Skip to main content
Erschienen in: Investigational New Drugs 1/2013

01.02.2013 | SHORT REPORT

The PDT activity of free and pegylated pheophorbide a against an amelanotic melanoma transplanted in C57/BL6 mice

verfasst von: Valentina Rapozzi, Sonia Zorzet, Marina Zacchigna, Sara Drioli, Luigi E. Xodo

Erschienen in: Investigational New Drugs | Ausgabe 1/2013

Einloggen, um Zugang zu erhalten

Summary

Pheophorbide a (Pba) is a chlorophyll catabolite that has been proposed as photosensitizer in photodynamic therapy. In a previous study we conjugated Pba to monomethoxy-polyethylene glycol (mPEG-Pba), to increase its solubility and pharmacokinetics. Here, we compare the photodynamic therapy efficacy of free Pba and mPEG-Pba to cure a subcutaneous amelanotic melanoma transplanted in C57/BL6 mice. The photosensitizers, i.p. injected (30 mg/kg), showed no toxicity when the animals were kept in the dark. But, after photoactivation with a 660 nm laser (fluence of 193 J/cm2), both photosensitizers, in particular mPEG-Pba, showed a strong efficacy to cure the tumor, both in terms of tumor growth delay and increase of Kaplan-Meier median survival time. Together, our in vivo data demonstrate that mPEG-conjugated Pba is a promising photosensitizer for the photodynamic therapy of cancer.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dolmans DE, Fukimura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387PubMedCrossRef Dolmans DE, Fukimura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387PubMedCrossRef
2.
Zurück zum Zitat Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905PubMedCrossRef Dougherty TJ, Gomer CJ, Henderson BW et al (1998) Photodynamic therapy. J Natl Cancer Inst 90:889–905PubMedCrossRef
3.
Zurück zum Zitat Pervaiz S (2001) Reactive oxygen-dependent production of novel photochemotherapeutic agents. FASEB J 15:612–617PubMedCrossRef Pervaiz S (2001) Reactive oxygen-dependent production of novel photochemotherapeutic agents. FASEB J 15:612–617PubMedCrossRef
4.
Zurück zum Zitat Juarranz A, Jaén P, Sanz-Rodríguez F et al (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10:148–154PubMedCrossRef Juarranz A, Jaén P, Sanz-Rodríguez F et al (2008) Photodynamic therapy of cancer. Basic principles and applications. Clin Transl Oncol 10:148–154PubMedCrossRef
5.
Zurück zum Zitat Detty MR, Gibson SL, Wagner SJ (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47:3897–3915PubMedCrossRef Detty MR, Gibson SL, Wagner SJ (2004) Current clinical and preclinical photosensitizers for use in photodynamic therapy. J Med Chem 47:3897–3915PubMedCrossRef
6.
Zurück zum Zitat Schuitmaker JJ, Baas P, van Leengoed HL et al (1996) Photodynamic therapy: a promising new modality for the treatment of cancer. J Photochem Photobiol B 34:3–12PubMedCrossRef Schuitmaker JJ, Baas P, van Leengoed HL et al (1996) Photodynamic therapy: a promising new modality for the treatment of cancer. J Photochem Photobiol B 34:3–12PubMedCrossRef
7.
Zurück zum Zitat Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281PubMedCrossRef Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61:250–281PubMedCrossRef
8.
Zurück zum Zitat Derycke AS, Kamuhabwa A, Gijsens A et al (2004) Transferrin-conjugated liposome targeting of photosensitizer AlPcS4 to rat bladder carcinoma cells. J Natl Cancer Inst 96:1620–1630PubMedCrossRef Derycke AS, Kamuhabwa A, Gijsens A et al (2004) Transferrin-conjugated liposome targeting of photosensitizer AlPcS4 to rat bladder carcinoma cells. J Natl Cancer Inst 96:1620–1630PubMedCrossRef
