M, Shi R, Jiang L, Wang N, Ma W. Role of aquaporin-1 gene in erythroid differentiation of erythroleukemia K562 cells induced by retinoic acid. Nan Fang Yi Ke Da Xue Xue Bao. 2012;32(12):1689–94.PubMed
16.
Zurück zum Zitat Jordan M, Schallhorn A, Wurm FM. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 1996;24(4):596–601.CrossRefPubMedPubMedCentral Jordan M, Schallhorn A, Wurm FM. Transfecting mammalian cells: optimization of critical parameters affecting calcium-phosphate precipitate formation. Nucleic Acids Res. 1996;24(4):596–601.CrossRefPubMedPubMedCentral
17.
Zurück zum Zitat Dennis Jr G, Sherman BT, Hosack DA, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):3.CrossRef Dennis Jr G, Sherman BT, Hosack DA, et al. DAVID: Database for Annotation, Visualization, and Integrated Discovery. Genome Biol. 2003;4(5):3.CrossRef
19.
Zurück zum Zitat Cioe L, McNab A, Hubbell HR, Meo P, Curtis P, Rovera G. Differential expression of the globin genes in human leukemia K562(S) cells induced to differentiate by hemin or butyric acid. Cancer Res. 1981;41(1):237–43.PubMed Cioe L, McNab A, Hubbell HR, Meo P, Curtis P, Rovera G. Differential expression of the globin genes in human leukemia K562(S) cells induced to differentiate by hemin or butyric acid. Cancer Res. 1981;41(1):237–43.PubMed
20.
Zurück zum Zitat Cortesi R, Gui V, Osti F, Nastruzzi C, Gambari R. Human leukemic K562 cells treated with cytosine arabinoside: enhancement of erythroid differentiation by retinoic acid and retinol. Eur J Haematol. 1998;61(5):295–301.CrossRefPubMed Cortesi R, Gui V, Osti F, Nastruzzi C, Gambari R. Human leukemic K562 cells treated with cytosine arabinoside: enhancement of erythroid differentiation by retinoic acid and retinol. Eur J Haematol. 1998;61(5):295–301.CrossRefPubMed
21.
Zurück zum Zitat Gambari R, del Senno L, Barbieri R, et al. Human leukemia K-562 cells: induction of erythroid differentiation by 5-azacytidine. Cell Differ. 1984;14(2):87–97.CrossRefPubMed Gambari R, del Senno L, Barbieri R, et al. Human leukemia K-562 cells: induction of erythroid differentiation by 5-azacytidine. Cell Differ. 1984;14(2):87–97.CrossRefPubMed
22.
Zurück zum Zitat Bianchi N, Osti F, Rutigliano C, et al. The DNA-binding drugs mithramycin and chromomycin are powerful inducers of erythroid differentiation of human K562 cells. Br J Haematol. 1999;104(2):258–65.CrossRefPubMed Bianchi N, Osti F, Rutigliano C, et al. The DNA-binding drugs mithramycin and chromomycin are powerful inducers of erythroid differentiation of human K562 cells. Br J Haematol. 1999;104(2):258–65.CrossRefPubMed
23.
Zurück zum Zitat Chiarabelli C, Bianchi N, Borgatti M, Prus E, Fibach E, Gambari R. Induction of gamma-globin gene expression by tallimustine analogs in human erythroid cells. Haematologica. 2003;88(7):826–7.PubMed Chiarabelli C, Bianchi N, Borgatti M, Prus E, Fibach E, Gambari R. Induction of gamma-globin gene expression by tallimustine analogs in human erythroid cells. Haematologica. 2003;88(7):826–7.PubMed
24.
Zurück zum Zitat Bianchi N, Ongaro F, Chiarabelli C, et al. Induction of erythroid differentiation of human K562 cells by cisplatin analogs. Biochem Pharmacol. 2000;60(1):31–40.CrossRefPubMed Bianchi N, Ongaro F, Chiarabelli C, et al. Induction of erythroid differentiation of human K562 cells by cisplatin analogs. Biochem Pharmacol. 2000;60(1):31–40.CrossRefPubMed
25.
Zurück zum Zitat Gambari R. The human erythroleukemia K562 cell culture system for identification of inducers of fetal hemoglobin. Minerva Biotecnol. 2003;15(2):123–8. Gambari R. The human erythroleukemia K562 cell culture system for identification of inducers of fetal hemoglobin. Minerva Biotecnol. 2003;15(2):123–8.
26.
Zurück zum Zitat Czyz M, Szulawska A. Induced differentiation of the K562 leukemic cell line. Postepy Hig Med Dosw (Online). 2005;59:82–97. Czyz M, Szulawska A. Induced differentiation of the K562 leukemic cell line. Postepy Hig Med Dosw (Online). 2005;59:82–97.
27.
Zurück zum Zitat Canh Hiep N, Kinohira S, Furuyama K, Taketani S. Depletion of glutamine enhances sodium butyrate-induced erythroid differentiation of K562 cells. J Biochem Dec. 2012;152(6):509–19.CrossRef Canh Hiep N, Kinohira S, Furuyama K, Taketani S. Depletion of glutamine enhances sodium butyrate-induced erythroid differentiation of K562 cells. J Biochem Dec. 2012;152(6):509–19.CrossRef