9.
Zurück zum Zitat Master AM, Qi Y, Oleinick NL et al (2011) EGFR-mediated intracellular delivery of Pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies. Nanomedicine. doi:10.1016/j.nano.2011.09.012 Master AM, Qi Y, Oleinick NL et al (2011) EGFR-mediated intracellular delivery of Pc 4 nanoformulation for targeted photodynamic therapy of cancer: in vitro studies. Nanomedicine. doi:10.​1016/​j.​nano.​2011.​09.​012
10.
Zurück zum Zitat Abu-Yousif AO, Moor AC, Zheng X et al (2012) Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett. doi:10.1016/j.canlet.2012.01.014 Abu-Yousif AO, Moor AC, Zheng X et al (2012) Epidermal growth factor receptor-targeted photosensitizer selectively inhibits EGFR signaling and induces targeted phototoxicity in ovarian cancer cells. Cancer Lett. doi:10.​1016/​j.​canlet.​2012.​01.​014
11.
Zurück zum Zitat Giuntini F, Alonso CM, Boyle RW (2011) Synthetic approaches for the conjugation of porphyrin and related macrocycles to peptides and proteins. Photochem Photobiol Sci 10:759–791PubMedCrossRef Giuntini F, Alonso CM, Boyle RW (2011) Synthetic approaches for the conjugation of porphyrin and related macrocycles to peptides and proteins. Photochem Photobiol Sci 10:759–791PubMedCrossRef
12.
Zurück zum Zitat Srivatsan A, Ethirajan M, Pandey SK et al (2011) Conjugation of cRGD peptide to chlorophyll a based photosensitizer (HPPH) alters its pharmacokinetics with enhanced tumor-imaging and photosensitizing (PDT) efficacy. Mol Pharm 8:1186–1197PubMedCrossRef Srivatsan A, Ethirajan M, Pandey SK et al (2011) Conjugation of cRGD peptide to chlorophyll a based photosensitizer (HPPH) alters its pharmacokinetics with enhanced tumor-imaging and photosensitizing (PDT) efficacy. Mol Pharm 8:1186–1197PubMedCrossRef
13.
Zurück zum Zitat Bhatti M, Yahioglu G, Milgrom LR et al (2008) Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments. Int J Cancer 122:1155–1163PubMedCrossRef Bhatti M, Yahioglu G, Milgrom LR et al (2008) Targeted photodynamic therapy with multiply-loaded recombinant antibody fragments. Int J Cancer 122:1155–1163PubMedCrossRef
14.
Zurück zum Zitat Van Dongen GA, Visser GW, Vrouenraets MB (2004) Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev 56:31–52PubMedCrossRef Van Dongen GA, Visser GW, Vrouenraets MB (2004) Photosensitizer-antibody conjugates for detection and therapy of cancer. Adv Drug Deliv Rev 56:31–52PubMedCrossRef
15.
Zurück zum Zitat Gupta S, Dwarakanath BS, Chaudhury NK et al (2011) In vitro and in vivo targeted delivery of photosensitizers to the tumor cells for enhanced photodynamic effects. J Cancer Res Ther 7:314–324PubMedCrossRef Gupta S, Dwarakanath BS, Chaudhury NK et al (2011) In vitro and in vivo targeted delivery of photosensitizers to the tumor cells for enhanced photodynamic effects. J Cancer Res Ther 7:314–324PubMedCrossRef
16.
Zurück zum Zitat Shieh YA, Yang SJ, Wei MF et al (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–1442PubMedCrossRef Shieh YA, Yang SJ, Wei MF et al (2010) Aptamer-based tumor-targeted drug delivery for photodynamic therapy. ACS Nano 4:1433–1442PubMedCrossRef
17.