28.
Zurück zum Zitat Hanson AM, Gambill J, Phomakay V, Staten CT, Kelley MD. 9-cis-retinoic acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells. PLoS One. 2014;9(3):e93005.CrossRefPubMedPubMedCentral Hanson AM, Gambill J, Phomakay V, Staten CT, Kelley MD. 9-cis-retinoic acid and troglitazone impacts cellular adhesion, proliferation, and integrin expression in K562 cells. PLoS One. 2014;9(3):e93005.CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Wang H, Zhou X, Zhang Y, et al. Growth arrest-specific gene 1 is downregulated and inhibits tumor growth in gastric cancer. FEBS J. 2012;279(19):3652–64.CrossRefPubMed Wang H, Zhou X, Zhang Y, et al. Growth arrest-specific gene 1 is downregulated and inhibits tumor growth in gastric cancer. FEBS J. 2012;279(19):3652–64.CrossRefPubMed
30.
Zurück zum Zitat Faghihi MA, Kocerha J, Modarresi F, et al. RNAi screen indicates widespread biological function for human natural antisense transcripts. PLoS One. 2010;5(10). Faghihi MA, Kocerha J, Modarresi F, et al. RNAi screen indicates widespread biological function for human natural antisense transcripts. PLoS One. 2010;5(10).
31.
Zurück zum Zitat Parra E, Gutierrez L, Ferreira J. Increased expression of p21Waf1/Cip1 and JNK with costimulation of prostate cancer cell activation by an siRNA Egr-1 inhibitor. Oncol Rep. 2013;30(2):911–6.PubMed Parra E, Gutierrez L, Ferreira J. Increased expression of p21Waf1/Cip1 and JNK with costimulation of prostate cancer cell activation by an siRNA Egr-1 inhibitor. Oncol Rep. 2013;30(2):911–6.PubMed
32.
Zurück zum Zitat Wu B, Beitz E. Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci. 2007;64(18):2413–21.CrossRefPubMed Wu B, Beitz E. Aquaporins with selectivity for unconventional permeants. Cell Mol Life Sci. 2007;64(18):2413–21.CrossRefPubMed
33.
Zurück zum Zitat Yool AJ. Functional domains of aquaporin-1: keys to physiology, and targets for drug discovery. Curr Pharm Des. 2007;13(31):3212–21.CrossRefPubMed Yool AJ. Functional domains of aquaporin-1: keys to physiology, and targets for drug discovery. Curr Pharm Des. 2007;13(31):3212–21.CrossRefPubMed
34.
Zurück zum Zitat Cheng A, van Hoek AN, Yeager M, Verkman AS, Mitra AK. Three-dimensional organization of a human water channel. Nature. 1997;387(6633):627–30.CrossRefPubMed Cheng A, van Hoek AN, Yeager M, Verkman AS, Mitra AK. Three-dimensional organization of a human water channel. Nature. 1997;387(6633):627–30.CrossRefPubMed
35.
Zurück zum Zitat Heymann JB, Agre P, Engel A. Progress on the structure and function of aquaporin 1. J Struct Biol. 1998;121(2):191–206.CrossRefPubMed Heymann JB, Agre P, Engel A. Progress on the structure and function of aquaporin 1. J Struct Biol. 1998;121(2):191–206.CrossRefPubMed
37.
Zurück zum Zitat Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A. 2009;106(41):17413–8.CrossRefPubMedPubMedCentral Chen K, Liu J, Heck S, Chasis JA, An X, Mohandas N. Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci U S A. 2009;106(41):17413–8.CrossRefPubMedPubMedCentral
38.
Zurück zum Zitat Liu J, Mohandas N, An X. Membrane assembly during erythropoiesis. Curr Opin Hematol. 2011;18(3):133–8.CrossRefPubMed Liu J, Mohandas N, An X. Membrane assembly during erythropoiesis. Curr Opin Hematol. 2011;18(3):133–8.CrossRefPubMed
39.
Zurück zum Zitat Hu J, Liu J, Xue F, et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood. 2013;121(16):3246–53.CrossRefPubMedPubMedCentral Hu J, Liu J, Xue F, et al. Isolation and functional characterization of human erythroblasts at distinct stages: implications for understanding of normal and disordered erythropoiesis in vivo. Blood. 2013;121(16):3246–53.CrossRefPubMedPubMedCentral
40.
Zurück zum Zitat Fujiwara T, Saitoh H, Inoue A, et al. 3-Deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation. J Biol Chem. 2014;289(12):8121–34.CrossRefPubMedPubMedCentral Fujiwara T, Saitoh H, Inoue A, et al. 3-Deazaneplanocin A (DZNep), an inhibitor of S-adenosylmethionine-dependent methyltransferase, promotes erythroid differentiation. J Biol Chem. 2014;289(12):8121–34.CrossRefPubMedPubMedCentral
41.
Zurück zum Zitat Satchwell TJ, Shoemark DK, Sessions RB, Toye AM. Protein 4.2: a complex linker. Blood Cells Mol Dis. 2009;42(3):201–10.CrossRefPubMed Satchwell TJ, Shoemark DK, Sessions RB, Toye AM. Protein 4.2: a complex linker. Blood Cells Mol Dis. 2009;42(3):201–10.CrossRefPubMed