Zurück zum Zitat Zheng X, Pandey RK (2008) Porphyrin-carbohydrate conjugates: impact of carbohydrate moieties in photodynamic therapy (PDT). Anticancer Agents Med Chem 8:241–268PubMedCrossRef Zheng X, Pandey RK (2008) Porphyrin-carbohydrate conjugates: impact of carbohydrate moieties in photodynamic therapy (PDT). Anticancer Agents Med Chem 8:241–268PubMedCrossRef
18.
Zurück zum Zitat Di Stasio B, Frochot C, Dumas D et al (2005) The 2- aminoglucosamide motif improves cellular uptake and photodynamic activity of tetraphenylporphyrin. Eur J Med Chem 40:1111–1122PubMedCrossRef Di Stasio B, Frochot C, Dumas D et al (2005) The 2- aminoglucosamide motif improves cellular uptake and photodynamic activity of tetraphenylporphyrin. Eur J Med Chem 40:1111–1122PubMedCrossRef
19.
Zurück zum Zitat Gravier J, Schneider R, Frochot C et al (2008) Improvement of metatetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies. J Med Chem 51:3867–3877PubMedCrossRef Gravier J, Schneider R, Frochot C et al (2008) Improvement of metatetra(hydroxyphenyl)chlorin-like photosensitizer selectivity with folate-based targeted delivery. Synthesis and in vivo delivery studies. J Med Chem 51:3867–3877PubMedCrossRef
20.
Zurück zum Zitat Hamblin MR, Miller JL, Rizvi I et al (2001) Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res 61:7155–7162PubMed Hamblin MR, Miller JL, Rizvi I et al (2001) Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res 61:7155–7162PubMed
21.
Zurück zum Zitat Hamblin MR, Miller JL, Rizvi I et al (2003) Pegylation of charged polymer photosensitizer conjugates: effects on photodynamic efficacy. Br J Cancer 89:937–943PubMedCrossRef Hamblin MR, Miller JL, Rizvi I et al (2003) Pegylation of charged polymer photosensitizer conjugates: effects on photodynamic efficacy. Br J Cancer 89:937–943PubMedCrossRef
22.
Zurück zum Zitat Chouikrat R, Seve A, Vanderesse R et al (2012) Non polymeric nanoparticles for photodynamic therapy applications: recent developments. Curr Med Chem 19:781–792PubMedCrossRef Chouikrat R, Seve A, Vanderesse R et al (2012) Non polymeric nanoparticles for photodynamic therapy applications: recent developments. Curr Med Chem 19:781–792PubMedCrossRef
23.
Zurück zum Zitat Wieder ME, Hone DC, Cook MJ et al (2006) Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a 'Trojan horse'. Photochem Photobiol Sci 5:727–734PubMedCrossRef Wieder ME, Hone DC, Cook MJ et al (2006) Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a 'Trojan horse'. Photochem Photobiol Sci 5:727–734PubMedCrossRef
24.
Zurück zum Zitat Stuchinskaya T, Moreno M, Cook MJ et al (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831PubMedCrossRef Stuchinskaya T, Moreno M, Cook MJ et al (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10:822–831PubMedCrossRef
25.
Zurück zum Zitat Couleaud P, Morosini V, Frochot C et al (2010) Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2:1083–1095PubMedCrossRef Couleaud P, Morosini V, Frochot C et al (2010) Silica-based nanoparticles for photodynamic therapy applications. Nanoscale 2:1083–1095PubMedCrossRef
26.
Zurück zum Zitat Zhu Z, Tang Z, Phillips JA et al (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857PubMedCrossRef Zhu Z, Tang Z, Phillips JA et al (2008) Regulation of singlet oxygen generation using single-walled carbon nanotubes. J Am Chem Soc 130:10856–10857PubMedCrossRef
27.
Zurück zum Zitat Huang P, Lin J, Yang D et al (2011) Photosensitizer-loaded dendrimer-modified multi-walled carbon nanotubes for photodynamic therapy. J Control Release 152(Suppl 1):e33–e34PubMedCrossRef Huang P, Lin J, Yang D et al (2011) Photosensitizer-loaded dendrimer-modified multi-walled carbon nanotubes for photodynamic therapy. J Control Release 152(Suppl 1):e33–e34PubMedCrossRef
28.
Zurück zum Zitat Sortino S, Mazzaglia A, Monsù Scolaro L et al (2006) Nanoparticles of cationic amphiphilic cyclodextrins entangling anionic porphyrins as a “carrier-sensitizer” system in photodynamic cancer therapy. Biomaterials 27:4256–4265PubMedCrossRef Sortino S, Mazzaglia A, Monsù Scolaro L et al (2006) Nanoparticles of cationic amphiphilic cyclodextrins entangling anionic porphyrins as a “carrier-sensitizer” system in photodynamic cancer therapy. Biomaterials 27:4256–4265PubMedCrossRef
29.
Zurück zum Zitat McCarthy JR, Perez JM, Bruckner C et al (2005) Polymeric nanoparticle preparation that eradicates tumors. Nano Lett 5:2552–2556PubMedCrossRef McCarthy JR, Perez JM, Bruckner C et al (2005) Polymeric nanoparticle preparation that eradicates tumors. Nano Lett 5:2552–2556PubMedCrossRef
30.
Zurück zum Zitat Takamiya K, Tsuchiya T, Ohta H (2000) Degradation pathways of chlorophyll: what has gene cloning revealed? Trends Plan Sci 5:426–431CrossRef Takamiya K, Tsuchiya T, Ohta H (2000) Degradation pathways of chlorophyll: what has gene cloning revealed? Trends Plan Sci 5:426–431CrossRef
31.
Zurück zum Zitat Rapozzi V, Zacchigna M, Biffi S et al (2010) Conjugated PDT drug. Photosensitizing activity and tissue distribution of PEGylated pheophorbide a. Cancer Biol Ther 10:1–12CrossRef Rapozzi V, Zacchigna M, Biffi S et al (2010) Conjugated PDT drug. Photosensitizing activity and tissue distribution of PEGylated pheophorbide a. Cancer Biol Ther 10:1–12CrossRef
32.
Zurück zum Zitat Taub AF (2008) Photodynamic therapy in dermatology. In: Hamblin MR, Mroz P (eds) Advances in photodynamic therapy: basic, translational and clinical, Artech House, Boston, pp 419–442 Taub AF (2008) Photodynamic therapy in dermatology. In: Hamblin MR, Mroz P (eds) Advances in photodynamic therapy: basic, translational and clinical, Artech House, Boston, pp 419–442
33.
Zurück zum Zitat Soncin M, Busetti A, Reddi E et al (1997) Pharmacokinetic and phototherapeutic properties of axially substitued Si(IV)-tetradibenzobarreleno-octabutoxyphtalocyanines. J Photochem Photobiol B 40:163–167PubMedCrossRef Soncin M, Busetti A, Reddi E et al (1997) Pharmacokinetic and phototherapeutic properties of axially substitued Si(IV)-tetradibenzobarreleno-octabutoxyphtalocyanines. J Photochem Photobiol B 40:163–167PubMedCrossRef
34.
Zurück zum Zitat Fabris C, Vicente MGH, Hao E et al (2007) Tumour-localizing and-photosensitizing properties of meso-tetra(4-nido-carboranylphenyl)porphyrin. J Photochem Photobiol B: Biol 89:131–136CrossRef Fabris C, Vicente MGH, Hao E et al (2007) Tumour-localizing and-photosensitizing properties of meso-tetra(4-nido-carboranylphenyl)porphyrin. J Photochem Photobiol B: Biol 89:131–136CrossRef
35.
Zurück zum Zitat Camerin M, Magaraggia M, Soncin M et al (2010) The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur J Cancer 46:1910–1918PubMedCrossRef Camerin M, Magaraggia M, Soncin M et al (2010) The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur J Cancer 46:1910–1918PubMedCrossRef