42.
Zurück zum Zitat Fujiwara T, Lee HY, Sanalkumar R, Bresnick EH. Building multifunctionality into a complex containing master regulators of hematopoiesis. Proc Natl Acad Sci U S A. 2010;107(47):20429–34.CrossRefPubMedPubMedCentral Fujiwara T, Lee HY, Sanalkumar R, Bresnick EH. Building multifunctionality into a complex containing master regulators of hematopoiesis. Proc Natl Acad Sci U S A. 2010;107(47):20429–34.CrossRefPubMedPubMedCentral
43.
Zurück zum Zitat Ploszynska A, Ruckemann-Dziurdzinska K, Jozwik A, et al. Cytometric evaluation of transferrin receptor 1 (CD71) in childhood acute lymphoblastic leukemia. Folia Histochem Cytobiol. 2012;50(2):304–11.CrossRefPubMed Ploszynska A, Ruckemann-Dziurdzinska K, Jozwik A, et al. Cytometric evaluation of transferrin receptor 1 (CD71) in childhood acute lymphoblastic leukemia. Folia Histochem Cytobiol. 2012;50(2):304–11.CrossRefPubMed
44.
Zurück zum Zitat Yan HW, Hu WX, Zhang JY, et al. Resveratrol induces human K562 cell apoptosis, erythroid differentiation, and autophagy. Tumour Biol. 2014;35(6):5381–8.CrossRefPubMed Yan HW, Hu WX, Zhang JY, et al. Resveratrol induces human K562 cell apoptosis, erythroid differentiation, and autophagy. Tumour Biol. 2014;35(6):5381–8.CrossRefPubMed
45.
Zurück zum Zitat Li CY, Zhan YQ, Xu CW, et al. EDAG regulates the proliferation and differentiation of hematopoietic cells and resists cell apoptosis through the activation of nuclear factor-kappa B. Cell Death Differ. 2004;11(12):1299–308.CrossRefPubMed Li CY, Zhan YQ, Xu CW, et al. EDAG regulates the proliferation and differentiation of hematopoietic cells and resists cell apoptosis through the activation of nuclear factor-kappa B. Cell Death Differ. 2004;11(12):1299–308.CrossRefPubMed
46.
Zurück zum Zitat Yang LV, Wan J, Ge Y, et al. The GATA site-dependent hemogen promoter is transcriptionally regulated by GATA1 in hematopoietic and leukemia cells. Leukemia. 2006;20(3):417–25.CrossRefPubMed Yang LV, Wan J, Ge Y, et al. The GATA site-dependent hemogen promoter is transcriptionally regulated by GATA1 in hematopoietic and leukemia cells. Leukemia. 2006;20(3):417–25.CrossRefPubMed
47.
Zurück zum Zitat Li CY, Fang F, Xu WX, et al. Suppression of EDAG gene expression by phorbol 12-myristate 13-acetate is mediated through down-regulation of GATA-1. Biochim Biophys Acta. 2008;1779(10):606–15.CrossRefPubMed Li CY, Fang F, Xu WX, et al. Suppression of EDAG gene expression by phorbol 12-myristate 13-acetate is mediated through down-regulation of GATA-1. Biochim Biophys Acta. 2008;1779(10):606–15.CrossRefPubMed
48.
Zurück zum Zitat Li CY, Zhan YQ, Li W, et al. Over-expression of a hematopoietic transcriptional regulator EDAG induces myelopoiesis and suppresses lymphopoiesis in transgenic mice. Leukemia. 2007;21(11):2277–86.CrossRefPubMed Li CY, Zhan YQ, Li W, et al. Over-expression of a hematopoietic transcriptional regulator EDAG induces myelopoiesis and suppresses lymphopoiesis in transgenic mice. Leukemia. 2007;21(11):2277–86.CrossRefPubMed
49.
Zurück zum Zitat Ding YL, Xu CW, Wang ZD, et al. Over-expression of EDAG in the myeloid cell line 32D: induction of GATA-1 expression and erythroid/megakaryocytic phenotype. J Cell Biochem. 2010;110(4):866–74.CrossRefPubMed Ding YL, Xu CW, Wang ZD, et al. Over-expression of EDAG in the myeloid cell line 32D: induction of GATA-1 expression and erythroid/megakaryocytic phenotype. J Cell Biochem. 2010;110(4):866–74.CrossRefPubMed
50.
Zurück zum Zitat Zheng WW, Dong XM, Yin RH, et al. EDAG positively regulates erythroid differentiation and modifies GATA1 acetylation through recruiting p300. Stem Cells. Apr 16 2014. Zheng WW, Dong XM, Yin RH, et al. EDAG positively regulates erythroid differentiation and modifies GATA1 acetylation through recruiting p300. Stem Cells. Apr 16 2014.
Metadaten
Titel
The over-expression of aquaporin-1 alters erythroid gene expression in human erythroleukemia K562 cells
verfasst von
Min Wei
Rong Shi
Jun Zeng
Nisha Wang
Jueyu Zhou
Wenli Ma
Publikationsdatum
01.01.2015
Verlag
Springer Netherlands
Erschienen in
Tumor Biology / Ausgabe 1/2015
Print ISSN: 1010-4283
Elektronische ISSN: 1423-0380
DOI
https://doi.org/10.1007/s13277-014-2614-5