36.
Zurück zum Zitat Nelson JS, McCullough JL, Berns MW (1988) Photodynamic therapy of human- malignant melanoma xenografts in at hymic nude mice. J Natl Cancer Inst 80:56–60PubMedCrossRef Nelson JS, McCullough JL, Berns MW (1988) Photodynamic therapy of human- malignant melanoma xenografts in at hymic nude mice. J Natl Cancer Inst 80:56–60PubMedCrossRef
37.
Zurück zum Zitat Campaner P, Drioli S, Bonora GM (2006) Synthesis of selectively end-modified high-molecular weight polyethylenglycol. Lett Org Chem 10:773–779CrossRef Campaner P, Drioli S, Bonora GM (2006) Synthesis of selectively end-modified high-molecular weight polyethylenglycol. Lett Org Chem 10:773–779CrossRef
38.
Zurück zum Zitat Röeder B, Hanke TH, Oelckers ST et al (2000) Photophysical properties of pheophorbide a in solution and in a model membrane systems. J Porphyr Phtalocyanines 4:37–44CrossRef Röeder B, Hanke TH, Oelckers ST et al (2000) Photophysical properties of pheophorbide a in solution and in a model membrane systems. J Porphyr Phtalocyanines 4:37–44CrossRef
39.
Zurück zum Zitat Sternberg ED, Dolphin D, Bruckner C (1998) Porphyrin based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202CrossRef Sternberg ED, Dolphin D, Bruckner C (1998) Porphyrin based photosensitizers for use in photodynamic therapy. Tetrahedron 54:4151–4202CrossRef
40.
Zurück zum Zitat Xodo LE, Rapozzi V, Zacchigna M et al (2012) The chlorophyll catabolite pheophorbide a as a photosensitizer for the photodynamic therapy. Curr Med Chem 19:799–807PubMedCrossRef Xodo LE, Rapozzi V, Zacchigna M et al (2012) The chlorophyll catabolite pheophorbide a as a photosensitizer for the photodynamic therapy. Curr Med Chem 19:799–807PubMedCrossRef
41.
Zurück zum Zitat Tang PM, Zhang DM, Xuan NH et al (2009) Photodynamic therapy ninhibits p-glycoprotein mediated multidrug resistanve via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a. Mol Cancer 8:56–67PubMedCrossRef Tang PM, Zhang DM, Xuan NH et al (2009) Photodynamic therapy ninhibits p-glycoprotein mediated multidrug resistanve via JNK activation in human hepatocellular carcinoma using the photosensitizer pheophorbide a. Mol Cancer 8:56–67PubMedCrossRef
42.
Zurück zum Zitat Rapozzi V, Miculan M, Xodo LE (2009) Evidence that photoactivated pheophorbide a causes in human cancer cells a photodynamic effect involving lipid peroxidation. Cancer Biol Ther 8:1318–1327PubMedCrossRef Rapozzi V, Miculan M, Xodo LE (2009) Evidence that photoactivated pheophorbide a causes in human cancer cells a photodynamic effect involving lipid peroxidation. Cancer Biol Ther 8:1318–1327PubMedCrossRef
43.
Zurück zum Zitat Hajri A, Wack S, Meyer C et al (2002) In vitro and in vivo efficacy of Photofrin and Pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells. Photochem Photobiol 75:140–148PubMedCrossRef Hajri A, Wack S, Meyer C et al (2002) In vitro and in vivo efficacy of Photofrin and Pheophorbide a, a bacteriochlorin, in photodynamic therapy of colonic cancer cells. Photochem Photobiol 75:140–148PubMedCrossRef
44.
Zurück zum Zitat Hoi SW, Wong HM, Chan JY et al (2011) Photodynamic therapy of pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models. Phytother Res. doi:10.1002/ptr.3607 Hoi SW, Wong HM, Chan JY et al (2011) Photodynamic therapy of pheophorbide a inhibits the proliferation of human breast tumour via both caspase-dependent and -independent apoptotic pathways in in vitro and in vivo models. Phytother Res. doi:10.​1002/​ptr.​3607