Weitere Artikel der Ausgabe 1/2015

Tumor Biology 1/2015 Zur Ausgabe

Erhebliches Risiko für Kehlkopfkrebs bei mäßiger Dysplasie

29.05.2024 Larynxkarzinom Nachrichten

Fast ein Viertel der Personen mit mäßig dysplastischen Stimmlippenläsionen entwickelt einen Kehlkopftumor. Solche Personen benötigen daher eine besonders enge ärztliche Überwachung.

15% bedauern gewählte Blasenkrebs-Therapie

29.05.2024 Urothelkarzinom Nachrichten

Ob Patienten und Patientinnen mit neu diagnostiziertem Blasenkrebs ein Jahr später Bedauern über die Therapieentscheidung empfinden, wird einer Studie aus England zufolge von der Radikalität und dem Erfolg des Eingriffs beeinflusst.

Erhöhtes Risiko fürs Herz unter Checkpointhemmer-Therapie

28.05.2024 Nebenwirkungen der Krebstherapie Nachrichten

Kardiotoxische Nebenwirkungen einer Therapie mit Immuncheckpointhemmern mögen selten sein – wenn sie aber auftreten, wird es für Patienten oft lebensgefährlich. Voruntersuchung und Monitoring sind daher obligat.

Costims – das nächste heiße Ding in der Krebstherapie?

28.05.2024 Onkologische Immuntherapie Nachrichten

„Kalte“ Tumoren werden heiß – CD28-kostimulatorische Antikörper sollen dies ermöglichen. Am besten könnten diese in Kombination mit BiTEs und Checkpointhemmern wirken. Erste klinische Studien laufen bereits.

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.