45.
Zurück zum Zitat Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery:pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49:6288–6308PubMedCrossRef Knop K, Hoogenboom R, Fischer D, Schubert US (2010) Poly(ethylene glycol) in drug delivery:pros and cons as well as potential alternatives. Angew Chem Int Ed Engl 49:6288–6308PubMedCrossRef
46.
Zurück zum Zitat Rapozzi V, Umezawa K, Xodo LE (2011) Role of NF-kB/Snail/RKIP loop in the response of tumor cells to photodynamic therapy. Lasers Surg Med 43:575–585PubMed Rapozzi V, Umezawa K, Xodo LE (2011) Role of NF-kB/Snail/RKIP loop in the response of tumor cells to photodynamic therapy. Lasers Surg Med 43:575–585PubMed
47.
Zurück zum Zitat Torres M (2003) Mitogen-activated protein kinase pathways in redox signaling. Front Biosci 8:d369–d391PubMedCrossRef Torres M (2003) Mitogen-activated protein kinase pathways in redox signaling. Front Biosci 8:d369–d391PubMedCrossRef
48.
Zurück zum Zitat Landeer HM, Milbank AJ, Tauras JM et al (1996) Redox regulation of cell signaling. Nature 381:380–381CrossRef Landeer HM, Milbank AJ, Tauras JM et al (1996) Redox regulation of cell signaling. Nature 381:380–381CrossRef
49.
Zurück zum Zitat Chan WH (2011) Photodynamic therapy induces apoptotic pathway involving calcium, nitric oxide, p53, p21-activated kinase 2, and c-jun N-terminal kinase and inactivates survival signal in human umbilical vein endothelial cells. Int J Mol Sci 12:1041–1059PubMedCrossRef Chan WH (2011) Photodynamic therapy induces apoptotic pathway involving calcium, nitric oxide, p53, p21-activated kinase 2, and c-jun N-terminal kinase and inactivates survival signal in human umbilical vein endothelial cells. Int J Mol Sci 12:1041–1059PubMedCrossRef
50.
Zurück zum Zitat Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRef Berlett BS, Stadtman ER (1997) Protein oxidation in aging, disease and oxidative stress. J Biol Chem 272:20313–20316PubMedCrossRef
51.
Zurück zum Zitat Wiegell SR, Fabricius S, Stender IM et al (2011) A randomized, multicentre study of directed daylight exposure times of 1½ vs. 2½ h in daylight-mediated photodynamic therapy with methyl aminolaevulinate in patients with multiple thin actinic keratoses of the face and scalp. Br J Dermatol 164:1083–1090PubMedCrossRef Wiegell SR, Fabricius S, Stender IM et al (2011) A randomized, multicentre study of directed daylight exposure times of 1½ vs. 2½ h in daylight-mediated photodynamic therapy with methyl aminolaevulinate in patients with multiple thin actinic keratoses of the face and scalp. Br J Dermatol 164:1083–1090PubMedCrossRef
Metadaten
Titel
The PDT activity of free and pegylated pheophorbide a against an amelanotic melanoma transplanted in C57/BL6 mice
verfasst von
Valentina Rapozzi
Sonia Zorzet
Marina Zacchigna
Sara Drioli
Luigi E. Xodo
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Investigational New Drugs / Ausgabe 1/2013
Print ISSN: 0167-6997
Elektronische ISSN: 1573-0646
DOI
https://doi.org/10.1007/s10637-012-9844-4

Weitere Artikel der Ausgabe 1/2013

Investigational New Drugs 1/2013 Zur Ausgabe

Update Onkologie

Bestellen Sie unseren Fach-Newsletter und bleiben Sie gut informiert.